Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (9): 940-953.doi: 10.3866/PKU.WHXB201810052
Special Issue: C–H Activation
• Review • Previous Articles Next Articles
Chunhui SHAN1,*(),Ruopeng BAI2,Yu LAN2,3,*(
)
Received:
2018-10-23
Accepted:
2018-11-21
Published:
2018-11-27
Contact:
Chunhui SHAN,Yu LAN
E-mail:chunhui.shan@cqu.edu.cn;lanyu@cqu.edu.cn
Supported by:
Chunhui SHAN,Ruopeng BAI,Yu LAN. Theoretical Advances of Transition Metals Mediated C―H Bonds Cleavage[J].Acta Physico-Chimica Sinica, 2019, 35(9): 940-953.
1 |
Ackermann L. Chem. Rev 2011, 111, 1315.
doi: 10.1021/cr100412j |
2 |
Cho S. H. ; Kim J. Y. ; Kwak J. ; Chang S. Chem. Soc. Rev 2011, 40, 5068.
doi: 10.1039/c1cs15082k |
3 |
Jiang Y. -Y. ; Man X. ; Bi S. Sci. China-Chem. 2016, 59, 1448.
doi: 10.1007/s11426-016-0330-3 |
4 |
Liu C. ; Zhang H. ; Shi W. ; Lei A. Chem. Rev 2011, 111, 1780.
doi: 10.1021/cr100379j |
5 |
Rao Y. ; Shan G. ; Yang X. Sci. China-Chem 2014, 57, 930.
doi: 10.1007/s11426-014-5130-y |
6 |
Shan C. ; Zhu L. ; Qu L. B. ; Bai R. ; Lan Y. Chem. Soc. Rev 2018, 47, 7552.
doi: 10.1039/c8cs00036k |
7 |
Yu J. L. ; Zhang S. Q. ; Hong X. J. Am. Chem.Soc 2017, 139, 7224.
doi: 10.1021/jacs.7b00714 |
8 |
Yuan C. ; Zhu L. ; Chen C. ; Chen X. ; Yang Y. ; Lan Y. ; Zhao Y. Nat. Commun 2018, 9, 1189.
doi: 10.1038/s41467-018-03341-6 |
9 |
Yuan C. ; Zhu L. ; Zeng R. ; Lan Y. ; Zhao Y. Angew. Chem. Int. Ed 2018, 57, 1277.
doi: 10.1002/anie.201711221 |
10 |
Zhang L. ; Zhu L. ; Zhang Y. ; Yang Y. ; Wu Y. ; Ma W. ; Lan Y. ; You J. ACS Catal 2018, 8, 8324.
doi: 10.1021/acscatal.8b02816 |
11 |
Ackermann L. Acc. Chem. Res 2014, 47, 281.
doi: 10.1021/ar3002798 |
12 |
Colby D. A. ; Bergman R. G. ; Ellman J. A. Chem. Rev 2010, 110, 624.
doi: 10.1021/cr900005n |
13 |
Li Y. ; Liu S. ; Qi Z. ; Qi X. ; Li X. ; Lan Y. Chem. -Eur. J 2015, 21, 10131.
doi: 10.1002/chem.201500290 |
14 |
Qin X. ; Li X. ; Huang Q. ; Liu H. ; Wu D. ; Guo Q. ; Lan J. ; Wang R. ; You J. Angew. Chem. Int. Ed 2015, 54, 7167.
doi: 10.1002/anie.201501982 |
15 |
Shin K. ; Kim H. ; Chang S. Acc. Chem. Res 2015, 48, 1040.
doi: 10.1021/acs.accounts.5b00020 |
16 |
Song G. ; Li X. Acc. Chem. Res 2015, 48, 1007.
doi: 10.1021/acs.accounts.5b00077 |
17 |
Yu S. ; Li Y. ; Kong L. ; Zhou X. ; Tang G. ; Lan Y. ; Li X. ACS Catal 2016, 6, 7744.
doi: 10.1021/acscatal.6b02668 |
18 |
Yu S. ; Liu S. ; Lan Y. ; Wan B. ; Li X. J. Am. Chem. Soc 2015, 137, 1623.
doi: 10.1021/ja511796h |
19 |
Arroniz C. ; Denis J. G. ; Ironmonger A. ; Rassias G. ; Larrosa I. Chem. Sci 2014, 5, 3509.
doi: 10.1039/c4sc01215a |
20 |
Arroniz C. ; Ironmonger A. ; Rassias G. ; Larrosa I. Org. Lett 2013, 15, 910.
doi: 10.1021/ol400065j |
21 |
Chiong H. A. ; Pham Q. N. ; Daugulis O. J. Am. Chem. Soc 2007, 129, 9879.
doi: 10.1021/ja071845e |
22 |
Engle K. M. ; Mei T. S. ; Wasa M. ; Yu J. Q. Acc. Chem. Res 2012, 45, 788.
doi: 10.1021/ar200185g |
23 |
Giri R. ; Maugel N. ; Li J. J. ; Wang D. H. ; Breazzano S. P. ; Saunders L. B. ; Yu J. Q. J. Am. Chem. Soc 2007, 129, 3510.
doi: 10.1021/ja0701614 |
24 |
He J. ; Wasa M. ; Chan K. S. L. ; Shao Q. ; Yu J. Q. Chem. Rev 2017, 117, 8754.
doi: 10.1021/acs.chemrev.6b00622 |
25 |
Wang D. H. ; Mei T. S. ; Yu J. Q. J. Am. Chem. Soc 2008, 130, 17676.
doi: 10.1021/ja806681z |
26 |
Zhang H. ; Wang H.-Y. ; Luo Y. ; Chen C. ; Cao Y. ; Chen P. ; Guo Y. -L. ; Lan Y. ; Liu G. ACS Catal. 2018, 8, 2173.
doi: 10.1021/acscatal.7b03220 |
27 |
Zhu C. ; Zhang Y. ; Kan J. ; Zhao H. ; Su W. Org. Lett 2015, 17, 3418.
doi: 10.1021/acs.orglett.5b01398 |
28 |
Shi R. ; Lu L. ; Xie H. ; Yan J. ; Xu T. ; Zhang H. ; Qi X. ; Lan Y. ; Lei A. Chem. Commun 2016, 52, 13307.
doi: 10.1039/c6cc06358f |
29 |
Song L. ; Zhu L. ; Zhang Z. ; Ye J. H. ; Yan S. S. ; Han J. L. ; Yin Z. B. ; Lan Y. ; Yu D. G. Org. Lett 2018, 20, 3776.
doi: 10.1021/acs.orglett.8b01363 |
30 |
Zhu R.-Y. ; Farmer M. E. ; Chen Y. -Q. ; Yu J. -Q. Angew. Chem. Int. Ed. 2016, 55, 10578.
doi: 10.1002/anie.201600791 |
31 |
Musaev D. G. ; Figg T. M. ; Kaledin A. L. Chem. Soc. Rev 2014, 43, 5009.
doi: 10.1039/c3cs60447k |
32 |
Xie H. ; Fan T. ; Lei Q. ; Fang W. Sci. Chin. Chem 2016, 59, 1432.
doi: 10.1007/s11426-016-0018-2 |
33 |
Xie H. ; Zhang H. ; Lin Z. New J. Chem 2013, 37, 2856.
doi: 10.1039/c3nj00531c |
34 |
Liu D. ; Li Y. ; Qi X. ; Liu C. ; Lan Y. ; Lei A. Org. Lett 2015, 17, 998.
doi: 10.1021/acs.orglett.5b00104 |
35 |
Aihara Y. ; Chatani N. J. Am. Chem. Soc 2014, 136, 898.
doi: 10.1021/ja411715v |
36 |
Heitz D. R. ; Tellis J. C. ; Molander G. A. J. Am. Chem. Soc 2016, 138, 12715.
doi: 10.1021/jacs.6b04789 |
37 |
Muto K. ; Yamaguchi J. ; Itami K. J. Am. Chem. Soc 2012, 134, 169.
doi: 10.1021/ja210249h |
38 |
Yamamoto T. ; Muto K. ; Komiyama M. ; Canivet J. ; Yamaguchi J. ; Itami K. Chem. -Eur. J 2011, 17, 10113.
doi: 10.1002/chem.201101091 |
39 |
Yokota A. ; Aihara Y. ; Chatani N. J. Org. Chem 2014, 79, 11922.
doi: 10.1021/jo501697n |
40 |
Liu R. R. ; Zhu L. ; Hu J. P. ; Lu C. J. ; Gao J. R. ; Lan Y. ; Jia Y. X. Chem. Commun 2017, 53, 5890.
doi: 10.1039/c7cc01015j |
41 |
Zeng Z. ; Zhang T. ; Yue X. ; Zhang H. ; Bai R. ; Lan Y. Sci. Sin. Chim 2018, 48, 736.
doi: 10.1360/N032018-00105 |
42 |
Murai S. ; Kakiuchi F. ; Sekine S. ; Tanaka Y. ; Kamatani A. ; Sonoda M. ; Chatani N. Nature 1993, 366, 529.
doi: 10.1038/366529a0 |
43 |
Ackermann L. Chem. Commun 2010, 46, 4866.
doi: 10.1039/c0cc00778a |
44 |
Ackermann L. ; Hofmann N. ; Vicente R. Org. Lett 2011, 13, 1875.
doi: 10.1021/ol200366n |
45 |
Ackermann L. ; Vicente R. ; Althammer A. Org. Lett 2008, 10, 2299.
doi: 10.1021/ol800773x |
46 |
Fumagalli F. ; Warratz S. ; Zhang S. K. ; Rogge T. ; Zhu C. ; Stuckl A. C. ; Ackermann L. Chem. -Eur. J 2018, 24, 3984.
doi: 10.1002/chem.201800530 |
47 |
Liu W. ; Ackermann L. Org. Lett 2013, 15, 3484.
doi: 10.1021/ol401535k |
48 |
Warratz S. ; Burns D. J. ; Zhu C. ; Korvorapun K. ; Rogge T. ; Scholz J. ; Jooss C. ; Gelman D. ; Ackermann L. Angew. Chem. Int. Ed 2017, 56, 1557.
doi: 10.1002/anie.201609014 |
49 |
Ferrer Flegeau E. ; Bruneau C. ; Dixneuf P. H. ; Jutand A. J. Am. Chem. Soc 2011, 133, 10161.
doi: 10.1021/ja201462n |
50 |
Ozdemir I. ; Demir S. ; Cetinkaya B. ; Gourlaouen C. ; Maseras F. ; Bruneau C. ; Dixneuf P. H. J. Am. Chem. Soc 2008, 130, 1156.
doi: 10.1021/ja710276x |
51 |
Ryabov A. D. ; Sakodinskaya I. K. ; Yatsimirsky A. K. J. Chem. Soc., Dalton Trans 1985, 2629
doi: 10.1039/dt9850002629 |
52 |
Kurzeev S. A. ; Kazankov G. M. ; Ryabov A. D. Inorg. Chim. Acta 2002, 340, 192.
doi: 10.1016/s0020-1693[02]01148-9 |
53 |
Oxgaard J. ; Tenn W. J. ; Nielsen R. J. ; Periana R. A. ; Goddard W. A. Organometallics 2007, 26, 1565.
doi: 10.1021/om061189b |
54 |
Balcells D. ; Clot E. ; Eisenstein O. Chem. Rev 2010, 110, 749.
doi: 10.1021/cr900315k |
55 |
Wenz K. M. ; Liu P. ; Houk K. N. Organometallics 2017, 36, 3613.
doi: 10.1021/acs.organomet.7b00531 |
56 |
Xi Y. ; Su Y. ; Yu Z. ; Dong B. ; McClain E. J. ; Lan Y. ; Shi X. Angew. Chem. Int. Ed 2014, 53, 9817.
doi: 10.1002/anie.201404946 |
57 |
Shi F. Q. Org. Lett 2011, 13, 736.
doi: 10.1021/ol102974k |
58 |
Cho K. B. ; Kang H. ; Woo J. ; Park Y. J. ; Seo M. S. ; Cho J. ; Nam W. Inorg. Chem 2014, 53, 645.
doi: 10.1021/ic402831f |
59 |
Sun X. ; Sun X. ; Geng C. ; Zhao H. ; Li J. J. Phys. Chem. A, 2014, 118, 7146.
doi: 10.1021/jp505662x |
60 |
Tamura H. ; Yamazaki H. ; Sato H. ; Sakaki S. J. Am. Chem. Soc 2003, 125, 16114.
doi: 10.1021/ja0302937 |
61 |
Zhu L. ; Qi X. ; Li Y. ; Duan M. ; Zou L. ; Bai R. ; Lan Y. Organometallics 2017, 36, 2107.
doi: 10.1021/acs.organomet.7b00151 |
62 |
Murphy S. K. ; Park J. W. ; Cruz F. A. ; Dong V. M. Science 2015, 347, 56.
doi: 10.1126/science.1261232 |
63 |
Luo X. ; Bai R. ; Liu S. ; Shan C. ; Chen C. ; Lan Y. J. Org. Chem 2016, 81, 2320.
doi: 10.1021/acs.joc.5b02828 |
64 |
Gorelsky S. I. ; Lapointe D. ; Fagnou K. J. Am. Chem. Soc 2008, 130, 10848.
doi: 10.1021/ja802533u |
65 |
Wang Q. ; Li Y. ; Qi Z. ; Xie F. ; Lan Y. ; Li X. ACS Catal 2016, 6, 1971.
doi: 10.1021/acscatal.5b02297 |
66 |
Yu S. ; Tang G. ; Li Y. ; Zhou X. ; Lan Y. ; Li X. Angew. Chem. Int. Ed 2016, 55, 8696.
doi: 10.1002/anie.201602224 |
67 |
Dateer R. B. ; Chang S. J. Am. Chem. Soc 2015, 137, 4908.
doi: 10.1021/jacs.5b01065 |
68 |
Li Y. ; Shan C. ; Yang Y. F. ; Shi F. ; Qi X. ; Houk K. N. ; Lan Y. J. Phys. Chem. A 2017, 121, 4496.
doi: 10.1021/acs.jpca.7b01020 |
69 |
Liu S. ; Qi X. ; Qu L. -B. ; Bai R. ; Lan Y. Catal. Sci. Technol. 2018, 8, 1645.
doi: 10.1039/c7cy02367g |
70 |
Luo Y. ; Liu S. ; Xu D. ; Qu L. -B. ; Luo X. ; Bai R. ; Lan Y. J. Organomet. Chem. 2018, 864, 148.
doi: 10.1016/j.jorganchem.2018.03.016 |
71 |
Tan G. ; Zhu L. ; Liao X. ; Lan Y. ; You J. J. Am. Chem. Soc 2017, 139, 15724.
doi: 10.1021/jacs.7b07242 |
72 |
Yang X. ; Liu S. ; Yu S. ; Kong L. ; Lan Y. ; Li X. Org. Lett 2018, 20, 2698.
doi: 10.1021/acs.orglett.8b00906 |
73 |
Yin J. ; Zhou F. ; Zhu L. ; Yang M. ; Lan Y. ; You J. Chem. Sci 2018, 9, 5488.
doi: 10.1039/c8sc01963k |
74 |
Zhang T. ; Qi X. ; Liu S. ; Bai R. ; Liu C. ; Lan Y. Chem. -Eur. J 2017, 23, 2690.
doi: 10.1002/chem.201605188 |
75 |
Qi X. ; Li Y. ; Bai R. ; Lan Y. Acc. Chem. Res 2017, 50, 2799.
doi: 10.1021/acs.accounts.7b00400 |
76 |
Gao B. ; Liu S. ; Lan Y. ; Huang H. Organometallics 2016, 35, 1480.
doi: 10.1021/acs.organomet.6b00072 |
77 |
Shan C. ; Luo X. ; Qi X. ; Liu S. ; Li Y. ; Lan Y. Organometallics 2016, 35, 1440.
doi: 10.1021/acs.organomet.6b00064 |
78 |
Zhou X. ; Luo Y. ; Kong L. ; Xu Y. ; Zheng G. ; Lan Y. ; Li X. ACS Catal 2017, 7, 7296.
doi: 10.1021/acscatal.7b02248 |
79 |
Li Y. ; Zou L. ; Bai R. ; Lan Y. Org. Chem. Front 2018, 5, 615.
doi: 10.1039/c7qo00850c |
80 |
Zell D. ; Bursch M. ; Muller V. ; Grimme S. ; Ackermann L. Angew. Chem. Int. Ed 2017, 56, 10378.
doi: 10.1002/anie.201704196 |
81 |
Bu Q. ; Rogge T. ; Kotek V. ; Ackermann L. Angew. Chem. Int. Ed 2018, 57, 765.
doi: 10.1002/anie.201711108 |
82 |
Yue X. ; Qi X. ; Bai R. ; Lei A. ; Lan Y. Chem. -Eur. J 2017, 23, 6419.
doi: 10.1002/chem.201700733 |
83 |
Lin Y. ; Zhu L. ; Lan Y. ; Rao Y. Chem. -Eur. J 2015, 21, 14937.
doi: 10.1002/chem.201502140 |
84 |
Ahmad K. ; Khan B. A. ; Roy S. K. ; Zai-ul A. ; Mahmood R. ; Khan J. ; Ashraf H. Comput. Theor. Chem 2018, 1130, 140.
doi: 10.1016/j.comptc.2018.03.025 |
85 |
Clot E. ; Chen J. ; Lee D. H. ; Sung S. Y. ; Appelhans L. N. ; Faller J. W. ; Crabtree R. H. ; Eisenstein O. J. Am. Chem. Soc 2004, 126, 8795.
doi: 10.1021/ja048473j |
86 |
Chen Z. M. ; Hilton M. J. ; Sigman M. S. J. Am. Chem. Soc 2016, 138, 11461.
doi: 10.1021/jacs.6b06994 |
87 |
Werner E. W. ; Mei T. S. ; Burckle A. J. ; Sigman M. S. Science 2012, 338, 1455.
doi: 10.1126/science.1229208 |
88 |
Xu L. ; Hilton M. J. ; Zhang X. ; Norrby P. O. ; Wu Y. D. ; Sigman M. S. ; Wiest O. J. Am. Chem. Soc 2014, 136, 1960.
doi: 10.1021/ja4109616 |
89 |
Limberg C. Angew. Chem. Int. Ed 2003, 42, 5932.
doi: 10.1002/anie.200300578 |
90 |
Che C. M. ; Lo V. K. ; Zhou C. Y. ; Huang J. S. Chem. Soc. Rev 2011, 40, 1950.
doi: 10.1039/c0cs00142b |
91 |
Zhang L. ; Liu Y. ; Deng L. J. Am. Chem. Soc 2014, 136, 15525.
doi: 10.1021/ja509731z |
92 |
Hu L. ; Chen H. ACS Catal 2016, 7, 285.
doi: 10.1021/acscatal.6b02694 |
93 |
Maurice D. ; Head-Gordon M. Mol. Phys 1999, 96, 1533.
doi: 10.1080/00268979909483096 |
94 |
Head-Gordon M. ; Rico R. J. ; Oumi M. ; Lee T. J. Chem. Phys. Lett 1994, 219, 21.
doi: 10.1016/0009-2614[94]00070-0 |
95 |
Purvis G. D. ; Bartlett R. J. J. Chem. Phys 1982, 76, 1910.
doi: 10.1063/1.443164 |
96 |
Krishnan R. ; Pople J. A. Int. J.Quantum Chem 1978, 14, 91.
doi: 10.1002/qua.560140109 |
97 |
Van Voorhis T. ; Head-Gordon M. J. Chem. Phys 2001, 115, 5033.
doi: 10.1063/1.1390516 |
98 |
Meyer H. D. ; Manthe U. ; Cederbaum L. S. Chem. Phys. Lett 1990, 165, 73.
doi: 10.1016/0009-2614[90]87014-i |
99 |
M ller C. ; Plesset M. S. Phys. Rev 1934, 46, 618.
doi: 10.1103/PhysRev.46.618 |
100 |
Grimme S. J. Comput. Chem 2004, 25, 1463.
doi: 10.1002/jcc.20078 |
101 |
Zhao Y. ; Schultz N. E. ; Truhlar D. G. J. Chem. Theory Comput 2006, 2, 364.
doi: 10.1021/ct0502763 |
102 |
Becke A. D. J. Chem. Phys 1993, 98, 5648.
doi: 10.1063/1.464913 |
103 |
Lee C. ; Yang W. ; Parr R. G. Phys. Rev. B 1988, 37, 785.
doi: 10.1103/PhysRevB.37.785 |
104 |
Goerigk L. ; Grimme S. J. Chem. Theory Comput 2011, 7, 291.
doi: 10.1021/ct100466k |
105 |
Grimme S. ; Antony J. ; Ehrlich S. ; Krieg H. J. Chem. Phys 2010, 132, 154104.
doi: 10.1063/1.3382344 |
106 |
Zhao Y. ; Truhlar D. G. Theor. Chem. Acc 2008, 119, 525.
doi: 10.1007/s00214-007-0401-8 |
107 |
Peverati R. ; Truhlar D. G. J. Phys. Chem. Lett 2011, 3, 117.
doi: 10.1021/jz201525m |
108 |
Peverati R. ; Truhlar D. G. J. Chem. Theory Comput 2012, 8, 2310.
doi: 10.1021/ct3002656 |
109 |
Zhao Y. ; Truhlar D. G. J. Phys. Chem. A 2005, 109, 5656.
doi: 10.1021/jp050536c |
[1] | Tianjie Wang, Yaowei Wang, Yuhui Chen, Jianpeng Liu, Huibing Shi, Limin Guo, Zhiwei Zhao, Chuntai Liu, Zhangquan Peng. Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2 [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009071-. |
[2] | Guoguang Xu, Qi Wang, Yi Su, Meinan Liu, Qingwen Li, Yuegang Zhang. Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009073-. |
[3] | Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007088-. |
[4] | Hongwei Yu, Shi Li, Jinlong Li, Shaohua Zhu, Chengzhen Sun. Interfacial Mass Transfer Characteristics and Molecular Mechanism of the Gas-Oil Miscibility Process in Gas Flooding [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006061-. |
[5] | Yuqi Wang, Miaocheng Zhang, Wei Xu, Xinyi Shen, Fei Gao, Jiale Zhu, Xiang Wan, Xiaojuan Lian, Jianguang Xu, Yi Tong. Chemical Preparation of New Ti3C2 MXene and the Performance and Mechanism of Memristor Based on MXene [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1907076-. |
[6] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[7] | Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2111003-. |
[8] | Yichen Du, Zhuangzhuang Zhang, Yifan Xu, Jianchun Bao, Xiaosi Zhou. Metal Sulfide-Based Potassium-Ion Battery Anodes: Storage Mechanisms and Synthesis Strategies [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205017-. |
[9] | Hao Zhou, Yaxuan Jing, Yanqin Wang. Activation/Cleavage of C―O/C―C Bonds during Biomass Conversion [J]. Acta Phys. -Chim. Sin., 2022, 38(10): 2203016-. |
[10] | Peng Chen, Ying Zhou, Fan Dong. Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010010-. |
[11] | Rui Qin, Pengyan Wang, Can Lin, Fei Cao, Jinyong Zhang, Lei Chen, Shichun Mu. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009099-. |
[12] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[13] | Kaimin Hua, Xiaofang Liu, Baiyin Wei, Shunan Zhang, Hui Wang, Yuhan Sun. Research Progress Regarding Transition Metal-Catalyzed Carbonylations with CO2/H2 [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009098-. |
[14] | Yongli Heng, Zhenyi Gu, Jinzhi Guo, Xinglong Wu. Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005013-. |
[15] | Xinyang Yue, Cui Ma, Jian Bao, Siyu Yang, Dong Chen, Xiaojing Wu, Yongning Zhou. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005012-. |
|