Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (1): 1905076.doi: 10.3866/PKU.WHXB201905076
Special Issue: Special Issue in Honor of Academician Youqi Tang on the Occasion of His 100th Birthday
• Review • Previous Articles Next Articles
Jinxiu Zhan1,2,Feng Feng1,2,Min Xu1,2,Li Yao1,2,*(),Maofa Ge1,2,*(
)
Received:
2019-05-28
Accepted:
2019-07-08
Published:
2019-07-18
Contact:
Li Yao,Maofa Ge
E-mail:yaoli@iccas.ac.cn;gemaofa@iccas.ac.cn
Supported by:
MSC2000:
Jinxiu Zhan,Feng Feng,Min Xu,Li Yao,Maofa Ge. Progress in Chemo–Mechanical Interactions between Nanoparticles and Cells[J].Acta Physico-Chimica Sinica, 2020, 36(1): 1905076.
Fig 3
Nanoparticles affect cell mechanics. (a) TiO2 nanoparticles induce endothelial leakiness through disruption of the VE-cadherin homophilic interactions at the adherent junction. (b) High iron oxide nanoparticles concentrations affect cellular cytoskeleton and lead to cell polarization. (c) Nanoparticle-induced cell stiffness increasement could be explained by actin polymerization or increase of actin-binding protein. (d) Nanoparticles enhance cell adhesion and inhibit cell migration."
Table 1
Effects of nanoparticles on cell mechanics."
Particle type | Size and zeta potential | Cell types | Incubation conditions | Impacts on cell mechanics | Ref. |
Iron-iron oxide | 16 ± 1.5 nm | BAC | 5, 10, 20, 50 μg·mL?1; | Increase in Young’s modulus of BACs with | |
core-shell MNPs | 3 days | the increase of NP concentration. | |||
Ag NPs | 20 nm | USC | 0–64 μg·mL?1; | Increase in actin polymerization and | |
5 × 103 cells·well?1; 24 h | cytoskeletal tension, activation of RhoA | ||||
Nano-Si64 and | 63.88 ± 10.35, | L-02 | 10, 20, 50 μg·mL?1; | Change in quantity and distribution of | |
Nano-Si46 | 46.15 ± 5.53 nm; | 1×105 cells·mL?1; | cytoskeleton through extra ROS and Ca2+ | ||
negatively charged | 24 h | leading to abnormal mitosis and cytokinesis | |||
AgNPs | 52.3 ± 8.7 nm (single NP); | MG-63 | 0.5, 5, 10, 20 μg·mL?1; | Destruction of F-actin in quantity and | |
201 nm (aggregates); | 2 × 104 cells·well?1; | structure, decrease in expressions of ALP, | |||
24, 48, 72 h | OCN and COL-I in a dose-dependent manner | ||||
TiO2-PEG NPs | 100, 200, 300 nm | NCI-H292 | 100 μg·mL?1; | NP-mediated promotion of the lysosomal | |
8 × 104 cells?cm?2; | degradation of integrin beta 1, thus leading to | ||||
3 h | reduced expression of pFAK and cytoskeletal | ||||
reduced expression of pFAK and cytoskeletal | |||||
Fullerenol NPs | 1.72 ± 0.14 nm | MCF-7, | 200 μg·mL?1; | Lowered stiffness and restrained migration, | |
MDA-MB-231 | 5 × 105 cells·well?1; | decrease in the number and length of | |||
24 h; | filopodia, change in cancer cell adhesion and | ||||
motility through the inhibition of integrin to | |||||
form clusters on filopodias | |||||
GO Nanosheets | 2 nm (thickness); | A549 | 50 μg·mL?1; | Retardation of cell migration through | |
397.6 ± 62.4 nm; | 6 h, 24 h | nanosheet-mediated disruption of intracellular | |||
?34.8 ± 1.0 mV | actin filaments. | ||||
Ag NPs and | 10 nm | CCD-1072Sk | 0.1, 1, 10 μg·mL?1; | Reduce in collagen and laminin production | |
Au NPs | 5×103/8-well; | and cell migration, increase in the formation | |||
24 h | of stress fibers and the number of cell | ||||
protrusions, impaired cell polarity. | |||||
SPIONs | 132.4 nm; ?25.37 mV | VFF | 20, 40, 80 μg·cm?2; 24 h | Decrease in VFF adhesion | |
Si NPs and | 7 nm | MSC | 100 μg·mL?1’; | Structural reorganization of cortical | |
SiB NPs | 3 × 103 cells?cm?2; | cytoskeleton with subsequent stiffness | |||
1 and 24 h | increase and concomitant F-actin content | ||||
TiO2 | 15–50 nm (single NP); | TR146 | 125, 1250 μmol?L?1; | Increase of long vinculin near the cell–cell | |
SiO2 | 272 ± 4, 236 ± 25 236 ± 9 | 90 000 cells?cm?2; | boundary and traction force, low level of MT | ||
HA | nm (aggregates); negatively | 12 h | acetylation, maturation of FAs, destabilization | ||
charged | of MT networks, promotion of cell adhesion | ||||
and retardation in cell migration | |||||
TiO2 NPs | 18–23 nm;≈?20 mV | MCF-7, MDA-MB-231, | 0–40 μg·mL?1; | Destruction of adherence junctions which | |
SiO2 NPs | SW620 | 0.5 and 24 h | induced endothelial leakiness and promoted | ||
Au NPs | the metastasis of breast cancer cells | ||||
Magnetoliposomes | 14.0,4.2–4.8,4.2 | NPCs and | 500, 1000 μg·mL?1; | Reduce in cellular proliferation, expression of | |
Endorem | and 4.0 nm | hBOECs | 5×104 cells·well?1; | FAK and distribution of actin cytoskeleton | |
Resovist | 24 h | and microtubule network | |||
very small organic | |||||
particles |
1 |
Grabinski C. ; Schaeublin N. ; Wijaya A. ; D'Couto H. ; Baxamusa S. H. ; Hamad-Schifferli K. ; Hussain S. M. ACS Nano 2011, 5 (4), 2870.
doi: 10.1021/nn103476x |
2 |
Pati R. ; Das I. ; Mehta R. K. ; Sahu R. ; Sonawane A. Toxicol. Sci. 2016, 150 (2), 454.
doi: 10.1093/toxsci/kfw010 |
3 |
Li J. C. ; Mao H. L. ; Kawazoe N. ; Chen G. P. Biomater. Sci. 2017, 5 (2), 173.
doi: 10.1039/c6bm00714g |
4 |
Rotsch C. ; Radmacher M. Biophys. J. 2000, 78 (1), 520.
doi: 10.1016/s0006-3495(00)76614-8 |
5 |
Tay C. Y. ; Cai P. Q. ; Setyawati M. I. ; Fang W. R. ; Tan L. P. ; Hong C. H. L. ; Chen X. D. ; Leong D. T. Nano Lett. 2014, 14 (1), 83.
doi: 10.1021/nl4032549 |
6 |
Li Y. ; Jing L. ; Yu Y. B. ; Yu Y. ; Duan J. C. ; Yang M. ; Geng W. J. ; Jiang L. Z. ; Li Q. L. ; Sun Z. W. Part. Part. Syst. Charact. 2015, 32 (6), 636.
doi: 10.1002/ppsc.201400180 |
7 |
Nakayama K. H. ; Surya V. N. ; Gole M. ; Walker T. W. ; Yang W. G. ; Lai E. S. ; Ostrowski M. A. ; Fuller G. G. ; Dunn A. R. ; Huang N. F. Nano Lett. 2016, 16 (1), 410.
doi: 10.1021/acs.nanolett.5b04028 |
8 |
Hynes R. O. Cell 2002, 110 (6), 673.
doi: 10.1016/s0092-8674(02)00971-6 |
9 |
Guo W. J. ; Giancotti F. G. Nat. Rev. Mol. Cell Biol. 2004, 5 (10), 816.
doi: 10.1038/nrm1490 |
10 |
Mitra S. K. ; Hanson D. A. ; Schlaepfer D. D. Nat. Rev. Mol. Cell Biol. 2005, 6 (1), 56.
doi: 10.1038/nrm1549 |
11 |
Li Z. H. ; Lee H. J. ; Zhu C. Exp. Cell Res. 2016, 349 (1), 85.
doi: 10.1016/j.yexcr.2016.10.001 |
12 |
Geiger B. ; Yamada K. M. CSH Perspect. Biol. 2011, 3 (5), 21.
doi: 10.1101/cshperspect.a005033 |
13 |
Jiang G. Y. ; Giannone G. ; Critchley D. R. ; Fukumoto E. ; Sheetz M. P. Nature 2003, 424 (6946), 334.
doi: 10.1038/nature01805 |
14 |
Kukkurainen S. ; Maatta J. A. ; Saeger J. ; Valjakka J. ; Vogel V. ; Hytonen V. P. Mol. Biosyst. 2014, 10 (12), 3217.
doi: 10.1039/c4mb00341a |
15 |
Yao M. X. ; Goult B. T. ; Chen H. ; Cong P. W. ; Sheetz M. P. ; Yan J. Sci. Rep. 2014, 4, 7.
doi: 10.1038/srep04610 |
16 |
Mitra S. K. ; Schlaepfer D. D. Curr. Opin. Cell Biol. 2006, 18 (5), 516.
doi: 10.1016/j.ceb.2006.08.011 |
17 |
Beningo K. A. ; Dembo M. ; Kaverina I. ; Small J. V. ; Wang Y. L. J. Cell Biol. 2001, 153 (4), 881.
doi: 10.1083/jcb.153.4.881 |
18 |
Scarpa E. ; Szabo A. ; Bibonne A. ; Theveneau E. ; Parsons M. ; Mayor R. Dev. Cell 2015, 34 (4), 421.
doi: 10.1016/j.devcel.2015.06.012 |
19 |
Yao M. X. ; Qiu W. ; Liu R. C. ; Efremov A. K. ; Cong P. W. ; Seddiki R. ; Payre M. ; Lim C. T. ; Ladoux B. ; Mege R. M. ; et al Nat. Commun. 2014, 5, 11.
doi: 10.1038/ncomms5525 |
20 |
Mui K. L. ; Chen C. S. ; Assoian R. K. J. Cell Sci. 2016, 129 (6), 1093.
doi: 10.1242/jcs.183699 |
21 |
Auernheimer V. ; Lautscham L. A. ; Leidenberger M. ; Friedrich O. ; Kappes B. ; Fabry B. ; Goldmann W. H. J. Cell Sci. 2015, 128 (18), 3435.
doi: 10.1242/jcs.172031 |
22 |
Gasparski A. N. ; Beningo K. A. Arch. Biochem. Biophys. 2015, 586, 20.
doi: 10.1016/j.abb.2015.07.017 |
23 |
Kiefel H. ; Bondong S. ; Hazin J. ; Ridinger J. ; Schirmer U. ; Riedle S. ; Altevogt P. Cell Adhes. Migr. 2012, 6 (4), 374.
doi: 10.4161/cam.20832 |
24 |
Colombo F. ; Meldolesi J. Trends Pharmacol. Sci. 2015, 36 (11), 769.
doi: 10.1016/j.tips.2015.08.004 |
25 |
Bershadsky A. ; Chausovsky A. ; Becker E. ; Lyubimova A. ; Geiger B. Curr. Biol. 1996, 6 (10), 1279.
doi: 10.1016/s0960-9822(02)70714-8 |
26 |
Padmakumar V. C. ; Libotte T. ; Lu W. S. ; Zaim H. ; Abraham S. ; Noegel A. A. ; Gotzmann J. ; Foisner R. ; Karakesisoglou L. J. Cell Sci. 2005, 118 (15), 3419.
doi: 10.1242/jcs.02471 |
27 |
Haque F. ; Lloyd D. J. ; Smallwood D. T. ; Dent C. L. ; Shanahan C. M. ; Fry A. M. ; Trembath R. C. ; Shackleton S. Mol. Cell. Biol. 2006, 26 (10), 3738.
doi: 10.1128/mcb.26.10.3738-3751.2006 |
28 |
Luxton G. W. G. ; Gomes E. R. ; Folker E. S. ; Vintinner E. ; Gundersen G. G. Science 2010, 329 (5994), 956.
doi: 10.1126/science.1189072 |
29 |
Guilluy C. ; Osborne L. D. ; Van Landeghem L. ; Sharek L. ; Superfine R. ; Garcia-Mata R. ; Burridge K. Nat. Cell Biol. 2014, 16 (4), 376.
doi: 10.1038/ncb2927 |
30 |
Fanucchi S. ; Shibayama Y. ; Burd S. ; Weinberg M. S. ; Mhlanga M. M. Cell 2013, 155 (3), 606.
doi: 10.1016/j.cell.2013.09.051 |
31 |
Dekker J. ; Mirny L. Cell 2016, 164 (6), 1110.
doi: 10.1016/j.cell.2016.02.007 |
32 |
Uhler C. ; Shivashankar G. V. Nat. Rev. Mol. Cell Biol. 2017, 18 (12), 717.
doi: 10.1038/nrm.2017.101 |
33 |
Lv L. W. ; Tang Y. M. ; Zhang P. ; Liu Y. S. ; Bai X. S. ; Zhou Y. S. Tissue Eng. Part B-Rev. 2018, 24 (2), 112.
doi: 10.1089/ten.teb.2017.0287 |
34 |
Jaalouk D. E. ; Lammerding J. Nat. Rev. Mol. Cell Biol. 2009, 10 (1), 63.
doi: 10.1038/nrm2597 |
35 |
Schwarz U. S. ; Soine J. R. D. Biochim. Biophys. Acta-Mol. Cell Res. 2015, 1853 (11), 3095.
doi: 10.1016/j.bbamcr.2015.05.028 |
36 |
Muller D. J. ; Dufrene Y. F. Trends Cell Biol. 2011, 21 (8), 461.
doi: 10.1016/j.tcb.2011.04.008 |
37 |
Ahmed W. W. ; Fodor E. ; Betz T. Biochim. Biophys. Acta-Mol. Cell Res. 2015, 1853 (11), 3083.
doi: 10.1016/j.bbamcr.2015.05.022 |
38 |
Castillo M. ; Ebensperger R. ; Wirtz D. ; Walczak M. ; Hurtado D. E. ; Celedon A. J. Biomed. Mater. Res. Part B 2014, 102 (8), 1779.
doi: 10.1002/jbm.b.33167 |
39 |
Berret J. F. Nat. Commun. 2016, 7, 10134.
doi: 10.1038/ncomms10134 |
40 |
Etoc F. ; Lisse D. ; Bellaiche Y. ; Piehler J. ; Coppey M. ; Dahan M. Nat. Nanotechnol. 2013, 8 (3), 193.
doi: 10.1038/nnano.2013.23 |
41 |
Tan J. L. ; Tien J. ; Pirone D. M. ; Gray D. S. ; Bhadriraju K. ; Chen C. S. Pro. Nat. Acad. Sci. U.S.A. 2003, 100 (4), 1484.
doi: 10.1073/pnas.0235407100 |
42 |
Yao L. ; Xu S. J. Angew. Chem.-Int. Edit. 2013, 52 (52), 14041.
doi: 10.1002/anie.201007297 |
43 |
Yao L. ; Li Y. ; Tsai T. W. ; Xu S. J. ; Wang Y. H. Angew. Chem. Int. Ed. 2013, 52 (52), 14041.
doi: 10.1002/anie.201307419 |
44 |
Yao L. ; Xu S. J. J. Phys. Chem. B 2012, 116 (33), 9944.
doi: 10.1021/jp304335a |
45 |
Zhang D. ; Feng F. ; Li Q. L. ; Wang X. Y. ; Yao L. Biomaterials 2018, 173, 22.
doi: 10.1016/j.biomaterials.2018.04.045 |
46 |
Yu C. ; Zhang D. ; Feng X. ; Chai Y. ; Lu P. ; Li Q. ; Feng F. ; Wang X. ; Li Y. ; et al Nanoscale 2019, 11 (16), 7648.
doi: 10.1039/c8nr10338k |
47 |
Qin Y. ; Chen K. ; Gu W. ; Dong X. ; Lei R. ; Chang Y. ; Bai X. ; Xia S. ; Zeng L. ; Zhang J. Nanoscale Res. Lett. 2015, 16 (1), 54.
doi: 10.1186/s12951-018-0380-z |
48 |
Peng F. ; Setyawati M. I. ; Tee J. K. ; Ding X. G. ; Wang J. P. ; Nga M. E. ; Ho H. K. ; Leong D. T. Nat. Nanotechnol. 2019, 14 (3), 279.
doi: 10.1038/s41565-018-0356-z |
49 |
Pottler M. ; Fliedner A. ; Schreiber E. ; Janko C. ; Friedrich R. P. ; Bohr C. ; Dollinger M. ; Alexiou C. ; Durr S. Nanoscale Res. Lett. 2017, 12 (1), 284.
doi: 10.1186/s11671-017-2045-5 |
50 |
Li Y. ; Jing L. ; Yu Y. ; Yu Y. ; Duan J. ; Yang M. ; Geng W. ; Jiang L. ; Li Q. ; Sun Z. Part. Part. Sys. Charact. 2015, 32 (6), 636.
doi: 10.1002/ppsc.201400180 |
51 |
Xie H. ; Wang P. ; Wu J. Artif. Cells Nanomed Biotechnol. 2019, 47 (1), 260.
doi: 10.1080/21691401.2018.1552594 |
52 |
Soenen S. J. H. ; Nuytten N. ; De Meyer S. F. ; De Smedt S. C. ; De Cuyper M. Small 2010, 6 (7), 832.
doi: 10.1002/smll.200902084 |
53 |
Qin H. ; Zhu C. ; An Z. ; Jiang Y. ; Zhao Y. ; Wang J. ; Liu X. ; Hui B. ; Zhang X. ; Wang Y. Int. J. Nanomed. 2014, 9, 2469.
doi: 10.2147/IJN.S59753 |
54 |
Calzado-Martin A. ; Encinar M. ; Tamayo J. ; Calleja M. ; Paulo A. S. ACS Nano 2016, 10 (3), 3365.
doi: 10.1021/acsnano.5b07162 |
55 |
Mao H. ; Li J. ; Dulinska-Molak I. ; Kawazoe N. ; Takeda Y. ; Mamiya H. ; Chen G. Biomater. Sci. 2015, 3 (9), 1284.
doi: 10.1039/c5bm00141b |
56 |
Ogneva I. V. ; Buravkov S. V. ; Shubenkov A. N. ; Buravkova L. B. Nanoscale Res. Lett. 2014, 9
doi: 10.1186/1556-276x-9-284 |
57 |
Tian X. ; Yang Z. ; Duan G. ; Wu A. ; Gu Z. ; Zhang L. ; Chen C. ; Chai Z. ; Ge C. ; Zhou R. Small 2017, 13 (3)
doi: 10.1002/smll.201602133 |
58 |
Sun Q. ; Kanehira K. ; Taniguchi A. Sci. Technol. Adv. Mater. 2018, 19 (1), 271.
doi: 10.1080/14686996.2018.1444318 |
59 |
Vieira L. F. A. ; Lins M. P. ; Viana I. ; Dos Santos J. E. ; Smaniotto S. ; Reis M. Nanoscale Res. Lett. 2017, 12 (1), 200.
doi: 10.1186/s11671-017-1982-3 |
[1] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[2] | Tonghui Cui, Hangyue Li, Zewei Lyu, Yige Wang, Minfang Han, Zaihong Sun, Kaihua Sun. Identification of Electrode Process in Large-Size Solid Oxide Fuel Cell [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2011009-. |
[3] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[4] | Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007088-. |
[5] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
[6] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
[7] | Wusong Zha, Lianping Zhang, Long Wen, Jiachen Kang, Qun Luo, Qin Chen, Shangfeng Yang, Chang-Qi Ma. Controllable Formation of PbI2 and PbI2(DMSO) Nano Domains in Perovskite Films through Precursor Solvent Engineering [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003022-. |
[8] | Zhicong Sun, Ergui Luo, Qinglei Meng, Xian Wang, Junjie Ge, Changpeng Liu, Wei Xing. High-Performance Palladium-Based Catalyst Boosted by Thin-Layered Carbon Nitride for Hydrogen Generation from Formic Acid [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003035-. |
[9] | Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang. Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912052-. |
[10] | Xiaoyun Xu, Hongbo Wu, Shijie Liang, Zheng Tang, Mengyang Li, Jing Wang, Xiang Wang, Jin Wen, Erjun Zhou, Weiwei Li, Zaifei Ma. Quantum Efficiency and Voltage Losses in P3HT: Non-fullerene Solar Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201039-. |
[11] | Rui Hao, Weixiang Guan, Fei Liu, Leilei Zhang, Aiqin Wang. Reaction Mechanism of Cellulose Conversion to Lactic Acid with Lewis Acid Catalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(10): 2205027-. |
[12] | Wei Wang, Yao Wang, Zixiang Zhan, Tian Tan, Weiping Deng, Qinghong Zhang, Ye Wang. Heterogeneous Catalysis for Deoxygenation of Cellulose and Its Derivatives to Chemicals [J]. Acta Phys. -Chim. Sin., 2022, 38(10): 2205032-. |
[13] | Yuming Li, Haichao Liu. Selective Hydrogenolysis of Glycerol to 1, 3-Propanediol over Supported Platinum-Tungsten Oxide Catalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(10): 2207014-. |
[14] | Jian Wang, Wei Ding, Zidong Wei. Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009094-. |
[15] | Yanrong Xue, Xingdong Wang, Xiangqian Zhang, Jinjie Fang, Zhiyuan Xu, Yufeng Zhang, Xuerui Liu, Mengyuan Liu, Wei Zhu, Zhongbin Zhuang. Cost-Effective Hydrogen Oxidation Reaction Catalysts for Hydroxide Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009103-. |
|