Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (1): 1907006.doi: 10.3866/PKU.WHXB201907006
Special Issue: Special Issue in Honor of Academician Youqi Tang on the Occasion of His 100th Birthday
• Article • Previous Articles Next Articles
Minyi Su1,2,Huisi Liu3,Haixia Lin3,*(),Renxiao Wang1,2,*(
)
Received:
2019-07-01
Accepted:
2019-08-30
Published:
2019-09-03
Contact:
Haixia Lin,Renxiao Wang
E-mail:haixialin@staff.shu.edu.cn;wangrx@mail.sioc.ac.cn
Supported by:
MSC2000:
Minyi Su,Huisi Liu,Haixia Lin,Renxiao Wang. Machine-Learning Model for Predicting the Rate Constant of ProteinLigand Dissociation[J].Acta Physico-Chimica Sinica, 2020, 36(1): 1907006.
Fig 1
Free energy profile of the drug-target binding process. ΔGbind is the free energy gap between the bound and the unbound states. ΔGon≠ is the free energy gap between the unbound state and the transition state. ΔGoff≠ is the free energy gap between the bound state and the transition state."
Table 2
Performance on the validation set by the QSKR model based on different descriptor sets."
Bin width/Å | Bin width/Å | Feature selection variance level | ||
0 | 1 | 2 | ||
6 | 1 | 0.548 | 0.507 | 0.393 |
2 | 0.524 | 0.406 | 0.304 | |
3 | 0.509 | 0.484 | 0.546 | |
6 | 0.496 | 0.526 | 0.519 | |
9 | 1 | 0.507 | 0.437 | 0.408 |
3 | 0.563 | 0.576 | 0.447 | |
9 | 0.511 | 0.551 | 0.482 | |
12 | 1 | 0.557 | 0.436 | 0.489 |
2 | 0.562 | 0.416 | 0.568 | |
3 | 0.526 | 0.504 | 0.619 | |
4 | 0.553 | 0.501 | 0.363 | |
6 | 0.461 | 0.626 | 0.536 | |
12 | 0.425 | 0.356 | 0.604 | |
15 | 1 | 0.317 | 0.604 | 0.487 |
3 | 0.573 | 0.551 | 0.671 | |
5 | 0.417 | 0.574 | 0.585 | |
15 | 0.569 | 0.532 | 0.585 |
1 |
Copeland R. A. ; Pompliano D. L. ; Meek T. D. Nat. Rev. Drug Discov. 2006, 5, 730.
doi: 10.1038/nrd2082 |
2 |
Tummino P. J. ; Copeland R. A. Biochemistry 2008, 47, 5481.
doi: 10.1021/bi8002023 |
3 |
Schuetz D. A. ; Arnout de Witte W. E. ; Wong Y. C. ; Knasmueller B. ; Richter L. ; Kokh D. B. ; Sadiq S. K. ; Bosma R. ; Nederpelt I. ; Heitman L. H. ; et al Drug Discov. Today 2017, 22, 896.
doi: 10.1016/j.drudis.2017.02.002 |
4 |
Pan A. C. ; Borhani D. W. ; Dror R. O. ; Shaw D. E. Drug Discov. Today 2013, 18, 667.
doi: 10.1016/j.drudis.2013.02.007 |
5 |
Guo D. ; Mulder K. T. ; Ijzerman A. P. ; Heitman L. H. Br. J. Pharmacol. 2012, 166, 1846.
doi: 10.1111/j.1476-5381.2012.01897.x |
6 |
Folmer R. H. A. Drug Discov. Today 2018, 23, 12.
doi: 10.1016/j.drudis.2017.07.016 |
7 |
Bruce N. J. ; Ganotra G. K. ; Kokh D. B. ; Sadiq S. K. ; Wade R. C. Curr. Opin. Struct. Biol. 2018, 49, 1.
doi: 10.1016/j.sbi.2017.10.001 |
8 |
Qu S. J. ; Huang S. H. ; Pan X. C. ; Yang L. ; Mei H. J. Chem. Inf. Model. 2016, 56, 2061.
doi: 10.1021/acs.jcim.6b00326 |
9 |
Ganotra G. K. ; Wade R. C. ACS Med. Chem. Lett. 2018, 9, 1134.
doi: 10.1021/acsmedchemlett.8b00397 |
10 |
Liu Z.H ; Li Y. ; Han L. ; Li J. ; Liu J. ; Zhao Z. X. ; Nie W. ; Liu Y. C ; Wang R. X. Bioinformatics 2015, 31, 405.
doi: 10.1093/bioinformatics/btu626 |
11 |
Li W. ; Godzik A. Bioinformatics 2006, 22, 1658.
doi: 10.1093/bioinformatics/btl158 |
12 |
Fu L. ; Niu B. ; Zhu Z. ; Wu S. ; Li W. Bioinformatics 2012, 28, 3150.
doi: 10.1093/bioinformatics/bts565 |
13 |
Royston J. P. Appl. Stat. 1982, 31, 115.
doi: 10.2307/2347973 |
14 |
Royston J. P. Appl. Stat. 1982, 31, 176.
doi: 10.2307/2347986 |
15 |
Rogers D. ; Hahn M. J. Chem. Inf. Model. 2010, 50, 742.
doi: 10.1021/ci100050t |
16 |
Bietz S. ; Urbaczek S. ; Schulz B. ; Rarey M. J. Cheminform. 2014, 6, 1.
doi: 10.1186/1758-2946-6-12 |
17 |
Friesner R. A. ; Banks J. L. ; Murphy R. B. ; Halgren T. A. ; Klicic J. J. ; Mainz D. T. ; Repasky M. P. ; Knoll E. H. ; Shelley M. ; Perry J. K. ; et al J. Med. Chem. 2004, 47, 1739.
doi: 10.1021/jm0306430 |
18 |
Halgren T. A. ; Murphy R. B. ; Friesner R. A. ; Beard H. S. ; Frye L. L. ; Pollard W. T. ; Banks J. L. J. Med. Chem. 2004, 47, 1750.
doi: 10.1021/jm030644s |
19 |
Friesner R. A. ; Murphy R. B. ; Repasky M. P. ; Frye L. L. ; Greenwood J. R. ; Halgren T. A. ; Sanschagrin P. C. ; Mainz D. T. J. Med. Chem. 2006, 49, 6177.
doi: 10.1021/jm051256o |
20 |
Qiu D. ; Shenkin P. S. ; Hollinger F. P. ; Still W. C. J. Phys. Chem. A 1997, 101, 3005.
doi: 10.1021/jp961992r |
21 | Case, D. A.; Babin, V.; Berryman, J. T.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham, T. E., Ⅲ; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; et al. AMBER 2014; University of California: San Francisco, CA, USA, 2014. |
22 | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. |
23 |
Cieplak P. ; Cornell W. D. ; Bayly C. ; Kollman P. A. J. Comput. Chem. 1995, 16, 1357.
doi: 10.1002/jcc.540161106 |
24 |
Maier J. A. ; Martinez C. ; Kasavajhala K. ; Wickstrom L. ; Hauser K. E. ; Simmerling C. J. Chem. Theory Comput. 2015, 11, 3696.
doi: 10.1021/acs.jctc.5b00255 |
25 |
Wang J. ; Wolf R. M. ; Caldwell J. W. ; Kollman P. A. ; Case D. A. J. Comput. Chem. 2004, 25, 1157.
doi: 10.1002/jcc.20035 |
26 |
Jorgensen W. L. ; Chandrasekhar J. ; Madura J. D. ; Impey R. W. ; Klein M. L. J. Chem. Phys. 1983, 79, 926.
doi: 10.1063/1.445869 |
27 | Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Chem. Phys. 1977, 23, 327. doi: 10.1.1.399.6868 |
28 |
Roe D. R. ; Cheatham T. E. Ⅲ. J. Chem. Theory Comput. 2013, 9, 3084.
doi: 10.1021/ct400341p |
29 |
Rudling A. ; Orro A. ; Carlsson J. J. Chem. Inf. Model. 2018, 58, 350.
doi: 10.1021/acs.jcim.7b00520 |
30 |
Ballester P. J. ; Schreyer A. ; Blundell T. L. J. Chem. Inf. Model. 2014, 54, 944.
doi: 10.1021/ci500091r |
31 | Pedregosa F. ; Varoquaux G. ; Gramfort A. ; Michel V. ; Thirion B. ; Grisel O. ; Blondel M. ; Prettenhofer P. ; Weiss R. ; Dubourg V. ; et al J. Mach. Learn. Res. 2011, 12, 2825. |
32 |
Kennard R. W. ; Stone L. A. Technometrics 1969, 11, 137.
doi: 10.1080/00401706.1969.10490666 |
33 |
Martin T. M. ; Harten P. ; Young D. M. ; Muratov E. N. ; Golbraikh A. ; Zhu H. ; Tropsha A. J. Chem. Inf. Model. 2012, 52, 2570.
doi: 10.1021/ci300338w |
[1] | Nianze Shang, Yi Cheng, Shen Ao, Gulimire Tuerdi, Mengwen Li, Xiaoyu Wang, Hao Hong, Zehui Li, Xiaoyan Zhang, Wangyang Fu, Kaihui Liu, Zhongfan Liu. Graphene Photonic Crystal Fiber-Based Fluid Sensor toward Distributed Environmental Monitoring [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2108041-. |
[2] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[3] | Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2005006-. |
[4] | Haoran Lu, Yaqing Wei, Run Long. Charge Localization Induced by Nanopore Defects in Monolayer Black Phosphorus for Suppressing Nonradiative Electron-Hole Recombination through Time-Domain Simulation [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006064-. |
[5] | Lei Wang, Tantan Sun, Nana Yan, Xiaona Liu, Chao Ma, Shutao Xu, Peng Guo, Peng Tian, Zhongmin Liu. Acid Properties of SAPO-34 Molecular Sieves with Different Si Contents Templated by Various Organic Structure-Directing Agents [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003046-. |
[6] | Wei Zhou, Yunchao Li, Louzhen Fan, Xiaohong Li. Thioflavin T Specifically Binding with G-Quadruplex Flanked by DoubleStranded DNA [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004017-. |
[7] | Miaomiao Liu, Wenjuan Wang, Xiuping Hao, Xiaoyan Dong. Seeding and Cross-Seeding Aggregations of Aβ40 and hIAPP in Solution and on Surface [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002024-. |
[8] | Tao Liang, Bin Wang. Interlayer Covalently Enhanced Graphene Materials: Construction, Properties, and Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2011059-. |
[9] | Zijun Jing, Chen Tan Khai, Teng He, Yang Yu, Qijun Pei, Jintao Wang, Hui Wu, Ping Chen. Synthesis, Characterization, and Crystal Structure of Lithium Pyrrolide [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2009039-. |
[10] | Yaokun Ye, Zongxiang Hu, Jiahua Liu, Weicheng Lin, Taowen Chen, Jiaxin Zheng, Feng Pan. Research Progress of Theoretical Studies on Polarons in Cathode Materials of Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011003-. |
[11] | Jin-Liang Lin, Yamin Zhang, Hao-Li Zhang. Novel Electrostatic Effects in Single-Molecule Devices [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2005010-. |
[12] | Wenqiong Chen, Yongji Guan, Jiao Zhang, Junjie Pei, Xiaoping Zhang, Youquan Deng. Atomistic Insight into Changes in the Vibrational Spectrum of Ionic Liquids under External Electric Field [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2001004-. |
[13] | Zhiwei Wu, Weilu Ding, Yaqin Zhang, Yanlei Wang, Hongyan He. Interaction and Mechanism between Imidazolium Ionic Liquids and the Zwitterionic Amino Acid Tyr: a DFT Study [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2002021-. |
[14] | Zhen Wei, Minjie Li, Wencong Lu. Theoretical Study of High-Efficiency Organic Dyes with Different Electron-Withdrawing Groups Based on R6 toward Dye-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1905084-. |
[15] | Junjie Shi, Ziqi Hu, Yihao Yang, Yuxiang Bu, Zujin Shi. Stability and Formation Mechanism of Endohedral Metal Carbonitride Clusterfullerenes [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1907077-. |
|