Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (1): 1907004.doi: 10.3866/PKU.WHXB201907004
Special Issue: Special Issue in Honor of Academician Youqi Tang on the Occasion of His 100th Birthday
Previous Articles Next Articles
Zhaolong Chen1,2,Peng Gao2,3,*(),Zhongfan Liu1,2,*(
)
Received:
2019-07-01
Accepted:
2019-08-27
Published:
2019-09-03
Contact:
Peng Gao,Zhongfan Liu
E-mail:p-gao@pku.edu.cn;zfliu@pku.edu.cn
Supported by:
MSC2000:
Zhaolong Chen, Peng Gao, Zhongfan Liu. Graphene-Based LED: from Principle to Devices[J].Acta Physico-Chimica Sinica, 2020, 36(1): 1907004.
Fig 2
Characterizations of Gr/sapphire substrate. (a) Photographs of as-grown 2-inch Gr/sapphire substrate 44; (b) SEM image of the as-grown Gr films on flat sapphire substrates 44; (c) SEM image of the as-grown Gr films on nanopatterned sapphire substrate 35; (d) Raman spectra measured from representative positions in figure (a) 44; (e) G band Raman mapping of as-grown Gr film on sapphire 34; (f) Full-range XPS spectrum of the directly grown Gr on sapphire substrate 34; (g) The C 1s XPS spectrum of the directly grown Gr on sapphire substrate 34; (h) TEM image on the edge of the Gr film showing its monolayer feature 34; (i) Atomically resolved Z-contrast image of Gr 34. "
Fig 3
Tunable nucleation of AlN on Gr/sapphire substrate. (a) Schematic illustration of the nucleation of AlN on bare sapphire and Gr/sapphire 45; (b) SEM image of the nucleation of AlN on bare sapphire and pristine Gr-buffered sapphire 45; (c) Statistics of the density and size of the AlN nuclei on sapphire and pristine Gr/sapphire 45; (d) Raman spectra of Gr/sapphire substrate before N2 plasma treatment (black) and after N2 plasma treatment (red) 34; (e) C 1s XPS spectrum of N2-plasma-treated Gr/sapphire 34; (f) N 1s XPS spectrum of N2-plasma-treated Gr/sapphire 34; (g) DFT calculations of the bonding of one Al adatom on pyrrolic N in Gr 34; (h) AFM height image of AlN nucleation on plasma-treated Gr/sapphire substrate 34; (i) Density and size distribution analysis of AlN nucleation on bare sapphire and plasma-treated Gr/sapphire substrate 34. "
Fig 4
Fast epitaxial lateral overgrowth of AlN on Gr/sapphire substrate. (a) Schematic diagram of the fast growth of AlN film on N2-plasma-treated Gr/sapphire substrate 34; (b, c) SEM image of as-grown AlN on bare sapphire substrate and plasma-treated Gr/sapphire substrate with increasing growth time to 1 h, respectively 34; (d) AFM height image of as-grown AlN film on plasma-treated Gr/sapphire substrate 34; (e) SEM image of the initial 10 min growth of AlN on Gr/nano-patterned sapphire substrate 35; (f) and (g) show the cross-sectional SEM images of AlN films grown on nano-patterned sapphire and Gr/nano-patterned sapphire substrate, respectively 35. "
Fig 5
The stress relaxation of AlN film grown on Gr/sapphire substrate. (a) Schematics for the AlN/Gr/sapphire interface 45; (b, c) SAED patterns of the AlN/Gr/sapphire (b) and the AlN/sapphire (c) 45; (d) The E2(high) Raman frequency of AlN obtained on sapphire, horizontal Gr/sapphire, VG nanowall/sapphire, and bulk AlN substrates 46; (e) The corresponding biaxial stress for bulk AlN (657.4 cm-1) and AlN films on sapphire substrates with different types of Gr layers 46; (f) Optical microscopy images of the surface of the as-grown AlN film at the edge of the sapphire wafer with (top panel) and without (bottom panel) Gr 46. "
Fig 6
The reduced dislocation density of AlN epilayer grown on Gr/sapphire substrate 34. (a) X-ray rocking curves of (0002) AlN grown on sapphire (cyan line) and Gr/sapphire substrate (red line); (b) X-ray rocking curves of (10${\rm{\bar 1}}$2) AlN grown on sapphire (cyan line) and Gr/sapphire substrates (red line); (c) Grazing-incidence X-ray diffraction azimuthal off-axis phi scan for Al2O3 (113) and AlN (101); (d) Selected-area electron diffraction pattern taken at an AlN/Gr/sapphire interface."
Fig 8
Enhanced heat dissipation of AlN film on vertical Gr/sapphire substrate 46. (a) AFM height image of vertical Gr/sapphire substrate; The inset shows a height profile of the AFM image with an average height ≈ 20 nm; (b) A representative cross-sectional TEM image of a vertical Gr nanosheet; (c) The cross-section TEM image of AlN/vertical Gr/sapphire, showing obvious VG nanowalls structures; (d) Schematic illustrations of an AlN/sapphire and an AlN/vertical Gr/sapphire structure; (e) Simulated 2D distributions of the heat mapping of an AlN/sapphire and an AlN/vertical Gr/sapphire structure cross-section; (f) The measured temperatures of AlN/sapphire and an AlN/vertical Gr/sapphire are plotted as a function of the time as detected by an infrared thermal imaging camera. The insets show the temperature distributions of AlN under laser irradiation for 5 min. "
Fig 9
Fabrication of high-brightness LED on Gr/sapphire substrate. (a) Schematic illustration of the as-fabricated blue LED structure 44; (b) Cross-sectional STEM image of InxGa1–xN/GaN MQWs in the as-fabricated blue LED 44; (c) Atomic-resolution STEM image of InxGa1–xN/GaN QW lattice 44; (d) Light-out power of the as-fabricated blue LED on Gr/sapphire and bare sapphire substrate 44; (e) Light output power of the UV-LED fabricated on vertical Gr/sapphire and bare sapphire substrate 46; (f) Light output power of the as-fabricated DUV-LED with and without Gr interlayer as a function of injection current 34. "
Fig 10
Fabrication and transfer processes for LED grown on graphene-layer substrates by utilizing graphene as transfer medium or transparent conductive electrode. (a) Schematic illustration of the fabrication and transfer processes for thin-film LED grown on Gr-layer substrates 14; (b) Optical images of light emissions from the as-fabricated LED on the original substrate and transferred LED on the foreign metal, glass, and platic substrates 14; (c) Optical microscope image from the p-GaN side of LED device (before flip-chip) on Gr/silica glass 69; (d) Schematic of the fabricated flip-chip UV LED device 69; (e) Electroluminescence spectrum measured for a 150 μm diameter aperture LED device under a bias of 20 V 69. "
1 |
Pimputkar S. ; Speck J. S. ; DenBaars S. P. ; Nakamura S. Nat. Photonics 2009, 3, 179.
doi: 10.1038/nphoton.2009.32 |
2 |
Schubert E. F. ; Kim J. K. Science 2005, 308, 1274.
doi: 10.1126/science.1108712 |
3 |
Ponce F. A. ; Bour D. P. Nature 1997, 386, 351.
doi: 10.1038/386351a0 |
4 |
Kobayashi Y. ; Kumakura K. ; Akasaka T. ; Makimoto T. Nature 2012, 484, 223.
doi: 10.1038/nature10970 |
5 |
Choi J. H. ; Zoulkarneev A. ; Il Kim S. ; Baik C. W. ; Yang M. H. ; Park S. S. ; Suh H. ; Kim U. J. ; Bin Son H. ; Lee J. S. ; et al Nat. Photonics 2011, 5, 763.
doi: 10.1038/nphoton.2011.253 |
6 |
Li G. ; Wang W. ; Yang W. ; Lin Y. ; Wang H. ; Lin Z. ; Zhou S. Rep. Prog. Phys. 2016, 79, 056501.
doi: 10.1088/0034-4885/79/5/056501 |
7 |
Nakamura S. ; Krames M. R. Proc. IEEE 2013, 101, 2211.
doi: 10.1109/jproc.2013.2274929 |
8 |
Sheu J. K. ; Chang S. J. ; Kuo C. H. ; Su Y. K. ; Wu L. W. ; Lin Y. C. ; Lai W. C. ; Tsai J. M. ; Chi G. C. ; Wu R. K. IEEE Photonics Technol. Lett. 2003, 15, 18.
doi: 10.1109/lpt.2002.805852 |
9 |
Fernandez-Garrido S. ; Ramsteiner M. ; Gao G. ; Galves L. A. ; Sharma B. ; Corfdir P. ; Calabrese G. ; Schiaber Z. D. S. ; Pfueller C. ; Trampert A. ; et al Nano Lett. 2017, 17, 5213.
doi: 10.1021/acs.nanolett.7b01196 |
10 |
Kim Y. ; Cruz S. S. ; Lee K. ; Alawode B. O. ; Choi C. ; Song Y. ; Johnson J. M. ; Heidelberger C. ; Kong W. ; Choi S. ; et al Nature 2017, 544, 340.
doi: 10.1038/nature22053 |
11 |
Choi J. H. ; Zoulkarneev A. ; Kim S. I. ; Baik C. W. ; Yang M. H. ; Park S. S. ; Suh H. ; Kim U. J. ; Bin Son H. ; Lee J. S. ; et al Nat. Photonics 2011, 5, 763.
doi: 10.1038/nphoton.2011.253 |
12 |
Meyaard D. S. ; Cho J. ; Schubert E. F. ; Han S. H. ; Kim M. H. ; Sone C. Appl. Phys. Lett. 2013, 103, 121103.
doi: 10.1063/1.4821538 |
13 |
Yung K. C. ; Liem H. ; Choy H. S. ; Lun W. K. J. Appl. Phys. 2011, 109, 094509.
doi: 10.1063/1.3580264 |
14 |
Chung K. ; Lee C. H. ; Yi G. C. Science 2010, 330, 655.
doi: 10.1126/science.1195403 |
15 |
Wong W. S. ; Sands T. ; Cheung N. W. Appl. Phys. Lett. 1998, 72, 599.
doi: 10.1063/1.120816 |
16 |
Geim A. K. ; Novoselov K. S. Nat. Mater. 2007, 6, 183.
doi: 10.1038/nmat1849 |
17 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
18 |
Chen J. H. ; Jang C. ; Xiao S. ; Ishigami M. ; Fuhrer M. S. Nat. Nanotechnol. 2008, 3, 206.
doi: 10.1038/nnano.2008.58 |
19 |
Seol J. H. ; Jo I. ; Moore A. L. ; Lindsay L. ; Aitken Z. H. ; Pettes M. T. ; Li X. ; Yao Z. ; Huang R. ; Broido D. ; et al Science 2010, 328, 213.
doi: 10.1126/science.1184014 |
20 |
Lee C. ; Wei X. ; Kysar J. W. ; Hone J. Science 2008, 321, 385.
doi: 10.1126/science.1157996 |
21 |
Nair R. R. ; Blake P. ; Grigorenko A. N. ; Novoselov K. S. ; Booth T. J. ; Stauber T. ; Peres N. M. R. ; Geim A. K. Science 2008, 320, 1308.
doi: 10.1126/science.1156965 |
22 |
Meric I. ; Han M. Y. ; Young A. F. ; Ozyilmaz B. ; Kim P. ; Shepard K. L. Nat. Nanotechnol. 2008, 3, 654.
doi: 10.1038/nnano.2008.268 |
23 |
Raccichini R. ; Varzi A. ; Passerini S. ; Scrosati B. Nat. Mater. 2015, 14, 271.
doi: 10.1038/nmat4170 |
24 |
Liu Z. F. Acta Phys. -Chim. Sin. 2017, 33, 853.
doi: 10.3866/PKU.WHXB201703171 |
刘忠范. 物理化学学报, 2017, 33, 853.
doi: 10.3866/PKU.WHXB201703171 |
|
25 |
Liu S. W. ; Wang H. P. ; Xu Q. ; Ma T. B. ; Yu G. ; Zhang C. ; Geng D. ; Yu Z. ; Zhang S. ; Wang W. ; et al Nat. Commun. 2017, 8, 839.
doi: 10.1038/ncomms14029 |
26 |
Xia F. ; Mueller T. ; Lin Y. M. ; Valdes-Garcia A. ; Avouris P. Nat. Nanotechnol. 2009, 4, 839.
doi: 10.1038/nnano.2009.292 |
27 |
Nayak T. R. ; Andersen H. ; Makam V. S. ; Khaw C. ; Bae S. ; Xu X. ; Ee P. L. R. ; Ahn J. H. ; Hong B. H. ; Pastorin G. ; et al ACS Nano 2011, 5, 4670.
doi: 10.1021/nn200500h |
28 |
Kong W. ; Li H. ; Qiao K. ; Kim Y. ; Lee K. ; Nie Y. ; Lee D. ; Osadchy T. ; Molnar R. J. ; Gaskill D. K. ; et al Nat. Mater. 2018, 17, 999.
doi: 10.1038/s41563-018-0176-4 |
29 |
Tan X. ; Yang S. ; Li H. Acta Chim. Sin. 2017, 75, 271.
doi: 10.6023/a16100552 |
谭晓宇; 杨少延; 李辉杰. 化学学报, 2017, 75, 271.
doi: 10.6023/a16100552 |
|
30 |
Kim J. ; Bayram C. ; Park H. ; Cheng C. W. ; Dimitrakopoulos C. ; Ott J. A. ; Reuter K. B. ; Bedell S. W. ; Sadana D. K. Nat. Commun 2014, 5
doi: 10.1038/ncomms5836 |
31 |
Nam H. ; Tran Viet C. ; Han M. ; Ryu B. D. ; Chandramohan S. ; Park J. B. ; Kang J. H. ; Park Y. J. ; Ko K. B. ; Kim H. Y. ; et al Nat. Commun. 2013, 4
doi: 10.1038/ncomms2448 |
32 |
Gupta P. ; Rahman A. A. ; Hatui N. ; Gokhale M. R. ; Deshmukh M. M. ; Bhattacharya A. J. Cryst. Growth 2013, 372, 105.
doi: 10.1016/j.jcrysgro.2013.03.020 |
33 |
Mohseni P. K. ; Behnam A. ; Wood J. D. ; Zhao X. ; Yu K. J. ; Wang N. C. ; Rockett A. ; Rogers J. A. ; Lyding J. W. ; Pop E. ; et al Adv. Mater. 2014, 26, 3755.
doi: 10.1002/adma.201305909 |
34 |
Chen Z. ; Liu Z. ; Wei T. ; Yang S. ; Dou Z. ; Wang Y. ; Ci H. ; Chang H. ; Qi Y. ; Yan J. ; et al Adv. Mater. 2019, 31, 1807345.
doi: 10.1002/adma.201807345 |
35 |
Chang H. ; Chen Z. ; Li W. ; Yan J. ; Hou R. ; Yang S. ; Liu Z. ; Yuan G. ; Wang J. ; Li J. ; et al Appl. Phys. Lett. 2019, 114, 091107.
doi: 10.1063/1.5081112 |
36 |
Zhang L. ; Li X. ; Shao Y. ; Yu J. ; Wu Y. ; Hao X. ; Yin Z. ; Dai Y. ; Tian Y. ; Huo Q. ; et al ACS Appl. Mater. Interfaces 2015, 7, 4504.
doi: 10.1021/am5087775 |
37 |
Yoo H. ; Chung K. ; Choi Y. S. ; Kang C. S. ; Oh K. H. ; Kim M. ; Yi G. C. Adv. Mater. 2012, 24, 515.
doi: 10.1002/adma.201103829 |
38 |
Li Y. ; Zhao Y. ; Wei T. ; Liu Z. ; Duan R. ; Wang Y. ; Zhang X. ; Wu Q. ; Yan J. ; Yi X. ; et al Jpn. J. Appl. Phys. 2017, 56
doi: 10.7567/jjap.56.085506 |
39 |
Yoo H. ; Chung K. ; Park S. I. ; Kim M. ; Yi G. C. Appl. Phys. Lett. 2013, 102, 051908.
doi: 10.1063/1.4790385 |
40 |
Paton K. R. ; Varrla E. ; Backes C. ; Smith R. J. ; Khan U. ; O'Neill A. ; Boland C. ; Lotya M. ; Istrate O. M. ; King P. ; et al Nat. Mater. 2014, 13, 624.
doi: 10.1038/nmat3944 |
41 |
Chen X. D. ; Liu Z. B. ; Zheng C. Y. ; Xing F. ; Yan X. Q. ; Chen Y. ; Tian J. G. Carbon 2013, 56, 271.
doi: 10.1016/j.carbon.2013.01.011 |
42 |
Liang X. ; Sperling B. A. ; Calizo I. ; Cheng G. ; Hacker C. A. ; Zhang Q. ; Obeng Y. ; Yan K. ; Peng H. ; Li Q. ; et al ACS Nano 2011, 5, 9144.
doi: 10.1021/nn203377t |
43 |
Lin Y. C. ; Jin C. ; Lee J. C. ; Jen S. F. ; Suenaga K. ; Chiu P. W. ACS Nano 2011, 5, 2362.
doi: 10.1021/nn200105j |
44 |
Chen Z. ; Zhang X. ; Dou Z. ; Wei T. ; Liu Z. ; Qi Y. ; Ci H. ; Wang Y. ; Li Y. ; Chang H. ; et al Adv. Mater. 2018, 30, 1801608.
doi: 10.1002/adma.201801608 |
45 |
Qi Y. ; Wang Y. ; Pang Z. ; Dou Z. ; Wei T. ; Gao P. ; Zhang S. ; Xu X. ; Chang Z. ; Deng B. ; et al J. Am. Chem. Soc. 2018, 140, 11935.
doi: 10.1021/jacs.8b03871 |
46 |
Ci H. ; Chang H. ; Wang R. ; Wei T. ; Wang Y. ; Chen Z. ; Sun Y. ; Dou Z. ; Liu Z. ; Li J. ; et al Adv. Mater. 2019, 31, 1901624.
doi: 10.1002/adma.201901624 |
47 |
Chen Z. ; Qi Y. ; Chen X. ; Zhang Y. ; Liu Z. Adv. Mater. 2019, 31, 1803639.
doi: 10.1002/adma.201803639 |
48 |
Sun J. ; Chen Y. ; Priydarshi M. K. ; Chen Z. ; Bachmatiuk A. ; Zou Z. ; Chen Z. ; Song X. ; Gao Y. ; Ruemmeli M. H. ; et al Nano Lett. 2015, 15, 5846.
doi: 10.1021/acs.nanolett.5b01936 |
49 |
Kohler C. ; Hajnal Z. ; Deak P. ; Frauenheim T. ; Suhai S. Phys. Rev. B 2001, 64, 085333.
doi: 10.1103/PhysRevB.64.085333 |
50 |
Fanton M. A. ; Robinson J. A. ; Puls C. ; Liu Y. ; Hollander M. J. ; Weiland B. E. ; LaBella M. ; Trumbull K. ; Kasarda R. ; Howsare C. ; et al ACS Nano 2011, 5, 8062.
doi: 10.1021/nn202643t |
51 |
Hwang J. ; Kim M. ; Campbell D. ; Alsalman H. A. ; Kwak J. Y. ; Shivaraman S. ; Woll A. R. ; Singh A. K. ; Hennig R. G. ; Gorantla S. ; et al ACS Nano 2013, 7, 385.
doi: 10.1021/nn305486x |
52 |
Alaskar Y. ; Arafin S. ; Wickramaratne D. ; Zurbuchen M. A. ; He L. ; McKay J. ; Lin Q. ; Goorsky M. S. ; Lake R. K. ; Wang K. L. Adv. Funct. Mater. 2014, 24, 6629.
doi: 10.1002/adfm.201400960 |
53 |
Sun M. ; Tang W. ; Ren Q. ; Wang S. ; JinYu ; Du Y. ; Zhang Y. Appl. Surf. Sci. 2015, 356, 668.
doi: 10.1016/j.apsusc.2015.08.102 |
54 |
Al Balushi Z. Y. ; Miyagi T. ; Lin Y. C. ; Wang K. ; Calderin L. ; Bhimanapati G. ; Redwing J. M. ; Robinson J. A. Surf. Sci. 2015, 634, 81.
doi: 10.1016/j.susc.2014.11.020 |
55 |
Nam H. ; Tran Viet C. ; Han M. ; Ryu B. D. ; Chandramohan S. ; Park J. B. ; Kang J. H. ; Park Y. J. ; Ko K. B. ; Kim H. Y. ; et al Nat. Commun. 2013, 4, 1452.
doi: 10.1038/ncomms2448 |
56 |
Moon J. ; An J. ; Sim U. ; Cho S. P. ; Kang J. H. ; Chung C. ; Seo J. H. ; Lee J. ; Nam K. T. ; Hong B. H. Adv. Mater. 2014, 26, 3501.
doi: 10.1002/adma.201306287 |
57 |
Shao Y. ; Zhang S. ; Engelhard M. H. ; Li G. ; Shao G. ; Wang Y. ; Liu J. ; Aksay I. A. ; Lin Y. J. Mater. Chem. 2010, 20, 7491.
doi: 10.1039/c0jm00782j |
58 |
Jafri R. I. ; Rajalakshmi N. ; Ramaprabhu S. J. Mater. Chem. 2010, 20, 7114.
doi: 10.1039/c0jm00467g |
59 |
Cancado L. G. ; Jorio A. ; Martins Ferreira E. H. ; Stavale F. ; Achete C. A. ; Capaz R. B. ; Moutinho M. V. O. ; Lombardo A. ; Kulmala T. S. ; Ferrari A. C. Nano Lett. 2011, 11, 3190.
doi: 10.1021/nl201432g |
60 |
Trodahl H. J. ; Martin F. ; Muralt P. ; Setter N. Appl. Phys. Lett. 2006, 89, 061905.
doi: 10.1063/1.2335582 |
61 |
Prokofyeva T. ; Seon M. ; Vanbuskirk J. ; Holtz M. ; Nikishin S. A. ; Faleev N. N. ; Temkin H. ; Zollner S. Phys. Rev. B 2001, 63, 125313.
doi: 10.1103/PhysRevB.63.125313 |
62 |
Sarua A. ; Kuball M. ; Van Nostrand J. E. Appl. Phys. Lett. 2002, 81, 1426.
doi: 10.1063/1.1501762 |
63 |
Srikant V. ; Speck J. S. ; Clarke D. R. J. Appl. Phys. 1997, 82, 4286.
doi: 10.1063/1.366235 |
64 |
Wu Y. ; Hanlon A. ; Kaeding J. F. ; Sharma R. ; Fini P. T. ; Nakamura S. ; Speck J. S. Appl. Phys. Lett. 2004, 84, 912.
doi: 10.1063/1.1646222 |
65 |
Ra Y. H. ; Navamathavan R. ; Park J. H. ; Lee C. R. ACS Appl. Mater. Interfaces 2013, 5, 2111.
doi: 10.1021/am303056v |
66 |
Goldberger J. ; He R. R. ; Zhang Y. F. ; Lee S. W. ; Yan H. Q. ; Choi H. J. ; Yang P. D. Nature 2003, 422, 599.
doi: 10.1038/nature01551 |
67 |
Yasan A. ; McClintock R. ; Mayes K. ; Shiell D. ; Gautero L. ; Darvish S. R. ; Kung P. ; Razeghi M. Appl. Phys. Lett. 2003, 83, 4701.
doi: 10.1063/1.1633019 |
68 |
Yasan A. ; McClintock R. ; Mayes K. ; Darvish S. R. ; Kung P. ; Razeghi M. Appl. Phys. Lett. 2002, 81, 801.
doi: 10.1063/1.1497709 |
69 |
Hoiaas I. M. ; Liudi Mulyo A. ; Vullum P. E. ; Kim D. C. ; Ahtapodov L. ; Fimland B. O. ; Kishino K. ; Weman H. Nano Lett. 2019, 19, 1649.
doi: 10.1021/acs.nanolett.8b04607 |
[1] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[2] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[3] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[4] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[5] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[6] | Zeyao Zhang, Yixi Yao, Yan Li. Modulating the Diameter of Bulk Single-Walled Carbon Nanotubes Grown by FeCo/MgO Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2101055-. |
[7] | Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2005006-. |
[8] | Jingyun Zou, Bing Gao, Xiaopin Zhang, Lei Tang, Simin Feng, Hehua Jin, Bilu Liu, Hui-Ming Cheng. Direct Growth of 1D SWCNT/2D MoS2 Mixed-Dimensional Heterostructures and Their Charge Transfer Property [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2008037-. |
[9] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[10] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
[11] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
[12] | Shiyi Tang, Gaotian Lu, Yi Su, Guang Wang, Xuanzhang Li, Guangqi Zhang, Yang Wei, Yuegang Zhang. Raman Mapping of Lithiation Process on Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2001007-. |
[13] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[14] | Mengdi Zhang, Bei Chen, Mingbo Wu. Research Progress in Graphene as Sulfur Hosts in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101001-. |
[15] | Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song. Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries? [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012062-. |
|