Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (10): 1910007.doi: 10.3866/PKU.WHXB201910007

Special Issue: Frontiers in Colloid and Interface Chemistry

• Review • Previous Articles     Next Articles

Liquid Marbles: Fabrication, Physical Properties, and Applications

Xinjie Luo, Xi Zhang, Yujun Feng()   

  • Received:2019-10-07 Accepted:2019-12-03 Published:2020-06-11
  • Contact: Yujun Feng
  • Supported by:
    the National Natural Science Foundation of China(21773161);the National Natural Science Foundation of China(U1762218)


Liquid marbles (LMs) are liquid droplets coated with a layer of lyophobic particles at the air-liquid interface. Since the pioneering work by Aussillous et al. in 2001, LMs have attracted significant attention owing to their facile fabrication, flexibility in the choice of the constituent particles and liquids, intriguing properties such as non-wetting and non-adhesive nature, satisfactory elasticity and stability, as well as promising applications in microfluidics, sensors, controlled release, and microreactors. The classical strategy for the preparation of LMs involves rolling a small volume of a droplet on a lyophobic powder bed for complete encapsulation of the liquid by the particles. In addition, various innovative methods, including electrostatic and coalescent approaches, have been developed for preparing special LMs with a complicated structure or morphology. Diverse materials such as water, surfactant solutions, liquid metals, reagents, blood, and even viscous adhesives have been employed as the internal liquid for the fabrication of LMs. Theoretically, any particulates such as lycopodium, polytetrafluoroethylene, Fe3O4, SiO2, and graphite grains can be employed as the outer coating, but they are usually required to be lyophobic with sizes of less than hundreds of microns. The unique structure of the particle-covered droplet and the dual solid-liquid characteristics endow LMs with some unique and interesting properties, especially the non-wetting and non-adhesive nature. As the lyophobic coating particles restrain the internal liquid from contacting the substrate, LMs can move easily across either solid or liquid surfaces, neither wetting the substrate nor contaminating the internal liquid. An equally fascinating property of LMs is their satisfactory stability, which is necessary for most of their applications. The high stability of LMs stems from the protection of the coating powders and is embodied in both good mechanical stability (remaining intact after being released from a certain height or under a certain compression) and long lifetime (greatly suppressing the evaporation of the internal liquid). These extraordinary properties make LMs promising candidates for use in multitudinous fields, especially droplet microfluidics and microreactors. The potential application of LMs in microfluidics is ascribed to their non-wetting, non-adhesive nature and other features such as an ability to float on a liquid surface, coalescence, split, a small force of rolling friction, and response to external forces. Notably, LMs hold great promise for applications in microreactions, because they can create a confined reaction microenvironment, minimize reagent usage, facilitate unhindered gas exchange between the internal liquid medium and the surrounding environment, and allow the entry/exit of the reactants/products. We herein review the recent advances in LMs, such as manufacturing techniques, formation mechanisms, physical properties, and emerging applications. In particular, much attention is paid to the factors affecting the stability of LMs and the potential strategies to increase their stability. Moreover, this review discusses the challenges in the future development of LMs, suggests several possible ways of addressing these challenges, and forecasts the future development directions. We believe that this review can help researchers gain a better understanding of LMs and promote their further advances.

Key words: Liquid marble, Particle, Droplet, Wettability, Hydrophobicity, Microreactor


  • O647