Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (4): 2005054.doi: 10.3866/PKU.WHXB202005054
• ARTICLE • Previous Articles Next Articles
Zheng Bo1,2, Jing Kong1, Huachao Yang1,2,*(), Zhouwei Zheng1, Pengpeng Chen1, Jianhua Yan1, Kefa Cen1
Received:
2020-05-21
Accepted:
2020-07-01
Published:
2020-07-03
Contact:
Huachao Yang
E-mail:huachao@zju.edu.cn
About author:
Huachao Yang, Email: huachao@zju.edu.cn; Tel.: +86-571-87951369Supported by:
MSC2000:
Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte[J].Acta Phys. -Chim. Sin., 2022, 38(4): 2005054.
Fig 4
CV curves of rGO supercapacitor at scan rates of (a) 10 mV∙s-1 and (c) 100 mV∙s-1, and CV curves of rHGO supercapacitor at scan rates of (b) 10 mV∙s-1 and (d) 100 mV∙s-1 at different temperatures from -60 to 25 ℃, CV curves of (e) rGO and (f) rHGO supercapacitors at different scan rates at -60 ℃."
Fig 5
(a) GCD curves of rHGO supercapacitor at different temperatures from -60 to 25 ℃ with a current density of 1 A∙g-1, (b) GCD curves of rHGO supercapacitor at varied current densities at -60 ℃, rate performance of (c) rGO and (d) rHGO supercapacitors at different temperatures from -60 to 25 ℃."
Fig 6
(a) Capacitance retention of rGO and rHGO supercapacitors at different temperatures from -60 to 25 ℃ with a current density of 1 A∙g-1, Nyquist spectra of (b) rGO and (c) rHGO supercapacitors at different temperatures from -60 to 25 ℃, (d) Arrhenius plot of lnRw and 1000/T for rGO and rHGO supercapacitors, (e) representative schemes of the ion transport pathways in rGO and rHGO electrodes. Inset in (d) is the equivalent circuit for the Nyquist spectra."
1 |
Zhang L. L. ; Zhao X. S. Chem. Soc. Rev. 2009, 38, 2520.
doi: 10.1039/B813846J |
2 |
Simon P. ; Gogotsi Y. Nat. Mater. 2008, 7, 845.
doi: 10.1038/nmat2297 |
3 |
Simon P. ; Gogotsi Y. Acc. Chem. Res. 2013, 46, 1094.
doi: 10.1021/ar200306b |
4 |
Huang P. ; Pech D. ; Lin R. ; Mcdonough J. K. ; Brunet M. ; Taberna P. ; Gogotsi Y. ; Simon P. Electrochem. Commun. 2013, 36, 53.
doi: 10.1016/j.elecom.2013.09.003 |
5 |
Li X. ; Wei B. Nano Energy 2013, 2, 159.
doi: 10.1016/j.nanoen.2012.09.008 |
6 |
Brandon E. J. ; West W. C. ; Smart M. C. ; Whitcanack L. D. ; Plett G. A. J. Power Sources 2007, 170, 225.
doi: 10.1016/j.jpowsour.2007.04.001 |
7 |
Shi Z. ; Yu X. ; Wang J. ; Hu H. ; Wu C. Electrochim. Acta 2015, 174, 215.
doi: 10.1016/j.electacta.2015.05.133 |
8 |
Jänes A. ; Lust E. J. Electroanal. Chem. 2006, 588, 285.
doi: 10.1016/j.jelechem.2006.01.003 |
9 |
Cheng F. ; Yu X. ; Wang J. ; Shi Z. ; Wu C. Electrochim. Acta 2016, 200, 106.
doi: 10.1016/j.electacta.2016.03.113 |
10 |
Orita A. ; Kamijima K. ; Yoshida M. J. Power Sources 2010, 195, 7471.
doi: 10.1016/j.jpowsour.2010.05.066 |
11 |
Anouti M. ; Timperman L. Phys. Chem. Chem. Phys. 2013, 15, 6539.
doi: 10.1039/C3CP44680H |
12 |
Ruiz V. ; Huynh T. ; Sivakkumar S. R. ; Pandolfo A. RSC Adv. 2012, 2, 5591.
doi: 10.1039/C2RA20177A |
13 |
Lang J. ; Zhang X. ; Liu L. ; Yang B. ; Yang J. ; Yan X. J. Power Sources 2019, 423, 271.
doi: 10.1016/j.jpowsour.2019.03.096 |
14 |
Kang J. ; Jayaram S. H. ; Rawlins J. ; Wen J. Electrochim. Acta 2014, 144, 200.
doi: 10.1016/j.electacta.2014.07.158 |
15 |
Korenblit Y. ; Kajdos A. ; West W. C. ; Smart M. C. ; Brandon E. J. ; Kvit A. ; Jagiello J. ; Yushin G. Adv. Funct. Mater. 2012, 22, 1655.
doi: 10.1002/adfm.201102573 |
16 |
Xu J. ; Yuan N. ; Razal J. M. ; Zheng Y. ; Zhou X. ; Ding J. ; Cho K. ; Ge S. ; Zhang R. ; Gogotsi Y. ; Baughman R. H. Energy Storage Mater. 2019, 22, 323.
doi: 10.1016/j.ensm.2019.02.016 |
17 |
Ye L. ; Liang Q. ; Huang Z. H. ; Lei Y. ; Zhan C. ; Bai Y. ; Li H. ; Kang F. ; Yang Q. H. J. Mater. Chem. A 2015, 3, 18860.
doi: 10.1039/C5TA04581A |
18 |
Liu C. ; Yu Z. ; Neff D. ; Zhamu A. ; Jang B. Z. Nano Lett. 2010, 10, 4863.
doi: 10.1021/nl102661q |
19 |
Raccichini R. ; Varzi A. ; Passerini S. ; Scrosati B. Nat. Mater. 2015, 14, 271.
doi: 10.1038/nmat4170 |
20 |
Stankovich S. ; Dikin D. A. ; Piner R. D. ; Kohlhaas K. A. ; Kleinhammes A. ; Jia Y. ; Wu Y. ; Nguyen S. T. ; Ruoff R. S. Carbon 2007, 45, 1558.
doi: 10.1016/j.carbon.2007.02.034 |
21 |
Xu Y. ; Lin Z. ; Zhong X. ; Huang X. ; Weiss N. O. ; Huang Y. ; Duan X. Nat. Commun. 2014, 5, 4554.
doi: 10.1038/ncomms5554 |
22 |
Lin Z. ; Taberna P. L. ; Simon P. Electrochim. Acta 2016, 206, 446.
doi: 10.1016/j.electacta.2015.12.097 |
23 |
Kang J. ; Atashin S. ; Jayaram S. H. ; Wen J. Z. Carbon 2017, 111, 338.
doi: 10.1016/j.carbon.2016.10.017 |
24 |
Hummers W. S. ; Offeman R. E. J. Am. Chem. Soc. 1958, 80, 1339.
doi: 10.1021/ja01539a017 |
25 | Du W. S. ; Lü Y. K. ; Cai Z. W. ; Zhang C. Acta Phys. -Chim. Sin. 2017, 33, 1828. |
杜惟实; 吕耀康; 蔡志威; 张诚. 物理化学学报, 2017, 33, 1828.
doi: 10.3866/PKU.WHXB201705089 |
|
26 | Yang K. ; Shuai X. R. ; Yang H. C. ; Yan J. H. ; Cen K. F. Acta Phys. -Chim. Sin. 2019, 35, 755. |
杨康; 帅骁睿; 杨化超; 严建华; 岑可法. 物理化学学报, 2019, 35, 755.
doi: 10.3866/PKU.WHXB201810009 |
|
27 |
Xu Y. ; Chen C. Y. ; Zhao Z. ; Lin Z. ; Lee C. ; Xu X. ; Wang C. ; Huang Y. ; Shakir M. I. ; Duan X. Nano Lett. 2015, 15, 4605.
doi: 10.1021/acs.nanolett.5b01212 |
28 |
Peng L. ; Fang Z. ; Zhu Y. ; Yan C. ; Yu G. Adv. Energy Mater. 2018, 8, 1702179.
doi: 10.1002/aenm.201702179 |
29 |
Thomsen C. ; Reich S. Phys. Rev. Lett. 2000, 85, 5214.
doi: 10.1103/PhysRevLett.85.5214 |
30 | Haynes, W. M. CRC Handbook of Chemistry and Physics. 95th ed.; CRC Press: Boca Raton, 2014. |
31 |
Zhong C. ; Deng Y. ; Hu W. ; Qiao J. ; Zhang L. ; Zhang J. Chem. Soc. Rev. 2015, 44, 7484.
doi: 10.1039/C5CS00303B |
32 |
Muench S. ; Wild A. ; Friebe C. ; Häupler B. ; Janoschka T. ; Schubert U. S. Chem. Rev. 2016, 116, 9438.
doi: 10.1021/acs.chemrev.6b00070 |
33 |
Izadi-Najafabadi A. ; Yamada T. ; Futaba D. N. ; Hatori H. ; Iijima S. ; Hata K. Electrochem. Commun. 2010, 12, 1678.
doi: 10.1016/j.elecom.2010.09.020 |
34 |
Tsai W. Y. ; Lin R. ; Murali S. ; Li ; Zhang L. ; McDonough J. K. ; Ruoff R. S. ; Taberna P. L. ; Gogotsi Y. ; Simon P. Nano Energy 2013, 2, 403.
doi: 10.1016/j.nanoen.2012.11.006 |
35 |
Vellacheri R. ; Al-Haddad A. ; Zhao H. ; Wang W. ; Wang C. ; Lei Y. Nano Energy 2014, 8, 231.
doi: 10.1016/j.nanoen.2014.06.015 |
36 |
Zhang S. ; Pan N. Adv. Energy Mater. 2015, 5, 1401401.
doi: 10.1002/aenm.201401401 |
37 |
Mathis T. S. ; Kurra N. ; Wang X. ; Pinto D. ; Simon P. ; Gogotsi Y. Adv. Energy Mater. 2019, 9, 1902007.
doi: 10.1002/aenm.201902007 |
38 |
Bo Z. ; Zhu W. ; Ma W. ; Wen Z. ; Shuai X. ; Chen J. ; Yan J. ; Wang Z. ; Cen K. ; Feng X. Adv. Mater. 2013, 25, 5799.
doi: 10.1002/adma.201301794 |
39 |
Chen L. ; Li H. ; Yoshitake H. ; Qi L. ; Gu N. ; Wang H. Electrochim. Acta 2015, 157, 333.
doi: 10.1016/j.electacta.2014.09.161 |
40 |
Hung K. ; Masarapu C. ; Ko T. ; Wei B. J. Power Sources 2009, 193, 944.
doi: 10.1016/j.jpowsour.2009.01.083 |
[1] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[2] | Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012085-. |
[3] | Hui Li, Shuangyu Liu, Tianci Yuan, Bo Wang, Peng Sheng, Li Xu, Guangyao Zhao, Huitao Bai, Xin Chen, Zhongxue Chen, Yuliang Cao. Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1907049-. |
[4] | Yongli Tong, Meizhen Dai, Lei Xing, Hengqi Liu, Wanting Sun, Xiang Wu. Asymmetric Hybrid Capacitor Based on NiCo2O4 Nanosheets Electrode [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1903046-. |
[5] | Jiu Wang,Nanshi Wu,Tao Liu,Shaowen Cao,Jiaguo Yu. MnCo Oxides Supported on Carbon Fibers for High-Performance Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907072-. |
[6] | Xinxin Cao,Jiang Zhou,Anqiang Pan,Shuquan Liang. Recent Advances in Phosphate Cathode Materials for Sodium-ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905018-. |
[7] | Nannan Guo,Su Zhang,Luxiang Wang,Dianzeng Jia. Application of Plant-Based Porous Carbon for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903055-. |
[8] | Liping Kang,Gaini Zhang,Yunlong Bai,Huanjing Wang,Zhibin Lei,Zonghuai Liu. Two-Dimensional Nanosheet Hole Strategy and Their Assembled Materials for Supercapacitor Application [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1905032-. |
[9] | Yao Chen,George Zheng Chen. New Precursors Derived Activated Carbon and Graphene for Aqueous Supercapacitors with Unequal Electrode Capacitances [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904025-. |
[10] | Jiayao Zhu, Yue Dong, Su Zhang, Zhuangjun Fan. Application of Carbon-/Graphene Quantum Dots for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903052-. |
[11] | Yi Wang,Wangchen Huo,Xiaoya Yuan,Yuxin Zhang. Composite of Manganese Dioxide and Two-dimensional Materials Applied to Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904007-. |
[12] | Wenyi Liu,Linpo Li,Qiuyue Gui,Bohua Deng,Yuanyuan Li,Jinping Liu. Novel Hybrid Supercapacitors Based on Nanoarray Electrodes [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904049-. |
[13] | Feng Wei,Honghui Bi,Shuai Jiao,Xiaojun He. Interconnected Graphene-like Nanosheets for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903043-. |
[14] | Di Tian,Xiaofeng Lu,Weimo Li,Yue Li,Ce Wang. Research on Electrospun Nanofiber-Based Binder-Free Electrode Materials for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904056-. |
[15] | Kang YANG,Xiaorui SHUAI,Huachao YANG,Jianhua YAN,Kefa CEN. Electrochemical Performance of Activated Graphene Powder Supercapacitors Using a Room Temperature Ionic Liquid Electrolyte [J]. Acta Phys. -Chim. Sin., 2019, 35(7): 755-765. |
|