Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (2): 2008089.doi: 10.3866/PKU.WHXB202008089
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Guangbin Hua1, Yanchen Fan2, Qianfan Zhang1,*()
Received:
2020-08-31
Published:
2020-10-22
Contact:
Qianfan Zhang
E-mail:qianfan@buaa.edu.cn
About author:
Qianfan Zhang, Email: qianfan@buaa.edu.cnSupported by:
MSC2000:
Guangbin Hua, Yanchen Fan, Qianfan Zhang. Application of Computational Simulation on the Study of Lithium Metal Anodes[J].Acta Phys. -Chim. Sin., 2021, 37(2): 2008089.
Fig 1
(a) Failure mechanism of Li-metal anodes; (b) approaches to minimize Li-dendrite growth and improve the interfacial stability: surface coating with glass or composite, surface coating with thin carbon or graphene layers, uniform Li-ion flux, adding Cs+ to the electrolyte, incorporating 3D patterns or using Li-metal powder 1. Adapted from Springer Nature publisher."
Fig 2
(a) Design idea and (b) synthesis method of new solvent fluorinated ether. Radial distribution function (RDF) of 0.1 mol·L-1 LiFSA in different electrolytes: (c) tetraglyme, (d) MME-FTriEG, (e) DME-FTriEG and (f) DEG-FTriEG 58. Adapted with permission from Ref. 58, copyright 2020, American Chemical Society."
Fig 3
(a) Molecular structures of EC, FEC, and DEC; (b) visual LUMO and corresponding relative energy of EC, FEC, and DEC; (c) ab initio molecular dynamics model; (d) complete sequence of FEC molecule decomposed on Li anode; (e) schematic illustration of the effect of FEC additives on Li metal anode 10. Adapted from John Wiley and Sons publisher."
Fig 4
(a) Binding energies of the most thermodynamically stable configurations of PF5 with TMS-ON, ON, VC, EC, EMC, and DEC coordinated with Li+; (b) reaction energy diagram for the hydrolysis of PF5 with and without TMS-ON-Li+ 64. Adapted with permission from Ref. 64, copyright 2020, John Wiley and Sons publisher."
Fig 5
(a) BL-SEIs; (b) atomic conformations of graphene/LiF < 111 > ; (c) the differential charge density of graphene/LiF < 111 > ; (d) graphene/LiF < 111 > with single C defect in graphene (top view); (e) plane electron density difference along the graphene surface of graphene(CD)/LiF < 111 > 87. The loss of electrons is indicated in blue and gain of electrons is indicated in yellow. Adapted from Elsevier publisher."
Fig 6
Charge density plots of (a) h-BN with SBV, (b) h-BN with SNV, (c) h-BN with BNV; (d) comparisons on Li+ ion diffusion through lithiated and unlithiated materials of h-BN with SBV; (e) the strain-stress relations for h-BN and defective h-BN 44. Adapted with permission from Ref. 44, copyright 2017, John Wiley and Sons publisher."
Fig 7
(a) The top view and (b)the side view of the charge density differences of SG with one Li atom adsorbed, the violet and pink areas represent the charge accumulate and loss regions; (c) cross-section profile of the charge density difference at the plane across the blue dashed line in (b); the isosurface value is set to 0.001 e·Å-3; (d) the lithiation potentials changing with the number of Li adatoms at the SG; (e) the energy variations with the adsorbed Li atom diffusing along the pathway on SG, inset image indicates the Li diffusion pathway on S-doped graphene 104. Adapted with permission from Ref. 104, copyright 2019, John Wiley and Sons publisher."
Fig 8
(a) Crystal models for calculating the binding energy of a Li+ adsorbed on g-C3N4 and (b) the corresponding charge density difference (brown, purple, and green balls represent carbon atoms, nitrogen atoms, and Li atoms, respectively; yellow and light blue areas represent positive and negative charge differences, respectively); (c) crystal models for calculating the binding energy of a Li+ adsorbed on Ni (blue and green balls represent nickel atoms and Li atoms, respectively); (d) high-resolution transmission electron microscope (HR-TEM) image of the g-C3N4; (e) SEM image of the g-C3N4@Ni foam; (f) Li nucleation overpotentials on g-C3N4@Ni foam, Ni foam, and Cu electrodes at different current densities, the nucleation overpotential is defined as the difference between the sharp tip voltage and the later stable mass transfer-controlled overpotential 118. Adapted with permission from Ref. 118, copyright 2019, John Wiley and Sons publisher."
Fig 9
First-principles calculations to describe Li ion plating behavior on nanodiamond surface 121. (a) Surface energies of low index facets for nanodiamond and Cu. (b) Differences of charge density for Li on nanodiamond (110) and Cu(111) surfaces. (c) Diffusion barrier of Li on different surfaces. (d) The most stable adsorption sites and diffusion paths for Li on nanodiamond (110) surface simulations.Adapted with permission from Ref. 121, copyright 2017, Springer Nature publisher."
Fig 10
The structure of (a) LiBH4-Li, (b) LiF-Li, and (c) LiBH3.5F0.5-Li; (d) formation energy of different models calculated by DFT. Schematic diagram of (e) Li dendrite formation in solid electrolyte before modified and (f) Li dendrite suppression mechanism in modified electrolyte system 136. Adapted with permission from Ref. 136, copyright 2019, John Wiley and Sons publisher."
1 |
Xu W. ; Wang J. ; Ding F. ; Chen X. ; Nasybulin E. ; Zhang Y. ; Zhang J. G. Energy Environ. Sci. 2014, 7, 513.
doi: 10.1039/C3EE40795K |
2 |
Lang J. ; Qi L. ; Luo Y. ; Wu H. Energy Storage Mater. 2017, 7, 115.
doi: 10.1016/j.ensm.2017.01.006 |
3 |
Harry K. J. ; Hallinan D. T. ; Parkinson D. Y. ; MacDowell A. A. ; Balsara N. P. Nat. Mater. 2014, 13, 69.
doi: 10.1038/nmat3793 |
4 |
Zheng G. ; Lee S. W. ; Liang Z. ; Lee H. W. ; Yan K. ; Yao H. ; Wang H. ; Li W. ; Chu S. ; Cui Y. Nat. Nanotech. 2014, 9, 618.
doi: 10.1038/nnano.2014.152 |
5 |
Cheng X. B. ; Hou T. Z. ; Zhang R. ; Peng H. J. ; Zhao C. Z. ; Huang J. Q. ; Zhang Q. Adv. Mater. 2016, 28, 2888.
doi: 10.1002/adma.201506124 |
6 |
Cheng X. B. ; Yan C. ; Peng H. J. ; Huang J. Q. ; Yang S. T. ; Zhang Q. Energy Storage Mater. 2018, 10, 199.
doi: 10.1016/j.ensm.2017.03.008 |
7 |
Gao Y. ; Yi R. ; Li Y. C. ; Song J. ; Chen S. ; Huang Q. ; Mallouk T. E. ; Wang D. J. Am. Chem. Soc. 2017, 139, 17359.
doi: 10.1021/jacs.7b07584 |
8 |
Tu Z. ; Choudhury S. ; Zachman M. J. ; Wei S. ; Zhang K. ; Kourkoutis L. F. ; Archer L. A. Joule 2017, 1, 394.
doi: 10.1016/j.joule.2017.06.002 |
9 |
Li N. W. ; Shi Y. ; Yin Y. X. ; Zeng X. X. ; Li J. Y. ; Li C. J. ; Wan L. J. ; Wen R. ; Guo Y. G. Angew. Chem. 2018, 130, 1521.
doi: 10.1002/ange.201710806 |
10 |
Zhang X. Q. ; Cheng X. B. ; Chen X. ; Yan C. ; Zhang Q. Adv. Funct. Mater. 2017, 27, 1605989.
doi: 10.1002/adfm.201605989 |
11 |
Zhao C. Z. ; Cheng X. B. ; Zhang R. ; Peng H. J. ; Huang J. Q. ; Ran R. ; Huang Z. H. ; Wei F. ; Zhang Q. Energy Storage Mater. 2016, 3, 77.
doi: 10.1016/j.ensm.2016.01.007 |
12 |
Ma Y. ; Zhou Z. ; Li C. ; Wang L. ; Wang Y. ; Cheng X. ; Zuo P. ; Du C. ; Huo H. ; Gao Y. ; et al Energy Storage Mater. 2018, 11, 197.
doi: 10.1016/j.ensm.2017.10.015 |
13 |
Chen N. ; Dai Y. ; Xing Y. ; Wang L. ; Guo C. ; Chen R. ; Guo S. ; Wu F. Energy Environ. Sci. 2017, 10, 1660.
doi: 10.1039/C7EE00988G |
14 |
Cheng X. B. ; Peng H. J. ; Huang J. Q. ; Zhang R. ; Zhao C. Z. ; Zhang Q. ACS Nano 2015, 9, 6373.
doi: 10.1021/acsnano.5b01990 |
15 |
Zhang R. ; Cheng X. B. ; Zhao C. Z. ; Peng H. J. ; Shi J. L. ; Huang J. Q. ; Wang J. ; Wei F. ; Zhang Q. Adv. Mater. 2016, 28, 2155.
doi: 10.1002/adma.201504117 |
16 |
Zhang R. ; Chen X. R. ; Chen X. ; Cheng X. B. ; Zhang X. Q. ; Yan C. ; Zhang Q. Angew. Chem. Int. Ed. 2017, 56, 7764.
doi: 10.1002/anie.201702099 |
17 |
Yang C. ; Yao Y. ; He S. ; Xie H. ; Hitz E. ; Hu L. Adv. Mater. 2017, 29, 1702714.
doi: 10.1002/adma.201702714 |
18 |
Zhao J. ; Zhou G. ; Yan K. ; Xie J. ; Li Y. ; Liao L. ; Jin Y. ; Liu K. ; Hsu P. C. ; Wang J. ;et al Nat. Nanotech. 2017, 12, 993.
doi: 10.1038/nnano.2017.129 |
19 |
Liu L. ; Yin Y. X. ; Li J. Y. ; Li N. W. ; Zeng X. X. ; Ye H. ; Guo Y. G. ; Wan L. J. Joule 2017, 1, 563.
doi: 10.1016/j.joule.2017.06.004 |
20 |
Fan Y. ; Chen X. ; Legut D. ; Zhang Q. Energy Storage Mater. 2019, 16, 169.
doi: 10.1016/j.ensm.2018.05.007 |
21 |
Shi S. ; Gao J. ; Liu Y. ; Zhao Y. ; Wu Q. ; Ju W. ; Ouyang C. ; Xiao R. Chin. Phys. B 2016, 25, 018212.
doi: 10.1088/1674-1056/25/1/018212 |
22 |
Islam M. S. ; Fisher C. A. J. Chem. Soc. Rev. 2014, 43, 185.
doi: 10.1039/C3CS60199D |
23 |
Kohn W. ; Sham L. J. Phys. Rev. 1965, 140, A1133.
doi: 10.1103/PhysRev.140.A1133 |
24 |
Thomas L. H. Math. Proc. Camb. Phil. Soc. 1927, 23, 542.
doi: 10.1017/S0305004100011683 |
25 |
Iddir H. ; Benedek R. Chem. Mater. 2014, 26, 2407.
doi: 10.1021/cm403256a |
26 |
Zhou F. ; Cococcioni M. ; Kang K. ; Ceder G. Electrochem. Commun. 2004, 6, 1144.
doi: 10.1016/j.elecom.2004.09.007 |
27 |
Born M. ; Oppenheimer R. Ann. Phys. 1927, 389, 457.
doi: 10.1002/andp.19273892002 |
28 |
Perdew J. P. Phys. Rev. B 1986, 33, 8822.
doi: 10.1103/PhysRevB.33.8822 |
29 |
Perdew J. P. ; Yue W. Phys. Rev. B 1986, 33, 8800.
doi: 10.1103/PhysRevB.33.8800 |
30 |
Perdew J. P. ; Wang Y. Phys. Rev. B 1992, 45, 13244.
doi: 10.1103/PhysRevB.45.13244 |
31 |
Garcia-Lastra J. M. ; Myrdal J. S. G. ; Christensen R. ; Thygesen K. S. ; Vegge T. J. Phys. Chem. C 2013, 117, 5568.
doi: 10.1021/jp3107809 |
32 |
Heyd J. ; Scuseria G. E. J. Chem. Phys. 2004, 121, 1187.
doi: 10.1063/1.1760074 |
33 |
Zhuang Y. ; Zou Z. ; Lu B. ; Li Y. ; Wang D. ; Avdeev M. ; Shi S. Chinese Phys. B 2020, 29, 068202.
doi: 10.1088/1674-1056/ab943c |
34 |
Mo Y. ; Ong S. P. ; Ceder G. Chem. Mater. 2012, 24, 15.
doi: 10.1021/cm203303y |
35 |
Song B. ; Yang J. ; Zhao J. ; Fang H. Energy Environ. Sci. 2011, 4, 1379.
doi: 10.1039/c0ee00473a |
36 |
Tachikawa H. ; Shimizu A. J. Phys. Chem. B 2006, 110, 20445.
doi: 10.1021/jp061603l |
37 |
Henkelman G. ; Jónsson H. J. Chem. Phys. 2000, 113, 9978.
doi: 10.1063/1.1323224 |
38 |
Henkelman G. ; Uberuaga B. P. ; Jónsson H. J. Phys. Chem. 2000, 113, 9901.
doi: 10.1063/1.1329672 |
39 |
Xiong Z. ; Shi S. ; Ouyang C. ; Lei M. ; Hu L. ; Ji Y. ; Wang Z. ; Chen L. Phys. Lett. A 2005, 337, 247.
doi: 10.1016/j.physleta.2005.01.041 |
40 |
Curtarolo S. ; Setyawan W. ; Hart G. L. W. ; Jahnatek M. ; Chepulskii R. V. ; Taylor R. H. ; Wang S. ; Xue J. ; Yang K. ; Levy O. ;et al Comput. Mater. Sci. 2012, 58, 218.
doi: 10.1016/j.commatsci.2012.02.005 |
41 |
Zhu W. ; Xu Y. ; Ni J. ; Hu G. ; Wang X. ; Zhang W. Mater. Sci. Eng. B 2020, 252, 114474.
doi: 10.1016/j.mseb.2019.114474 |
42 |
Correa-Baena J. P. ; Hippalgaonkar K. ; van Duren J. ; Jaffer S. ; Chandrasekhar V. R. ; Stevanovic V. ; Wadia C. ; Guha S. ; Buonassisi T. Joule 2018, 2, 1410.
doi: 10.1016/j.joule.2018.05.009 |
43 |
Severson K. A. ; Attia P. M. ; Jin N. ; Perkins N. ; Jiang B. ; Yang Z. ; Chen M. H. ; Aykol M. P. ; Herring P. K. ; Fraggedakis D. ;et al Nat. Energy 2019, 4, 383.
doi: 10.1038/s41560-019-0356-8 |
44 |
Chen X. ; Hou T. Z. ; Li B. ; Yan C. ; Zhu L. ; Guan C. ; Cheng X. B. ; Peng H. J. ; Huang J. Q. ; Zhang Q. Energy Storage Mater. 2017, 8, 194.
doi: 10.1016/j.ensm.2017.01.003 |
45 |
Camacho-Forero L. E. ; Balbuena P. B. Phys. Chem. Chem. Phys. 2017, 19, 30861.
doi: 10.1039/C7CP06485C |
46 |
Qian J. ; Henderson W. A. ; Xu W. ; Bhattacharya P. ; Engelhard M. ; Borodin O. ; Zhang J. G. Nat. Commun. 2015, 6, 6362.
doi: 10.1038/ncomms7362 |
47 |
Tian H. ; Seh Z. W. ; Yan K. ; Fu Z. ; Tang P. ; Lu Y. ; Zhang R. ; Legut D. ; Cui Y. ; Zhang Q. Adv. Energy Mater. 2017, 7, 1602528.
doi: 10.1002/aenm.201602528 |
48 |
Leung K. ; Leenheer A. J. Phys. Chem. C 2015, 119, 10234.
doi: 10.1021/acs.jpcc.5b01643 |
49 |
Liu Z. ; Qi Y. ; Lin Y. X. ; Chen L. ; Lu P. ; Chen L. Q. J. Electrochem. Soc. 2016, 163
doi: 10.1149/2.0151605jes |
50 |
Zhang Q. ; Pan J. ; Lu P. ; Liu Z. ; Verbrugge M. W. ; Sheldon B. W. ; Cheng Y. T. ; Qi Y. ; Xiao X. Nano Lett. 2016, 16, 2011.
doi: 10.1021/acs.nanolett.5b05283 |
51 |
Pan J. ; Zhang Q. ; Xiao X. ; Cheng Y. T. ; Qi Y. ACS Appl. Mater. Interfaces 2016, 8, 5687.
doi: 10.1021/acsami.5b12030 |
52 |
Zhukovskii Yu. F. ; Kotomin E. A. ; Balaya P. ; Maier J. Solid State Sci. 2008, 10, 491.
doi: 10.1016/j.solidstatesciences.2007.12.030 |
53 |
Panahian Jand S. ; Kaghazchi P. J. Phys.: Condens. Matter 2014, 26, 262001.
doi: 10.1088/0953-8984/26/26/262001 |
54 |
Simeone F. C. ; Kolb D. M. ; Venkatachalam S. ; Jacob T. Angew. Chem. Int. Ed. 2007, 46, 8903.
doi: 10.1002/anie.200702868 |
55 |
Xiao J. Science 2019, 366, 426.
doi: 10.1126/science.aay8672 |
56 |
Jie Y. ; Ren X. ; Cao R. ; Cai W. ; Jiao S. Adv. Funct. Mater. 2020, 30, 1910777.
doi: 10.1002/adfm.201910777 |
57 |
Wong D. H. C. ; Vitale A. ; Devaux D. ; Taylor A. ; Pandya A. A. ; Hallinan D. T. ; Thelen J. L. ; Mecham S. J. ; Lux S. F. ; Lapides A. M. ; et al Chem. Mater. 2015, 27, 597.
doi: 10.1021/cm504228a |
58 |
Amanchukwu C. V. ; Yu Z. ; Kong X. ; Qin J. ; Cui Y. ; Bao Z. J. Am. Chem. Soc. 2020, 142, 7393.
doi: 10.1021/jacs.9b11056 |
59 |
Martinez de la Hoz J. M. ; Leung K. ; Balbuena P. B. ACS Appl. Mater. Interfaces 2013, 5, 13457.
doi: 10.1021/am404365r |
60 |
Martínez de la Hoz J. M. ; Balbuena P. B. Phys. Chem. Chem. Phys. 2014, 16, 17091.
doi: 10.1039/C4CP01948B |
61 |
Ma Y. ; Martinez de la Hoz J. M. ; Angarita I. ; Berrio-Sanchez J. M. ; Benitez L. ; Seminario J. M. ; Son S. B. ; Lee S. H. ; George S. M ; Ban C. ; et al ACS Appl. Mater. Interfaces 2015, 7, 11948.
doi: 10.1021/acsami.5b01917 |
62 |
Soto F. A. ; Ma Y. ; Martinez de la Hoz J. M. ; Seminario J. M. ; Balbuena P. B. Chem. Mater. 2015, 27, 7990.
doi: 10.1021/acs.chemmater.5b03358 |
63 |
Peng Z. ; Cao X. ; Gao P. ; Jia H. ; Ren X. ; Roy S. ; Li Z. ; Zhu Y. ; Xie W. ; Liu D. ; et al Adv. Funct. Mater. 2020, 30, 2001285.
doi: 10.1002/adfm.202001285 |
64 |
Kim K. ; Hwang D. ; Kim S. ; Park S. O. ; Cha H. ; Lee Y. ; Cho J. ; Kwak S. K. ; Choi N. Adv. Energy Mater. 2020, 10, 2000012.
doi: 10.1002/aenm.202000012 |
65 |
Berhaut C. L. ; Lemordant D. ; Porion P. ; Timperman L. ; Schmidt G. ; Anouti M. RSC Adv. 2019, 9, 4599.
doi: 10.1039/C8RA08430K |
66 |
Camacho-Forero L. E. ; Smith T. W. ; Bertolini S. ; Balbuena P. B. J. Phys. Chem. C 2015, 119, 26828.
doi: 10.1021/acs.jpcc.5b08254 |
67 |
Camacho-Forero L. E. ; Smith T. W. ; Balbuena P. B. J. Phys. Chem. C 2017, 121, 182.
doi: 10.1021/acs.jpcc.6b10774 |
68 |
Zhang X. Q. ; Chen X. ; Cheng X. B. ; Li B. Q. ; Shen X. ; Yan C. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2018, 57, 5301.
doi: 10.1002/anie.201801513 |
69 |
Chen X. ; Shen X. ; Li B. ; Peng H. ; Cheng X. ; Li B. ; Zhang X. ; Huang J. ; Zhang Q. Angew. Chem. Int. Ed. 2018, 57, 734.
doi: 10.1002/anie.201711552 |
70 |
Wang J. ; Huang W. ; Pei A. ; Li Y. ; Shi F. ; Yu X. ; Cui Y. Nat. Energy 2019, 4, 664.
doi: 10.1038/s41560-019-0413-3 |
71 |
Gao Y. ; Rojas T. ; Wang K. ; Liu S. ; Wang D. ; Chen T. ; Wang H. ; Ngo A. T. ; Wang D. Nat. Energy 2020, 5, 534.
doi: 10.1038/s41560-020-0640-7 |
72 |
Wang S. ; Qu J. ; Wu F. ; Yan K. ; Zhang C. ACS Appl. Mater. Interfaces 2020, 12, 8366.
doi: 10.1021/acsami.9b23251 |
73 |
Cheng X. B. ; Yan C. ; Huang J. Q. ; Li P. ; Zhu L. ; Zhao L. ; Zhang Y. ; Zhu W. ; Yang S. T. ; Zhang Q. Energy Storage Mater. 2017, 6, 18.
doi: 10.1016/j.ensm.2016.09.003 |
74 |
Cheng X. B. ; Yan C. ; Chen X. ; Guan C. ; Huang J. Q. ; Peng H. J. ; Zhang R. ; Yang S. T. ; Zhang Q. Chem 2017, 2, 258.
doi: 10.1016/j.chempr.2017.01.003 |
75 |
Liu Z. ; Bertolini S. ; Balbuena P. B. ; Mukherjee P. P. ACS Appl. Mater. Interfaces 2016, 8, 4700.
doi: 10.1021/acsami.5b11803 |
76 |
Peled E. J. Electrochem. Soc. 1979, 126, 2047.
doi: 10.1149/1.2128859 |
77 |
Yan C. ; Cheng X. B. ; Zhao C. Z. ; Huang J. Q. ; Yang S. T. ; Zhang Q. J. Phys. Chem. Solids 2016, 327, 212.
doi: 10.1016/j.jpowsour.2016.07.056 |
78 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Wei F. ; Zhang J. G. ; Zhang Q. Adv. Sci. 2016, 3, 1500213.
doi: 10.1002/advs.201500213 |
79 |
Shi S. ; Lu P. ; Liu Z. ; Qi Y. ; Hector L. G. ; Li H. ; Harris S. J. J. Am. Chem. Soc. 2012, 134, 15476.
doi: 10.1021/ja305366r |
80 |
Lu P. ; Harris S. J. Electrochem. Commun. 2011, 13, 1035.
doi: 10.1016/j.elecom.2011.06.026 |
81 |
Shi S. ; Qi Y. ; Li H. ; Hector L. G. J. Phys. Chem. C 2013, 117, 8579.
doi: 10.1021/jp310591u |
82 |
Li Y. ; Leung K. ; Qi Y. Acc. Chem. Res. 2016, 49, 2363.
doi: 10.1021/acs.accounts.6b00363 |
83 |
Lin Y. X. ; Liu Z. ; Leung K. ; Chen L. Q. ; Lu P. ; Qi Y. J. Power Sources 2016, 309, 221.
doi: 10.1016/j.jpowsour.2016.01.078 |
84 |
Zhou Y. ; Su M. ; Yu X. ; Zhang Y. ; Wang J. G. ; Ren X. ; Cao R. ; Xu W. ; Baer D. R. ; Du Y. ;et al Nat. Nanotech. 2020, 15, 224.
doi: 10.1038/s41565-019-0618-4 |
85 |
Kim S. P. ; Duin A. C. ; van Shenoy V. B. J. Power Sources 2011, 196, 8590.
doi: 10.1016/j.jpowsour.2011.05.061 |
86 |
Ren Y. ; Qi Z. ; Zhang C. ; Yang S. ; Ma X. ; Liu X. ; Tan X. ; Sun S. ; Cao Y. Comput. Mater. Sci. 2020, 176, 109535.
doi: 10.1016/j.commatsci.2020.109535 |
87 |
Zhu J. ; Li P. ; Chen X. ; Legut D. ; Fan Y. ; Zhang R. ; Lu Y. ; Cheng X. ; Zhang Q. Energy Storage Mater. 2019, 16, 426.
doi: 10.1016/j.ensm.2018.06.023 |
88 |
Chen H. ; Pei A. ; Lin D. ; Xie J. ; Yang A. ; Xu J. ; Lin K. ; Wang J. ; Wang H. ; Shi F. ; et al Adv. Energy Mater. 2019, 9, 1900858.
doi: 10.1002/aenm.201900858 |
89 |
Liu F. ; Wang L. ; Zhang Z. ; Shi P. ; Feng Y. ; Yao Y. ; Ye S. ; Wang H. ; Wu X. ; Yu Y. Adv. Funct. Mater. 2020, 30, 2001607.
doi: 10.1002/adfm.202001607 |
90 |
Chen S. ; Dai F. ; Cai M. ACS Energy Lett. 2020, 3140
doi: 10.1021/acsenergylett.0c01545 |
91 |
Hu M. ; Ma Q. ; Yuan Y. ; Pan Y. ; Chen M. ; Zhang Y. ; Long D. Chem. Eng. J. 2020, 388, 124258.
doi: 10.1016/j.cej.2020.124258 |
92 |
Lv X. ; Lei T. ; Wang B. ; Chen W. ; Jiao Y. ; Hu Y. ; Yan Y. ; Huang J. ; Chu J. ; Yan C. ; et al Adv. Energy Mater. 2019, 9, 1901800.
doi: 10.1002/aenm.201901800 |
93 |
Lei T. ; Chen W. ; Lv W. ; Huang J. ; Zhu J. ; Chu J. ; Yan C. ; Wu C. ; Yan Y. ; He W. ; et al Joule 2018, 2, 2091.
doi: 10.1016/j.joule.2018.07.022 |
94 |
Moorthy B. ; Kwon S. ; Kim J. H. ; Ragupathy P. ; Lee H. M. ; Kim D. K. Nanoscale Horiz. 2019, 4, 214.
doi: 10.1039/C8NH00172C |
95 |
Ding F. ; Xu W. ; Graff G. L. ; Zhang J. ; Sushko M. L. ; Chen X. ; Shao Y. ; Engelhard M. H. ; Nie Z. ; Xiao J. ;et al J. Am. Chem. Soc. 2013, 135, 4450.
doi: 10.1021/ja312241y |
96 |
Chazalviel J. N. Phys. Rev. A 1990, 42, 7355.
doi: 10.1103/PhysRevA.42.7355 |
97 |
Brissot C. ; Rosso M. ; Chazalviel J. N. ; Lascaud S. J. Power Sources 1999, 81-82, 925.
doi: 10.1016/S0378-7753(98)00242-0 |
98 |
Lin D. ; Liu Y. ; Cui Y. Nature Nanotech. 2017, 12, 194.
doi: 10.1038/nnano.2017.16 |
99 |
Ely D. R. ; García R. E. J. Electrochem. Soc. 2013, 160, A662.
doi: 10.1149/1.057304jes |
100 |
Okajima Y. ; Shibuta Y. ; Suzuki T. Comput. Mater. Sci. 2010, 50, 118.
doi: 10.1016/j.commatsci.2010.07.015 |
101 |
Li Q. ; Tan S. ; Li L. ; Lu Y. ; He Y. Sci. Adv. 2017, 3, e1701246.
doi: 10.1126/sciadv.1701246 |
102 |
Li L. ; Basu S. ; Wang Y. ; Chen Z. ; Hundekar P. ; Wang B. ; Shi J. ; Shi Y. ; Narayanan S. ; Koratkar N. Science 2018, 359, 1513.
doi: 10.1126/science.aap8787 |
103 |
Lin D. ; Liu Y. ; Li Y. ; Li Y. ; Pei A. ; Xie J. ; Huang W. ; Cui Y. Nat. Chem. 2019, 11, 382.
doi: 10.1038/s41557-018-0203-8 |
104 |
Wang T. ; Zhai P. ; Legut D. ; Wang L. ; Liu X. ; Li B. ; Dong C. ; Fan Y. ; Gong Y. ; Zhang Q. Adv. Energy Mater. 2019, 9, 1804000.
doi: 10.1002/aenm.201804000 |
105 |
Zhai P. ; Wang T. ; Yang W. ; Cui S. ; Zhang P. ; Nie A. ; Zhang Q. ; Gong Y. Adv. Energy Mater. 2019, 9, 1804019.
doi: 10.1002/aenm.201804019 |
106 |
Yi J. ; Chen J. ; Yang Z. ; Dai Y. ; Li W. ; Cui J. ; Ciucci F. ; Lu Z. ; Yang C. Adv. Energy Mater. 2019, 9, 1901796.
doi: 10.1002/aenm.201901796 |
107 |
Liu F. ; Xu R. ; Hu Z. ; Ye S. ; Zeng S. ; Yao Y. ; Li S. ; Yu Y. Small 2019, 15, 1803734.
doi: 10.1002/smll.201803734 |
108 |
Ye S. ; Liu F. ; Xu R. ; Yao Y. ; Zhou X. ; Feng Y. ; Cheng X. ; Yu Y. Small 2019, 15, 1903725.
doi: 10.1002/smll.201903725 |
109 |
Liu F. ; Jin Z. ; Hu Z. ; Zhang Z. ; Liu W. ; Yu Y. Chem. Asian J. 2020, 15, 1057.
doi: 10.1002/asia.201901668 |
110 |
Yue X. Y. ; Bao J. ; Yang S. Y. ; Luo R. J. ; Wang Q. C. ; Wu X. J. ; Shadike Z. ; Yang X. Q. ; Zhou Y. N. Nano Energy 2020, 71, 104614.
doi: 10.1016/j.nanoen.2020.104614 |
111 |
Qiu H. ; Tang T. ; Asif M. ; Huang X. ; Hou Y. Adv. Funct. Mater. 2019, 29, 1808468.
doi: 10.1002/adfm.201808468 |
112 |
Wang L. M. ; Tang Z. F. ; Lin J. ; He X. D. ; Chen C. S. ; Chen C. H. J. Mater. Chem. A 2019, 7, 17376.
doi: 10.1039/C9TA05357C |
113 |
Zhou Y. ; Zhao K. ; Han Y. ; Sun Z. ; Zhang H. ; Xu L. ; Ma Y. ; Chen Y. J. Mater. Chem. A 2019, 7, 5712.
doi: 10.1039/C8TA12064A |
114 |
Li P. ; Dong X. ; Li C. ; Liu J. ; Liu Y. ; Feng W. ; Wang C. ; Wang Y. ; Xia Y. Angew. Chem. Int. Ed. 2019, 58, 2093.
doi: 10.1002/anie.201813905 |
115 |
Yue X. Y. ; Wang W. W. ; Wang Q. C. ; Meng J. K. ; Wang X. X. ; Song Y. ; Fu Z. W. ; Wu X. J. ; Zhou Y. N. Energy Storage Mater. 2019, 21, 180.
doi: 10.1016/j.ensm.2018.12.007 |
116 |
Zhang M. ; Xiang L. ; Galluzzi M. ; Jiang C. ; Zhang S. ; Li J. ; Tang Y. Adv. Mater. 2019, 31, 1900826.
doi: 10.1002/adma.201900826 |
117 |
Ke X. ; Liang Y. ; Ou L. ; Liu H. ; Chen Y. ; Wu W. ; Cheng Y. ; Guo Z. ; Lai Y. ; Liu P. ; et al Energy Storage Mater. 2019, 23, 547.
doi: 10.1016/j.ensm.2019.04.003 |
118 |
Lu Z. ; Liang Q. ; Wang B. ; Tao Y. ; Zhao Y. ; Lv W. ; Liu D. ; Zhang C. ; Weng Z. ; Liang J. ; et al Adv. Energy Mater. 2019, 9, 1803186.
doi: 10.1002/aenm.201803186 |
119 |
Fan Y. ; Wang T. ; Legut D. ; Zhang Q. J. Energ. Chem. 2019, 39, 160.
doi: 10.1016/j.jechem.2019.01.021 |
120 |
Liu S. ; Zhang X. ; Li R. ; Gao L. ; Luo J. Energy Storage Mater. 2018, 14, 143.
doi: 10.1016/j.ensm.2018.03.004 |
121 |
Cheng X. B. ; Zhao M. Q. ; Chen C. ; Pentecost A. ; Maleski K. ; Mathis T. ; Zhang X. Q. ; Zhang Q. ; Jiang J. ; Gogotsi Y. Nat. Commun. 2017, 8, 336.
doi: 10.1038/s41467-017-00519-2 |
122 |
Liu S. ; Ji X. ; Yue J. ; Hou S. ; Wang P. ; Cui C. ; Chen J. ; Shao B. ; Li J. ; Han F. ; et al J. Am. Chem. Soc. 2020, 142, 2438.
doi: 10.1021/jacs.9b11750 |
123 |
Zhang H. ; Liao X. ; Guan Y. ; Xiang Y. ; Li M. ; Zhang W. ; Zhu X. ; Ming H. ; Lu L. ; Qiu J. ; et al Nat. Commun. 2018, 9, 3729.
doi: 10.1038/s41467-018-06126-z |
124 |
Cheng X. B. ; Zhao C. Z. ; Yao Y. X. ; Liu H. ; Zhang Q. Chem 2019, 5, 74.
doi: 10.1016/j.chempr.2018.12.002 |
125 |
Lou S. ; Zhang F. ; Fu C. ; Chen M. ; Ma Y. ; Yin G. ; Wang J. Adv. Mater. 2020, 2000721.
doi: 10.1002/adma.202000721 |
126 |
Weber R. ; Genovese M. ; Louli A. J. ; Hames S. ; Martin C. ; Hill I. G. ; Dahn J. R. Nat. Energy 2019, 4, 683.
doi: 10.1038/s41560-019-0428-9 |
127 |
Famprikis T. ; Canepa P. ; Dawson J. A. ; Islam M. S. ; Masquelier C. Nat. Mater. 2019, 18, 1278.
doi: 10.1038/s41563-019-0431-3 |
128 |
Tan D. H. S. ; Banerjee A. ; Chen Z. ; Meng Y. S. Nat. Nanotech. 2020, 15, 170.
doi: 10.1038/s41565-020-0657-x |
129 |
Fang H. ; Jena P. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 11046.
doi: 10.1073/pnas.1704086114 |
130 |
Wang Z. ; Xu H. ; Xuan M. ; Shao G. J. Mater. Chem. A 2018, 6, 73.
doi: 10.1039/C7TA08698A |
131 |
Wang Y. ; Klenk M. ; Page K. ; Lai W. Chem. Mater. 2014, 26, 5613.
doi: 10.1021/cm502133c |
132 |
Smith J. G. ; Siegel D. J. Nat. Commun. 2020, 11, 1483.
doi: 10.1038/s41467-020-15245-5 |
133 |
Zhu F. ; Islam M. S. ; Zhou L. ; Gu Z. ; Liu T. ; Wang X. ; Luo J. ; Nan C. W. ; Mo Y. ; Ma C. Nat. Commun. 2020, 11, 1828.
doi: 10.1038/s41467-020-15544-x |
134 |
Xu Z. ; Chen X. ; Chen R. ; Li X. ; Zhu H. NPJ Comput. Mater. 2020, 6, 47.
doi: 10.1038/s41524-020-0324-7 |
135 |
Lee Y. G. ; Fujiki S. ; Jung C. ; Suzuki N. ; Yashiro N. ; Omoda R. ; Ko D. S. ; Ko D. S. ; Shiratsuchi T. ; Ryu S. ;et al Nat. Energy 2020, 5, 299.
doi: 10.1038/s41560-020-0575-z |
136 |
Mo F. ; Ruan J. ; Sun S. ; Lian Z. ; Yang S. ; Yue X. ; Song Y. ; Zhou Y. ; Fang F. ; Sun G. ; et al Adv. Energy Mater. 2019, 9, 1902123.
doi: 10.1002/aenm.201902123 |
137 |
Han F. ; Westover A. S. ; Yue J. ; Fan X. ; Wang F. ; Chi M. ; Leonard D. N. ; Dudney N. J. ; Wang H. ; Wang C. Nat. Energy 2019, 4, 187.
doi: 10.1038/s41560-018-0312-z |
138 |
Duan J. ; Wu W. ; Nolan A. M. ; Wang T. ; Wen J. ; Hu C. ; Mo Y. ; Luo W. ; Huang Y. Adv. Mater. 2019, 31, 1807243.
doi: 10.1002/adma.201807243 |
139 |
Huang Y. ; Chen B. ; Duan J. ; Yang F. ; Wang T. ; Wang Z. ; Yang W. ; Hu C. ; Luo W. ; Huang Y. Angew. Chem. Int. Ed. 2020, 59, 3699.
doi: 10.1002/anie.201914417 |
140 |
Duan H. ; Yin Y. X. ; Shi Y. ; Wang P. F. ; Zhang X. D. ; Yang C. P. ; Shi J. L. ; Wen R. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc. 2018, 140, 82.
doi: 10.1021/jacs.7b10864 |
141 |
Fergus J. W. J. Power Sources 2010, 195, 4554.
doi: 10.1016/j.jpowsour.2010.01.076 |
142 |
Yan M. ; Liang J. ; Zuo T. ; Yin Y. ; Xin S. ; Tan S. ; Guo Y. ; Wan L. Adv. Funct. Mater. 2020, 30, 1908047.
doi: 10.1002/adfm.201908047 |
143 |
Li X. ; Wang D. ; Wang H. ; Yan H. ; Gong Z. ; Yang Y. ACS Appl. Mater. Interfaces 2019, 11, 22745.
doi: 10.1021/acsami.9b05212 |
144 |
Wan J. ; Xie J. ; Kong X. ; Liu Z. ; Liu K. ; Shi F. ; Pei A. ; Chen H. ; Chen W. ; Chen J. ; et al Nat. Nanotechnol. 2019, 14, 705.
doi: 10.1038/s41565-019-0465-3 |
145 |
Zhao Q. ; Liu X. ; Stalin S. ; Khan K. ; Archer L. A. Nat. Energy 2019, 4, 365.
doi: 10.1038/s41560-019-0349-7 |
146 |
Sendek A. D. ; Yang Q. ; Cubuk E. D. ; Duerloo K. A. N. ; Cui Y. ; Reed E. J. Energy Environ. Sci. 2017, 10, 306.
doi: 10.1039/C6EE02697D |
147 |
Zhang Y. ; He X. ; Chen Z. ; Bai Q. ; Nolan A. M. ; Roberts C. A. ; Banerjee D. ; Matsunaga T. ; Mo Y. ; Ling C. Nat. Commun. 2019, 10, 5260.
doi: 10.1038/s41467-019-13214-1 |
148 |
Kahle L. ; Marcolongo A. ; Marzari N. Energy Environ. Sci. 2020, 13, 928.
doi: 10.1039/C9EE02457C |
149 |
He X. ; Bai Q. ; Liu Y. ; Nolan A. M. ; Ling C. ; Mo Y. Adv. Energy Mater. 2019, 9, 1902078.
doi: 10.1002/aenm.201902078 |
150 |
Harada M. ; Takeda H. ; Suzuki S. ; Nakano K. ; Tanibata N. ; Nakayama M. ; Karasuyama M. ; Takeuchi I. J. Mater. Chem. A 2020, 8, 15103.
doi: 10.1039/D0TA04441E |
151 |
Chan M. K. Y. ; Wolverton C. ; Greeley J. P. J. Am. Chem. Soc. 2012, 134, 14362.
doi: 10.1021/ja301766z |
152 |
He Y. ; Ren X. ; Xu Y. ; Engelhard M. H. ; Li X. ; Xiao J. ; Liu J. ; Zhang J. G. ; Xu W. ; Wang C. Nature Nanotech. 2019, 14, 1042.
doi: 10.1038/s41565-019-0558-z |
153 |
Nomura Y. ; Yamamoto K. ; Fujii M. ; Hirayama T. ; Igaki E. ; Saitoh K. Nat. Commun. 2020, 11, 2824.
doi: 10.1038/s41467-020-16622-w |
154 |
Jana A. ; Woo S. I. ; Vikrant K. S. N. ; García R. E. Energy Environ. Sci. 2019, 12, 3595.
doi: 10.1039/C9EE01864F |
155 |
Chen X. ; Bai Y. ; Zhao C. ; Shen X. ; Zhang Q. Angew. Chem. Int. Ed. 2020, 59, 11192.
doi: 10.1002/anie.201915623 |
156 |
Tu Z. ; Choudhury S. ; Zachman M. J. ; Wei S. ; Zhang K. ; Kourkoutis L. F. ; Archer L. A. Nat. Energy 2018, 3, 310.
doi: 10.1038/s41560-018-0096-1 |
157 |
Gao Y. ; Yan Z. ; Gray J. L. ; He X. ; Wang D. ; Chen T. ; Huang Q. ; Li Y. C. ; Wang H. ; Kim S. H. ; et al Nat. Mater. 2019, 18, 384.
doi: 10.1038/s41563-019-0305-8 |
158 |
Zheng G. ; Wang C. ; Pei A. ; Lopez J. ; Shi F. ; Chen Z. ; Sendek A. D. ; Lee H. W. ; Lu Z. ; Schneider H. ;et al ACS Energy Lett. 2016, 1, 1247.
doi: 10.1021/acsenergylett.6b00456 |
159 |
Zhang R. ; Chen X. ; Shen X. ; Zhang X. Q. ; Chen X. R. ; Cheng X. B. ; Yan C. ; Zhao C. Z. ; Zhang Q. Joule 2018, 2, 764.
doi: 10.1016/j.joule.2018.02.001 |
160 |
Chi S. S. ; Liu Y. ; Song W. L. ; Fan L. Z. ; Zhang Q. Adv. Funct. Mater. 2017, 27, 1700348.
doi: 10.1002/adfm.201700348 |
161 |
Wang H. ; Lin D. ; Liu Y. ; Li Y. ; Cui Y. Sci. Adv. 2017, 3, e1701301.
doi: 10.1126/sciadv.1701301 |
162 |
Zhao J. ; Lee H. W. ; Sun J. ; Yan K. ; Liu Y. ; Liu W. ; Lu Z. ; Lin D. ; Zhou G. ; Cui Y. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 7408.
doi: 10.1073/pnas.1603810113 |
163 |
Liu J. ; Bao Z. ; Cui Y. ; Dufek E. J. ; Goodenough J. B. ; Khalifah P. ; Li Q. ; Liaw B. Y. ; Liu P. ; Manthiram A. ;et al Nat. Energy 2019, 4, 180.
doi: 10.1038/s41560-019-0338-x |
164 |
Park S. H. ; King P. J. ; Tian R. ; Boland C. S. ; Coelho J. ; Zhang C. ; McBean P. ; McEvoy N. ; Kremer M. P. ; Daly D. ; et al Nat. Energy 2019, 4, 560.
doi: 10.1038/s41560-019-0398-y |
[1] | Yingying Zhu, Yong Wang, Miao Xu, Yongmin Wu, Weiping Tang, Di Zhu, Yu-Shi He, Zi-Feng Ma, Linsen Li. Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2110040-0. |
[2] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[3] | Xinyang Yue, Cui Ma, Jian Bao, Siyu Yang, Dong Chen, Xiaojing Wu, Yongning Zhou. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005012-. |
[4] | Gaolong Zhu, Chenzi Zhao, Hong Yuan, Haoxiong Nan, Bochen Zhao, Lipeng Hou, Chuangxin He, Quanbing Liu, Jiaqi Huang. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005003-. |
[5] | Zibo Zhang, Wei Deng, Xufeng Zhou, Zhaoping Liu. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-. |
[6] | Zhida Wang, Yuancheng Feng, Songtao Lu, Rui Wang, Wei Qin, Xiaohong Wu. Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008082-. |
[7] | Yunbo Zhang, Qiaowei Lin, Junwei Han, Zhiyuan Han, Tong Li, Feiyu Kang, Quan-Hong Yang, Wei Lü. Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008088-. |
[8] | Yuan Liu, Zenghui Duan, Jun Li, Chunran Chang. Gas-Phase Mechanism Study of Methane Nonoxidative Conversion by ReaxFF Method [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011012-. |
[9] | Hongyi Pan, Quan Li, Xiqian Yu, Hong Li. Characterization Techniques for Lithium Metal Anodes at Multiple Spatial Scales [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008091-. |
[10] | Guorui Zheng, Yuxuan Xiang, Yong Yang. Neutron Depth Profiling Technique for Studying Rechargeable Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008094-. |
[11] | Shichao Zhang, Zeyu Shen, Yingying Lu. Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008065-. |
[12] | Jinli Qin, Longtao Ren, Xin Cao, Yajun Zhao, Haijun Xu, Wen Liu, Xiaoming Sun. Porous Copper Foam Co-operation with Thiourea for Dendrite-free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009020-. |
[13] | Yuheng Sun, Mingda Gao, Hui Li, Li Xu, Qing Xue, Xinran Wang, Ying Bai, Chuan Wu. Application of Metal-Organic Frameworks to the Interface of Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007048-. |
[14] | Qin Ran, Tianyang Sun, Chongyu Han, Haonan Zhang, Jian Yan, Jinglun Wang. Natural Polyphenol Tannic Acid as an Efficient Electrolyte Additive for High Performance Lithium Metal Anode [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1912068-. |
[15] | Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499. |
|