Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (6): 2010027.doi: 10.3866/PKU.WHXB202010027
Special Issue: Design and Fabrication of Advanced Photocatalyst
• ARTICLE • Previous Articles Next Articles
Xingang Fei1, Haiyan Tan2,*(), Bei Cheng1, Bicheng Zhu1,*(
), Liuyang Zhang1,*(
)
Received:
2020-10-13
Accepted:
2020-11-04
Published:
2020-11-12
Contact:
Haiyan Tan,Bicheng Zhu,Liuyang Zhang
E-mail:Jftanhaiyan@sina.com;zhubicheng1991@whut.edu.cn;zly2017@whut.edu.cn
About author:
Email: zly2017@whut.edu.cn; Tel.: +86-15717179660 (L.Z.)Supported by:
MSC2000:
Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations[J].Acta Phys. -Chim. Sin., 2021, 37(6): 2010027.
1 |
Usubharatana P. ; McMartin D. ; Veawab A. ; Tontiwachwuthikul P. Ind. Eng. Chem. Res. 2006, 45, 2558.
doi: 10.1021/ie0505763 |
2 |
Tahir M. ; Amin N. S. Renewable Sustainable Energy Rev. 2013, 25, 560.
doi: 10.1016/j.rser.2013.05.027 |
3 | Lan B. -Y. ; Shi H. -F. Acta Phys. -Chim. Sin. 2014, 30, 2177. |
蓝奔月; 史海峰; 物理化学学报, 2014, 30, 2177.
doi: 10.3866/PKU.WHXB201409303 |
|
4 |
Xu F. ; Meng K. ; Cheng B. ; Wang S. ; Xu J. ; Yu J. Nat. Commun. 2020, 11, 4613.
doi: 10.1038/s41467-020-18350-7 |
5 |
Xia Y. ; Yu J. Chem 2020, 6, 1039.
doi: 10.1016/j.chempr.2020.02.015 |
6 |
Wang Z. ; Chen Y. ; Zhang L. ; Cheng B. ; Yu J. ; Fan J. J. Mater. Sci. Technol. 2020, 56, 143.
doi: 10.1016/j.jmst.2020.02.062 |
7 |
He F. ; Zhu B. ; Cheng B. ; Yu J. ; Ho W. ; Macyk W. Appl. Catal. B 2020, 272, 119006.
doi: 10.1016/j.apcatb.2020.119006 |
8 |
Liang M. ; Borjigin T. ; Zhang Y. ; Liu B. ; Liu H. ; Guo H. Appl. Catal. B 2019, 243, 566.
doi: 10.1016/j.apcatb.2018.11.010 |
9 | Li X. W. ; Wang B. ; Yin W. X. ; Di J. ; Xia J. X. ; Zhu W. S. ; Li H. M. Acta Phys. -Chim. Sin. 2020, 36, 1902001. |
李小为; 王彬; 尹文轩; 狄俊; 夏杰祥; 朱文帅; 李华明; 物理化学学报, 2020, 36, 1902001.
doi: 10.3866/PKU.WHXB201902001 |
|
10 | Wang L. ; Zhu C. L. ; Yin L. S. ; Huang W. Acta Phys. -Chim. Sin. 2020, 36, 1907001. |
王梁; 朱澄鹭; 殷丽莎; 黄维; 物理化学学报, 2020, 36, 1907001.
doi: 10.3866/PKU.WHXB201907001 |
|
11 | Wang Y. Q. ; Shen S. H. Acta Phys. -Chim. Sin. 2020, 36, 1905080. |
王亦清; 沈少华; 物理化学学报, 2020, 36, 1905080.
doi: 10.3866/PKU.WHXB201905080 |
|
12 |
Li Y. ; Zhou M. ; Cheng B. ; Shao Y. J. Mater. Sci. Technol. 2020, 56, 1.
doi: 10.1016/j.jmst.2020.04.028 |
13 |
Xia P. ; Cao S. ; Zhu B. ; Liu M. ; Shi M. ; Yu J. ; Zhang Y. Angew. Chem. Int. Ed. 2020, 59, 5218.
doi: 10.1002/anie.201916012 |
14 |
Ren Y. J. ; Zeng D. Q. ; Ong W. J. Chin. J. Catal. 2019, 40, 289.
doi: 10.1016/s1872-2067(19)63293-6 |
15 |
Qi K. Z. ; Lv W. X. ; Khan I. ; Liu S. Y. Chin. J. Catal. 2020, 41, 114.
doi: 10.1016/s1872-2067(19)63459-5 |
16 |
Chai B. ; Yan J. T. ; Fan G. Z. ; Song G. S. ; Wang C. L. Chin. J. Catal. 2020, 41, 170.
doi: 10.1016/s1872-2067(19)63383-8 |
17 |
Xie Q. ; He W. M. ; Liu S. W. ; Li C. H. ; Zhang J. F. ; Wong P. K. Chin. J. Catal. 2020, 41, 140.
doi: 10.1016/s1872-2067(19)63481-9 |
18 |
Li Q. ; Zhao W. ; Zhai Z. ; Ren K. ; Wang T. ; Guan H. ; Shi H. J. Mater. Sci. Technol. 2020, 56, 216.
doi: 10.1016/j.jmst.2020.03.038 |
19 |
Qin D. ; Xia Y. ; Li Q. ; Yang C. ; Qin Y. ; Lv K. J. Mater. Sci. Technol. 2020, 56, 206.
doi: 10.1016/j.jmst.2020.03.034 |
20 |
Ong W. -J. ; Tan L. -L. ; Chai S. -P. ; Yong S. -T. Chem. Commun. 2015, 51, 858.
doi: 10.1039/c4cc08996k |
21 |
Su T. ; Hood Z. D. ; Naguib M. ; Bai L. ; Luo S. ; Rouleau C. M. ; Ivanov I. N. ; Ji H. ; Qin Z. ; Wu Z. Nanoscale 2019, 11, 8138.
doi: 10.1039/c9nr00168a |
22 |
Wang H. ; Zhu X. ; Yang Y. ; Chen C. ; Lin Q. ; He Y. ; Yin X. ; Lu C. ; Yang H. Mater. Chem. Front. 2020, 4, 2646.
doi: 10.1039/D0QM00286K |
23 |
Xiong J. ; Li X. ; Huang J. ; Gao X. ; Chen Z. ; Liu J. ; Li H. ; Kang B. ; Yao W. ; Zhu Y. Appl. Catal. B 2020, 266, 118602.
doi: 10.1016/j.apcatb.2020.118602 |
24 |
Qiu P. ; Xu C. ; Zhou N. ; Chen H. ; Jiang F. Appl. Catal. B 2018, 221, 27.
doi: 10.1016/j.apcatb.2017.09.010 |
25 |
Kong L. ; Ji Y. ; Dang Z. ; Yan J. ; Li P. ; Li Y. ; Liu S. Adv. Funct. Mater. 2018, 28, 1800668.
doi: 10.1002/adfm.201800668 |
26 |
Wang W. ; Niu Q. ; Zeng G. ; Zhang C. ; Huang D. ; Shao B. ; Zhou C. ; Yang Y. ; Liu Y. ; Guo H. ; et al Appl. Catal. B 2020, 273, 119051.
doi: 10.1016/j.apcatb.2020.119051 |
27 |
Han C. ; Li J. ; Ma Z. ; Xie H. ; Waterhouse G. I. N. ; Ye L. ; Zhang T. Sci. China Mater. 2018, 61, 1159.
doi: 10.1007/s40843-018-9245-y |
28 |
Zhang Q. ; Huang S. ; Deng J. ; Gangadharan D. T. ; Yang F. ; Xu Z. ; Giorgi G. ; Palummo M. ; Chaker M. ; Ma D. Adv. Funct. Mater. 2019, 29, 1902486.
doi: 10.1002/adfm.201902486 |
29 |
Hu J. ; Ji Y. ; Mo Z. ; Li N. ; Xu Q. ; Li Y. ; Xu H. ; Chen D. ; Lu J. J. Mater. Chem. A 2019, 7, 4408.
doi: 10.1039/C8TA12309H |
30 |
Song T. ; Zeng G. ; Zhang P. ; Wang T. ; Ali A. ; Huang S. ; Zeng H. J. Mater. Chem. A 2019, 7, 503.
doi: 10.1039/C8TA09647C |
31 |
Kresse G. ; Furthmüller J. Phys. Rev. B 1996, 54, 11169.
doi: 10.1103/PhysRevB.54.11169 |
32 |
Hafner J. J. Comput. Chem. 2008, 29, 2044.
doi: 10.1002/jcc.21057 |
33 |
Blöchl P. E. Phys. Rev. B 1994, 50, 17953.
doi: 10.1103/PhysRevB.50.17953 |
34 |
Wu Z. ; Cohen R. E. Phys. Rev. B 2006, 73, 235116.
doi: 10.1103/PhysRevB.73.235116 |
35 |
Zhu B. ; Zhang L. ; Cheng B. ; Yu Y. ; Yu J. Chin. J. Catal. 2021, 42, 115.
doi: 10.1016/S1872-2067(20)63598-7 |
36 |
Grimme S. J. Comput. Chem. 2006, 27, 1787.
doi: 10.1002/jcc.20495 |
37 |
Zhu B. ; Wageh S. ; Al-Ghamdi A. ; Yang S. ; Tian Z. ; Yu J. Catal. Today 2019, 335, 117.
doi: 10.1016/j.cattod.2018.09.038 |
38 |
Heyd J. ; Scuseria G. E. ; Ernzerhof M. J. Chem. Phys. 2006, 124, 219906.
doi: 10.1063/1.2204597 |
39 |
Dieterich J. M. ; Werner H. -J. ; Mata R. A. ; Metz S. ; Thiel W. J. Chem. Phys. 2010, 132, 035101.
doi: 10.1063/1.3280164 |
40 |
Nørskov J. K. ; Rossmeisl J. ; Logadottir A. ; Lindqvist L. ; Kitchin J. R. ; Bligaard T. ; Jónsson H. J. Phys. Chem. B 2004, 108, 17886.
doi: 10.1021/jp047349j |
41 |
Ong W. -J. ; Tan L. -L. ; Ng Y. H. ; Yong S. -T. ; Chai S. -P. Chem. Rev. 2016, 116, 7159.
doi: 10.1021/acs.chemrev.6b00075 |
42 |
Kong Z. ; Chen X. ; Ong W. -J. ; Zhao X. ; Li N. Appl. Surf. Sci. 2019, 463, 1148.
doi: 10.1016/j.apsusc.2018.09.026 |
43 |
Zhao Y. ; Lin Y. ; Wang G. ; Jiang Z. ; Zhang R. ; Zhu C. Appl. Surf. Sci. 2019, 463, 809.
doi: 10.1016/j.apsusc.2018.08.013 |
44 |
Zhu B. ; Zhang L. ; Cheng B. ; Yu J. Appl. Catal. B: Environ. 2018, 224, 983.
doi: 10.1016/j.apcatb.2017.11.025 |
45 |
Zheng Y. ; Yu Z. ; Ou H. ; Asiri A. M. ; Chen Y. ; Wang X. Adv. Funct. Mater. 2018, 28, 1705407.
doi: 10.1002/adfm.201705407 |
46 |
Zhu B. ; Cheng B. ; Zhang L. ; Yu J. Carbon Energy 2019, 1, 32.
doi: 10.1002/cey2.1 |
47 |
Zhang J. ; Fu J. ; Wang Z. ; Cheng B. ; Dai K. ; Ho W. J. Alloys Compd. 2018, 766, 841.
doi: 10.1016/j.jallcom.2018.07.041 |
48 |
Liu J. J. Phys. Chem. C 2015, 119, 28417.
doi: 10.1021/acs.jpcc.5b09092 |
49 |
Dai W. -W. ; Zhao Z. -Y. Appl. Surf. Sci. 2017, 406, 8.
doi: 10.1016/j.apsusc.2017.02.079 |
50 |
Pearson R. G. Inorg. Chem. 1988, 27, 734.
doi: 10.1021/ic00277a030 |
51 |
Yao Z. ; Liu X. ; Sui H. ; Sun H. Mater. Lett. 2020, 275, 128007.
doi: 10.1016/j.matlet.2020.128007 |
52 |
Zhang X. N. ; Deng J. J. ; Yan J. ; Song Y. H. ; Mo Z. ; Qian J. C. ; Wu X. Y. ; Yuan S. Q. ; Li H. M. ; Xu H. Appl. Surf. Sci. 2019, 490, 117.
doi: 10.1016/j.apsusc.2019.05.246 |
53 |
He F. ; Meng A. ; Cheng B. ; Ho W. ; Yu J. Chin. J. Catal. 2020, 41, 9.
doi: 10.1016/S1872-2067(19)63382-6 |
54 |
Xu Q. ; Zhang L. ; Cheng B. ; Fan J. ; Yu J. Chem 2020, 6, 1543.
doi: 10.1016/j.chempr.2020.06.010 |
55 |
Fu J. ; Zhu B. ; Jiang C. ; Cheng B. ; You W. ; Yu J. Small 2017, 13, 1603938.
doi: 10.1002/smll.201603938 |
56 |
Cao S. ; Li Y. ; Zhu B. ; Jaroniec M. ; Yu J. J. Catal. 2017, 149, 208.
doi: 10.1016/j.jcat.2017.02.005 |
57 |
Azofra L. M. ; MacFarlane D. R. ; Sun C. Phys. Chem. Chem. Phys. 2016, 18, 18507.
doi: 10.1039/C6CP02453J |
58 |
Wang Y. ; Tian Y. ; Yan L. ; Su Z. J. Phys. Chem. C 2018, 122, 7712.
doi: 10.1021/acs.jpcc.8b00098 |
59 |
Zhi X. ; Jiao Y. ; Zheng Y. ; Qiao S. -Z. Small 2019, 15, 1804224.
doi: 10.1002/smll.201804224 |
[1] | Ruoning Li, Xue Zhang, Na Xue, Jie Li, Tianhao Wu, Zhen Xu, Yifan Wang, Na Li, Hao Tang, Shimin Hou, Yongfeng Wang. Hierarchical Self-Assembly of Ag-Coordinated Motifs on Ag(111) [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2011060-. |
[2] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[3] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[4] | Gaowei Han, Feiyan Xu, Bei Cheng, Youji Li, Jiaguo Yu, Liuyang Zhang. Enhanced Photocatalytic H2O2 Production over Inverse Opal ZnO@Polydopamine S-Scheme Heterojunctions [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112037-. |
[5] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[6] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[7] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[8] | Haoran Lu, Yaqing Wei, Run Long. Charge Localization Induced by Nanopore Defects in Monolayer Black Phosphorus for Suppressing Nonradiative Electron-Hole Recombination through Time-Domain Simulation [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006064-. |
[9] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
[10] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[11] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[12] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[13] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[14] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[15] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-. |
|