Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (7): 2010025.doi: 10.3866/PKU.WHXB202010025
Special Issue: Electrocatalysis
• REVIEW • Previous Articles Next Articles
Zengqiang Gao1, Congyong Wang2,3, Junjun Li1, Yating Zhu1, Zhicheng Zhang1,*(), Wenping Hu1,2,*(
)
Received:
2020-10-13
Accepted:
2020-11-25
Published:
2020-11-30
Contact:
Zhicheng Zhang,Wenping Hu
E-mail:zczhang19@tju.edu.cn;huwp@tju.edu.cn
About author:
Email: huwp@tju.edu.cn (W.H.); Tel: +86-22-83613363 (Z.Z.)Supported by:
MSC2000:
Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities[J].Acta Phys. -Chim. Sin., 2021, 37(7): 2010025.
"
Type | Catalyst | Electrolyte | Potential | FE | Ref. |
CO2RR | Fe_MOF-525 films | 1.0 mol·L-1 TBAPF6 + 1 mol·L-1 TFE | -1.3 V vs. NHE | ∼100% (CO + H2) | |
HKUST-1 (Cu, Ru) | 0.5 mol·L-1 KHCO3 | -1.0 V vs. Ag/AgCl | 47.2% (alcohol) | ||
Al2(OH)2TCPP-Co | 0.5 mol·L-1 potassium carbonate | -0.7 V vs. RHE | 76% (CO) | ||
Ag@Al-PMOFs | 0.1 mol·L-1 KHCO3 | -1.1 V vs. RHE | 55.8% (CO) | ||
Cu2(CuTCPP) | 0.5 mol·L-1 EMIMBF4 | -1.55 V vs. Ag/Ag+ | 68.4% (formate); 16.8% (acetate) | ||
bismuthine (Bi-ene) | 1 mol·L-1 KOH | -0.57V vs. RHE | 99.8% (formate) | ||
ORR | Ni3(HITP)2 | 0.1 mol·L-1 KOH | ∼0.75 V vs. RHE | 63% (H2O2) | |
(Co)PCN222 | 0.1 mol·L-1 HClO4 | 0.43V vs. RHE | |||
NRR | Mo3(HAB)2 | 0.18 V | |||
Co3(HHTP)2 | 0.5 mol·L-1 LiClO4 | –0.40 V vs. RHE | 3.34% | ||
OER | {Fe3(μ3-O)(bdc)3}4{Co2(na)4(LT)2}3 | water at pH = 13 | 225 mV | ||
Fe/Ni-BTC | 0.1 mol·L-1 KOH | 270 mV | 95% | ||
NiCo-UMOFNs | 1.0 mol·L-1 KOH | ∼189 mV | 99.3% | ||
MAF-X27-OH(Cu) | 1.0 mol·L-1 KOH | 292 mV | 100% | ||
NiFe-NFF | 1.0 mol·L-1 KOH | 227 mV | ~100% | ||
NiFe MOF/OM-NFH | 1.0 mol·L-1 KOH | 270 mV | |||
HER | NiFe-MOF | 0.1 mol·L-1 KOH | 240 mV | ||
Pd@MOF-74 | 0.5 mol·L-1 H2SO4 | -0.106 V vs. RHE | |||
Ni3(Ni3·HAHATN)2 | 0.1 mol·L-1 KOH | 115 mV |
1 |
Li H. ; Eddaoudi M. ; O'Keeffe M. ; Yaghi O. M. Nature 1999, 402, 276.
doi: 10.1038/46248 |
2 |
Tranchemontagne D. J. ; Mendoza-Cortés J. L. ; O'Keeffe M. ; Yaghi O. M. Chem. Soc. Rev. 2009, 38, 1257.
doi: 10.1039/B817735J |
3 |
Zhang Z. ; Chen Y. ; Xu X. ; Zhang J. ; Xiang G. ; He W. ; Wang X. Angew. Chem. Int. Ed. 2014, 53, 429.
doi: 10.1002/anie.201308589 |
4 |
Zhou H.-C. ; Long J. R. ; Yaghi O. M. Chem. Rev 2012, 112, 673.
doi: 10.1021/cr300014x |
5 |
Furukawa H. ; Cordova K. E. ; O'Keeffe M. ; Yaghi O. M. Science 2013, 341, 1230444.
doi: 10.1126/science.1230444 |
6 |
Chen X.-H. ; Wei Q. ; Hong J.-D. ; Xu R. ; Zhou T.-H. Rare Met. 2019, 38, 413.
doi: 10.1007/s12598-019-01259-6 |
7 |
Bavykina A. ; Kolobov N. ; Khan I. S. ; Bau J. A. ; Ramirez A. ; Gascon J. Chem. Rev 2020, 120, 8468.
doi: 10.1021/acs.chemrev.9b00685 |
8 |
Wang Y. ; Li Q. ; Shi W. ; Cheng P. Chin. Chem. Lett. 2020, 31, 1768.
doi: 10.1016/j.cclet.2020.01.010 |
9 |
Zhang K. ; Liang Z. ; Zou R. Sci. China Mater. 2020, 63, 7.
doi: 10.1007/s11426-019-9613-1 |
10 |
Song Z. ; Zhang L. ; Doyle-Davis K. ; Fu X. ; Luo J.-L. ; Sun X. Adv. Energy Mater. 2020, 10, 2001561.
doi: 10.1002/aenm.202001561 |
11 |
Zhao M. ; Huang Y. ; Peng Y. ; Huang Z. ; Ma Q. ; Zhang H. Chem. Soc. Rev. 2018, 47, 6267.
doi: 10.1039/C8CS00268A |
12 |
Liu J. ; Wöll C. Chem. Soc. Rev. 2017, 46, 5730.
doi: 10.1039/C7CS00315C |
13 |
Li B. ; Wen H.-M. ; Cui Y. ; Zhou W. ; Qian G. ; Chen B. Adv. Mater. 2016, 28, 8819.
doi: 10.1002/adma.201601133 |
14 |
Ding M. ; Flaig R. W. ; Jiang H.-L. ; Yaghi O. M. Chem. Soc. Rev 2019, 48, 2783.
doi: 10.1039/C8CS00829A |
15 |
Li J.-R. ; Sculley J. ; Zhou H.-C. Chem. Rev 2012, 112, 869.
doi: 10.1021/cr200190s |
16 |
Zhang Z. ; Chen Y. ; He S. ; Zhang J. ; Xu X. ; Yang Y. ; Nosheen F. ; Saleem F. ; He W. ; Wang X. Angew. Chem. Int. Ed 2014, 53, 12517.
doi: 10.1002/anie.201406484 |
17 |
Dhakshinamoorthy A. ; Asiri A. M. ; Garcia H. Adv. Mater 2019, 31, 1900617.
doi: 10.1002/adma.201900617 |
18 |
Sun L. ; Campbell M. G. ; Dincă M. Angew. Chem. Int. Ed 2016, 55, 3566.
doi: 10.1002/anie.201506219 |
19 |
Talin A. A. ; Centrone A. ; Ford A. C. ; Foster M. E. ; Stavila V. ; Haney P. ; Kinney R. A. ; Szalai V. ; El Gabaly F. ; Yoon H.P. ;et al Science 2014, 343, 66.
doi: 10.1126/science.1246738 |
20 |
Li W.-H. ; Deng W.-H. ; Wang G.-E. ; Xu G. Energy Chem. 2020, 2, 100029.
doi: 10.1016/j.enchem.2020.100029 |
21 |
Li W. H. ; Ding K. ; Tian H. R. ; Yao M.-S. ; Nath B. ; Deng W.-H. ; Wang Y. ; Xu G. Adv. Funct. Mater 2017, 27, 1702067.
doi: 10.1002/adfm.201702067 |
22 |
Ko M. ; Mendecki L. ; Mirica K. A. Chem. Commun. 2018, 54, 7873.
doi: 10.1039/C8CC02871K |
23 |
Li P. ; Wang B. Isr. J. Chem. 2018, 58, 1010.
doi: 10.1002/ijch.201800078 |
24 |
Stavila V. ; Talin A. A. ; Allendorf M. D. Chem. Soc. Rev 2014, 43, 5994.
doi: 10.1039/C4CS00096J |
25 |
Bhardwaj S. K. ; Bhardwaj N. ; Kaur R. ; Mehta J. ; Sharma A. L. ; Kim K.-H. ; Deep A. J. Mater. Chem. A 2018, 6, 14992.
doi: 10.1039/C8TA04220A |
26 |
Clough A. J. ; Yoo J. W. ; Mecklenburg M. H. ; Marinescu S. C. J. Am. Chem. Soc. 2015, 137, 118.
doi: 10.1021/ja5116937 |
27 |
Miner E. M. ; Fukushima T. ; Sheberla D. ; Sun L. ; Surendranath Y. ; Dincă M. Nat. Commun. 2016, 7, 10942.
doi: 10.1038/ncomms10942 |
28 |
Miner E. M. ; Wang L. ; Dincă M. Chem. Sci. 2018, 9, 6286.
doi: 10.1039/C8SC02049C |
29 |
Cheng W.-Z. ; Liang J.-L. ; Yin H.-B. ; Wang Y.-J. ; Yan W.-F. ; Zhang J.-N. Rare Met. 2020, 39, 815.
doi: 10.1007/s12598-020-01440-2 |
30 |
Liu X. ; Yue T. ; Qi K. ; Qiu Y. ; Xia B. Y. ; Guo X. Chin. Chem. Lett 2020, 31, 2189.
doi: 10.1016/j.cclet.2019.12.009 |
31 |
Zhao R. ; Liang Z. ; Zou R. ; Xu Q. Joule 2018, 2, 2235.
doi: 10.1016/j.joule.2018.09.019 |
32 |
Shinde S. S. ; Lee C. H. ; Jung J.-Y. ; Wagh N. K. ; Kim S.-H. ; Kim D.-H. ; Lin C. ; Lee S. U. ; Lee J.-H. Energy Environ. Sci. 2019, 12, 727.
doi: 10.1039/C8EE02679C |
33 |
Liu J. ; Song X. ; Zhang T. ; Liu S. ; Wen H. ; Chen L. Angew. Chem. Int. Ed. 2020, 59, 2.
doi: 10.1002/anie.202006102 |
34 |
Sheberla D. ; Bachman J. C. ; Elias J. S. ; Sun C.-J. ; Shao-Horn Y. ; Dincă M. Nat. Mater. 2017, 16, 220.
doi: 10.1038/nmat4766 |
35 |
Du W. ; Bai Y.-L. ; Yang Z. ; Li R. ; Zhang D. ; Ma Z. ; Yuan A. ; Xu J. Chin. Chem. Lett 2020, 31, 2309.
doi: 10.1016/j.cclet.2020.04.017 |
36 |
Campbell M. G. ; Sheberla D. ; Liu S. F. ; Swager T. M. ; Dincă M. Angew. Chem. Int. Ed 2015, 54, 4349.
doi: 10.1002/anie.201411854 |
37 |
Campbell M. G. ; Liu S. F. ; Swager T. M. ; Dincă M. J. Am. Chem. Soc 2015, 137, 13780.
doi: 10.1021/jacs.5b09600 |
38 |
Aubrey M. L. ; Kapelewski M. T. ; Melville J. F. ; Oktawiec J. ; Presti D. ; Gagliardi L. ; Long J. R. J. Am. Chem. Soc 2019, 141, 5005.
doi: 10.1021/jacs.9b00654 |
39 |
Meng Z. ; Aykanat A. ; Mirica K. A. J. Am. Chem. Soc 2019, 141, 2046.
doi: 10.1021/jacs.8b11257 |
40 |
Wu G. ; Huang J. ; Zang Y. ; He J. ; Xu G. J. Am. Chem. Soc 2017, 139, 1360.
doi: 10.1021/jacs.6b08511 |
41 |
Huang X. ; Sheng P. ; Tu Z. ; Zhang F. ; Wang J. ; Geng H. ; Zou Y. ; Di C.-A. ; Yi Y. ; Sun Y. ; Xu W. ; Zhu D. Nat. Commun. 2015, 6, 7408.
doi: 10.1038/ncomms8408 |
42 |
Lahiri N. ; Lotfizadeh N. ; Tsuchikawa R. ; Deshpande V. V. ; Louie J. J. Am. Chem. Soc 2017, 139, 19.
doi: 10.1021/jacs.6b09889 |
43 |
Wang B. ; Luo Y. ; Liu B. ; Duan G. ACS Appl. Mater. Interfaces 2019, 11, 35935.
doi: 10.1021/acsami.9b14319 |
44 |
Song X. ; Wang X. ; Li Y. ; Zheng C. ; Zhang B. ; Di C.-A. ; Li F. ; Jin C. ; Mi W. ; Chen L. ; Hu W. Angew. Chem. Int. Ed 2020, 59, 1118.
doi: 10.1002/anie.201911543 |
45 |
Zhao W. ; Peng J. ; Wang W. ; Liu S. ; Zhao Q. ; Huang W. Coordin. Chem. Rev. 2018, 377, 44.
doi: 10.1016/j.ccr.2018.08.023 |
46 |
Dong R. ; Zhang Z. ; Tranca D.C. ; Zhou S. ; Wang M. ; Adler P. ; Liao Z. ; Liu F. ; Sun Y. ; Shi W. ;et al Nat. Commun 2018, 9, 2637.
doi: 10.1038/s41467-018-05141-4 |
47 |
Yang C. ; Dong R. ; Wang M. ; Petkov P. S. ; Zhang Z. ; Wang M. ; Han P. ; Ballabio M. ; Bräuninger S.A. ; Liao Z. ;et al Nat. Commun. 2019, 10, 3260.
doi: 10.1038/s41467-019-11267-w |
48 |
Qiu T. ; Liang Z. ; Guo W. ; Tabassum H. ; Gao S. ; Zou R. ACS Energy Lett. 2020, 5, 520.
doi: 10.1021/acsenergylett.9b02625 |
49 |
Chu S. ; Majumdar A. Nature 2012, 488, 294.
doi: 10.1038/nature11475 |
50 |
Liu J. ; Zhu D. ; Guo C. ; Vasileff A. ; Qiao S.-Z. Adv. Energy Mater. 2017, 7, 1700518.
doi: 10.1002/aenm.201700518 |
51 |
Wang H.-F. ; Chen L. ; Pang H. ; Kaskel S. ; Xu Q. Chem. Soc. Rev. 2020, 49, 1414.
doi: 10.1039/C9CS00906J |
52 |
Xie L. ; Skorupskii G. ; Dincă M. Chem. Rev. 2020, 120, 8536.
doi: 10.1021/acs.chemrev.9b00766 |
53 |
Sheberla D. ; Sun L. ; Blood-Forsythe M. A. ; Er S. ; Wade C. R. ; Brozek C. K. ; Aspuru-Guzik A. ; Dincă M. J. Am. Chem. Soc 2014, 136, 8859.
doi: 10.1021/ja502765n |
54 |
Narayan T. C. ; Miyakai T. ; Seki S. ; Dincă M. J. Am. Chem. Soc 2012, 134, 12932.
doi: 10.1021/ja3059827 |
55 |
Park S. S. ; Hontz E. R. ; Sun L. ; Hendon C. H. ; Walsh A. ; Van Voorhis T. ; Dincă M. J. Am. Chem. Soc. 2015, 137, 1774.
doi: 10.1021/ja512437u |
56 |
Xie L. S. ; Alexandrov E. V. ; Skorupskii G. ; Proserpio D. M. ; Dincă M. Chem. Sci 2019, 10, 8558.
doi: 10.1039/C9SC03348C |
57 |
Pathak A. ; Shen J.-W. ; Usman M. ; Wei L.-F. ; Mendiratta S. ; Chang Y.-S. ; Sainbileg B. ; Ngue C.-M ; Chen R.-S. ; Hayashi M. ;et al Nat. Commun. 2019, 10, 1721.
doi: 10.1038/s41467-019-09682-0 |
58 |
Xie L. ; Skorupskii G. ; Dincă M. Chem. Rev 2020, 120, 8536.
doi: 10.1021/acs.chemrev.9b00766 |
59 |
Makiura R. ; Motoyama S. ; Umemura Y. ; Yamanaka H. ; Sakata O. ; Kitagawa H. Nat. Mater. 2010, 9, 565.
doi: 10.1038/nmat2769 |
60 |
Dong R. ; Pfeffermann M. ; Liang H. ; Zheng Z. ; Zhu X. ; Zhang J. ; Feng X. Angew. Chem. Int. Ed 2015, 54, 12058.
doi: 10.1002/anie.201506048 |
61 |
Kambe T. ; Sakamoto R. ; Hoshiko K. ; Takada K. ; Miyachi M. ; Ryu J.-H. ; Sasaki S. ; Kim J. ; Nakazato K. ; Takata M. ;et al J. Am. Chem. Soc. 2013, 135, 2462.
doi: 10.1021/ja312380b |
62 |
Pal T. ; Kambe T. ; Kusamoto T. ; Foo M. L. ; Matsuoka R. ; Sakamoto R. ; Nishihara H. ChemPlusChem 2015, 80, 1255.
doi: 10.1002/cplu.201500206 |
63 |
Sun X. ; Wu K.-H. ; Sakamoto R. ; Kusamoto T. ; Maeda H. ; Ni X. ; Jiang W. ; Liu F. ; Sasaki S. ; Masunaga H. ;et al Chem. Sci 2017, 8, 8078.
doi: 10.1039/C7SC02688A |
64 |
Pal T. ; Doi S. ; Maeda H. ; Wada K. ; Tan C. M. ; Fukui N. ; Sakamoto R. ; Tsuneyuki S. ; Sasaki S. ; Nishihara H. Chem. Sci 2019, 10, 5218.
doi: 10.1039/C9SC01144G |
65 |
Huang X. ; Li H. ; Tu Z. ; Liu L. ; Wu X. ; Chen J. ; Liang Y. ; Zou Y. ; Yi Y. ; Sun J. ; et al J. Am. Chem. Soc 2018, 140, 15153.
doi: 10.1021/jacs.8b07921 |
66 |
Sheberla D. ; Bachman J. C. ; Elias J. S. ; Sun C.-J. ; Shao-Horn Y. ; Dincă M. Nat. Mater 2017, 16, 220.
doi: 10.1038/nmat4766 |
67 |
Du W. ; Bai Y.-L. ; Yang Z. ; Li R. ; Zhang D. ; Ma Z. ; Yuan A. ; Xu J. Chin. Chem. Lett 2020, 31, 2309.
doi: 10.1016/j.cclet.2020.04.017 |
68 |
Campbell M. G. ; Sheberla D. ; Liu S. F. ; Swager T. M. ; Dincă M. Angew. Chem. Int. Ed 2015, 54, 4349.
doi: 10.1002/anie.201411854 |
69 |
Campbell M. G. ; Liu S. F. ; Swager T. M. ; Dincă M. J. Am. Chem. Soc. 2015, 137, 13780.
doi: 10.1021/jacs.5b09600 |
70 |
Dunwell M. ; Lu Q. ; Heyes J. M. ; Rosen J. ; Chen J. G. ; Yan Y. ; Jiao F. ; Xu B. J. Am. Chem. Soc. 2017, 139, 3774.
doi: 10.1021/jacs.6b13287 |
71 |
Zhao C. ; Dai X. ; Yao T. ; Chen W. ; Wang X. ; Wang J. ; Yang J. ; Wei S. ; Wu Y. ; Li Y. J. Am. Chem. Soc. 2017, 139, 8078.
doi: 10.1021/jacs.7b02736 |
72 |
Lu Y. ; Zhang J. ; Wei W. ; Ma D. D. ; Wu X. T. ; Zhu Q. L. ACS Appl. Mater. Interfaces 2020, 12, 37986.
doi: 10.1021/acsami.0c06537 |
73 |
Li X. ; Zhu Q. L. EnergyChem 2020, 2, 100033.
doi: 10.1016/j.enchem.2020.100033 |
74 |
Ma D. D. ; Zhu Q. L. Coord. Chem. Rev. 2020, 422, 213483.
doi: 10.1016/j.ccr.2020.213483 |
75 |
Aubrey M. L. ; Kapelewski M. T. ; Melville J. F. ; Oktawiec J. ; Presti D. ; Gagliardi L. ; Long J. R. J. Am. Chem. Soc. 2019, 141, 5005.
doi: 10.1021/jacs.9b00654 |
76 |
Meng Z. ; Aykanat A. ; Mirica K. A. J. Am. Chem. Soc. 2019, 141, 2046.
doi: 10.1021/jacs.8b11257 |
77 |
Hod I. ; Sampson M. D. ; Deria P. ; Kubiak C. P. ; Farha O. K. ; Hupp J. T. ACS Catal 2015, 5, 6302.
doi: 10.1021/acscatal.5b01767 |
78 |
Albo J. ; Vallejo D. ; Beobide G. ; Castillo O. ; Castaño P. ; Irabien A. ChemSusChem 2017, 10, 1100.
doi: 10.1002/cssc.201600693 |
79 |
Dong B.-X. ; Qian S.-L. ; Bu F.-Y. ; Wu Y.-C. ; Feng L.-G. ; Teng Y.-L. ; Liu W.-L. ; Li Z.-W. ACS Appl. Energy Mater 2018, 1, 4662.
doi: 10.1021/acsaem.8b00797 |
80 |
Perfecto-Irigaray M. ; Albo J. ; Beobide G. ; Castillo O. ; Irabien A. ; Pérez-Yáñez S. RSC Adv 2018, 8, 21092.
doi: 10.1039/C8RA02676A |
81 |
Qiu Y.-L. ; Zhong H.-X. ; Zhang T.-T. ; Xu W.-B. ; Su P.-P. ; Li X.-F. ; Zhang H.-M. ACS Appl. Mater. Interfaces 2018, 10, 2480.
doi: 10.1021/acsami.7b15255 |
82 |
Kornienko N. ; Zhao Y. ; Kley C. S. ; Zhu C. ; Kim D. ; Lin S. ; Chang C. J. ; Yaghi O. M. ; Yang P. J. Am. Chem. Soc 2015, 137, 14129.
doi: 10.1021/jacs.5b08212 |
83 |
Guntern Y. T. ; Pankhurst J. R. ; Vávra J. ; Mensi M. ; Mantella V. ; Schouwink P. ; Buonsanti R. Angew. Chem. Int. Ed. 2019, 58, 12632.
doi: 10.1002/anie.201905172 |
84 |
Wu J.-X. ; Hou S.-Z. ; Zhang X.-D. ; Xu M. ; Yang H.-F. ; Cao P.-S. ; Gu Z.-Y. Chem. Sci 2019, 10, 2199.
doi: 10.1039/C8SC04344B |
85 |
Cao C. ; Ma D. D. ; Gu J. F. ; Xie X. ; Zeng G. ; Li X. ; Han S. G. ; Zhu Q. L. ; Wu X. T. ; Xu Q. Angew. Chem. Int. Ed. 2020, 59, 15014.
doi: 10.1002/anie.202005577 |
86 |
Brezny A. C. ; Johnson S. I. ; Raugei S. ; Mayer J. M. J. Am. Chem. Soc. 2020, 142, 4108.
doi: 10.1021/jacs.9b13654 |
87 |
Pegis M. L. ; Wise C. F. ; Martin D. J. ; Mayer J. M. Chem. Rev. 2018, 118, 2340.
doi: 10.1021/acs.chemrev.7b00542 |
88 |
Zhao S. ; Yin H. ; Du L. ; He L. ; Zhao K. ; Chang L. ; Yin G. ; Zhao H. ; Liu S. ; Tang Z. ACS Nano 2014, 8, 12660.
doi: 10.1021/nn505582e |
89 |
Lai Q. ; Zheng L. ; Liang Y. ; He J. ; Zhao J. ; Chen J. ACS Catal 2017, 7, 1655.
doi: 10.1021/acscatal.6b02966 |
90 |
Guo J. ; Li Y. ; Cheng Y. ; Dai L. ; Xiang Z. ACS Nano 2017, 11, 8379.
doi: 10.1021/acsnano.7b03807 |
91 |
Yin P. ; Yao T. ; Wu Y. ; Zheng L. ; Lin Y. ; Liu W. ; Ju H. ; Zhu J. ; Hong X. ; Deng Z. ; et al Angew. Chem. Int. Ed. 2016, 55, 10800.
doi: 10.1002/anie.201604802 |
92 |
Liu X.-H. ; Hu W.-L. ; Jiang W.-J. ; Yang Y.-W. ; Niu S. ; Sun B. ; Wu J. ; Hu J.-S. ACS Appl. Mater. Interfaces 2017, 9, 28473.
doi: 10.1021/acsami.7b07410 |
93 |
Yoon H. ; Lee S. ; Oh S. ; Park H. ; Choi S. ; Oh M. Small 2019, 15, 1805232.
doi: 10.1002/smll.201805232 |
94 |
Chen G. ; Stevens M. B. ; Liu Y. ; King L. A. ; Park J. ; Kim T. R. ; Bao Z. ; Sinclair R. ; Jaramillo T. F. ; Bao Z. Small Methods 2020, 4, 2000085.
doi: 10.1002/smtd.202000085 |
95 |
Roger I. ; Shipman M. A. ; Symes M. D. Nat. Rev. Chem. 2017, 1, 1.
doi: 10.1038/s41570-016-0003 |
96 |
Chen W. ; Pei J. ; He C.-T. ; Wan J. ; Ren H. ; Wang Y. ; Dong J. ; Wu K. ; Cheong W.-C. ; Mao J. ;et al Adv. Mater. 2018, 30, 1800396.
doi: 10.1002/adma.201800396 |
97 |
Liu T. ; Li P. ; Yao N. ; Cheng G. ; Chen S. ; Luo W. ; Yin Y. Angew. Chem. Int. Ed. 2019, 306, 627.
doi: 10.1002/anie.201901409 |
98 |
Duan J. ; Chen S. ; Zhao C. Nat. Commun. 2017, 8, 15341.
doi: 10.1038/ncomms15341 |
99 |
Zheng F. ; Zheng C. ; Gao X. ; Du C. ; Zhang Z. ; Chen W. Electrochim. Acta 2019, 7, 9743.
doi: 10.1016/j.electacta.2019.03.175 |
100 |
Huang H. ; Zhao Y. ; Bai Y. ; Li F. ; Zhang Y. ; Chen Y. Adv. Sci. 2020, 7, 2000012.
doi: 10.1002/advs.202000012 |
101 |
Yang C. ; Zhu Y. ; Liu J. ; Qin Y. ; Wang H. ; Liu H. ; Chen Y. ; Zhang Z. ; Hu W. Nano Energy 2020, 77, 105126.
doi: 10.1016/j.nanoen.2020.105126 |
102 |
Geng Z. ; Liu Y. ; Kong X. ; Li P. ; Li K. ; Liu Z. ; Du J. ; Shu M. ; Si R. ; Zeng J. Adv. Mater 2018, 30, 1803498.
doi: 10.1002/adma.201803498 |
103 |
Guo C. ; Ran J. ; Vasileff A. ; Qiao S.-Z. Energy Environ. Sci. 2018, 11, 45.
doi: 10.1039/C7EE02220D |
104 |
Yuan L. ; Wu Z. ; Jiang W. ; Tang T. ; Niu S. ; Hu J.-S. Nano Res. 2020, 13, 1376.
doi: 10.1007/s12274-020-2637-8 |
105 |
Abghoui Y. ; Garden A. L. ; Howalt J. G. ; Vegge T. ; Skúlason E. ACS Catal 2016, 6, 635.
doi: 10.1021/acscatal.5b01918 |
106 |
Fukushima T. ; Drisdell W. ; Yano J. ; Surendranath Y. J. Am. Chem. Soc 2015, 137, 10926.
doi: 10.1021/jacs.5b06737 |
107 |
Cui Q. ; Qin G. ; Wang W. ; K. R G. ; Du A. ; Sun Q. J. Mater. Chem. A 2019, 7, 14510.
doi: 10.1039/C9TA02926E |
108 |
Xiong W. ; Cheng X. ; Wang T. ; Luo Y. ; Feng J. ; Lu S. ; Asiri A. M. ; Li W. ; Jiang Z. ; Sun X. Nano Res. 2020, 13, 1008.
doi: 10.1007/s12274-020-2733-9 |
109 |
Zhou J. ; Dou Y. ; Zhou A. ; Guo R.-M. ; Zhao M.-J. ; Li J.-R. Adv. Energy Mater. 2017, 7, 1602643.
doi: 10.1002/aenm.201602643 |
110 | Li M. ; Xia Z. ; Huang Y. ; Tao L. ; Chao Y. ; Yin K. ; Yang W. ; Yang W. ; Yu Y. ; Guo S. Acta Phys. -Chim. Sin. 2020, 36, 1912049. |
李蒙刚; 夏仲泓; 黄雅荣; 陶璐; 晁玉广; 尹坤; 杨文秀; 杨微微; 于永生; 郭少军; 物理化学学报, 2020, 36, 1912049.
doi: 10.3866/PKU.WHXB201912049 |
|
111 |
Zheng F. ; Zhang Z. ; Xiang D. ; Li P. ; Du C. ; Zhuang Z. ; Li X. ; Chen W. J. Colloid Interf. Sci. 2019, 555, 541.
doi: 10.1016/j.jcis.2019.08.005 |
112 |
Shen J.-Q. ; Liao P.-Q. ; Zhou D.-D. ; He C.-T. ; Wu J.-X. ; Zhang W.-X. ; Zhang J.-P. ; Chen X.-M. J. Am. Chem. Soc 2017, 139, 1778.
doi: 10.1021/jacs.6b12353 |
113 |
Wang L. ; Wu Y. ; Cao R. ; Ren L. ; Chen M. ; Feng X. ; Zhou J. ; Wang B. ACS Appl. Mater. Interfaces 2016, 8, 16736.
doi: 10.1021/acsami.6b05375 |
114 |
Zhao S. ; Wang Y. ; Dong J. ; He C.-T. ; Yin H. ; An P. ; Zhao K. ; Zhang X. ; Gao C. ; Zhang L. ;et al Nat. Energy 2016, 1, 16184.
doi: 10.1038/nenergy.2016.184 |
115 |
Lu X.-F. ; Liao P.-Q. ; Wang J.-W. ; Wu J.-X. ; Chen X.-W. ; He C.-T. ; Zhang J.-P. ; Li G.-R. ; Chen X.-M. J. Am. Chem. Soc. 2016, 138, 8336.
doi: 10.1021/jacs.6b03125 |
116 |
Cao C. ; Ma D. D. ; Xu Q. ; Wu X. T. ; Zhu Q. L. Adv. Funct. Mater. 2019, 29, 1807418.
doi: 10.1002/adfm.201807418 |
117 |
Li X. ; Ma D. D. ; Cao C. ; Zou R. ; Xu Q. ; Wu X. T. ; Zhu Q. L. Small 2019, 15, 1902218.
doi: 10.1002/smll.201902218 |
118 |
Zheng F. ; Zhang C. ; Gao X. ; Du C. ; Zhuang Z. ; Chen W. Electrochim. Acta 2019, 306, 627.
doi: 10.1016/j.electacta.2019.03.175 |
119 |
Liu J. ; Zhu D. ; Guo C. ; Vasileff A. ; Qiao S.-Z. Adv. Energy Mater. 2017, 7, 1700518.
doi: 10.1002/aenm.201700518 |
120 |
Zheng F. ; Zhang Z. ; Zhang C. ; Zhang C. ; Chen W. ACS Omega 2020, 5, 2495.
doi: 10.1021/acsomega.9b03295 |
121 |
Centi G. SmartMat 2020, e1005.
doi: 10.1002/smm2.1005 |
[1] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[2] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[3] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[4] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[5] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[6] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[7] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[8] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[9] | Liang Ding, Tang Tang, Jin-Song Hu. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010048-. |
[10] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[11] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-. |
[12] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-. |
[13] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-. |
[14] | Hongsa Han, Yanqing Wang, Yunlong Zhang, Yuanyuan Cong, Jiaqi Qin, Rui Gao, Chunxiao Chai, Yujiang Song. Oxygen Reduction Reaction Electrocatalysts Derived from Metalloporphyrin-Modified Meso-/Macroporous Polyaniline [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008017-. |
[15] | Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009022-. |
|