Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2010072.doi: 10.3866/PKU.WHXB202010072
Special Issue: Fuel Cells
• REVIEW • Previous Articles Next Articles
Jiashun Liang, Xuan Liu, Qing Li()
Received:
2020-10-29
Accepted:
2020-11-23
Published:
2020-11-30
Contact:
Qing Li
E-mail:qing_li@hust.edu.cn
Supported by:
MSC2000:
Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells[J].Acta Phys. -Chim. Sin., 2021, 37(9): 2010072.
Table 1
Standard electrode potential of some metals (25.0 ℃, 101.325 kPa)."
No. | Electrode process | E0/V |
1 | Fe2+ + 2e- ═ Fe | -0.447 |
2 | Fe3+ + 3e- ═ Fe | -0.037 |
3 | Ni2+ + 2e- ═ Ni | -0.257 |
4 | Co2+ + 2e- ═ Co | -0.28 |
5 | Pt2+ + 2e- ═ Pt | 1.18 |
6 | [PtCl6]2- + 2e ═ [PtCl4]2- + 2Cl- | 0.68 |
7 | Pd2+ + 2e- ═ Pd | 0.915 |
8 | PdBr42- + 2e- ═ Pd + 4Br- | 0.6 |
9 | Au+ + e- ═ Au | 1.692 |
10 | Au3+ + 3e- ═ Au | 1.498 |
Fig 7
(a) ORR activity of Mo-Pt3Ni and Pt3Ni octahedrons before and after potential cycles 49; (b) elemental distribution of Mo, Ni and Pt obtained by kinetic Monte Carlo (KMC) simulations 50; (c) morphology evolution of Rh-PtNi and PtNi octahedrons; (d) ORR activity of Rh-PtNi and PtNi octahedrons before and after potential cycles 51. Adapted from the American Association for the Advancement of Science and American Chemical Society."
Fig 10
(a) STEM image of L10-PtCo/Pt, (b) fuel cell performance of L10-PtCo/Pt 76; (c) surface energy of different catalysts, (d) fuel cell performance of L10-W-PtCo 77; (e) schematic illustration of the preparation of L12-Pt3Co, (f) ORR polarization of L12-Pt3Co before and after potential cycling 78. Adapted from Elsevier, American Chemical Society and John Wiley and Sons."
Fig 11
(a) STEM image of PtNi nanowires (NWs) 1; (b, c) ORR activity of PtNiCo NWs before and after potential cycles 81; (d) ORR activity of Rh-Pt NWs before and after potential cycles, (e) vacancy formation energy of different catalysts 84. Adapted from the American Association for the Advancement of Science and American Chemical Society."
Fig 12
(a) A schematic of anodic and cathodic electrochemical processes occurring during SU/SD of PEMFCs 86; (b) XPS results of Pt/C and Pt/Ta:SnO2, (c) ORR polarization of Pt/Ta:SnO2 before and after high potential cycles 88; H2-air fuel cell polarization curves of Pt/C (d), and Pt/Mn-PANI-PPy-PGC (e) before and after high potential cycles 91. Adapted from Nature publishing group, American Chemical Society and Royal Chemical Society."
1 | Yang T. Y. ; Cui C. ; Rong H. P. ; Zhang J. T. ; Wang D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047. |
杨天怡; 崔铖; 戎宏盼; 张加涛; 王定胜. 物理化学学报, 2020, 36, 2003047.
doi: 10.3866/PKU.WHXB202003047 |
|
2 |
Gasteiger H. A. ; Markovic N. M. Science 2009, 324, 48.
doi: 10.1126/science.1172083 |
3 |
Debe M. K. Nature 2012, 486, 43.
doi: 10.1038/nature11115 |
4 |
Bashyam R. ; Zelenay P. Nature 2006, 443, 63.
doi: 10.1038/nature05118 |
5 | Kojima K. ; Fukazawa K. ECS Trans. 2015, 69, 213. |
6 |
Konno N. ; Mizuno S. ; Nakaji H. ; Ishikawa Y. SAE Int. J. Alt. Power 2015, 4, 123.
doi: 10.4271/2015-01-1175 |
7 | Yoshida T. ; Kojima K. Electrochem. Soc. Inter. 2015, 24, 45. |
8 |
Miao Z. P. ; Wang X. M. ; Tsai M. C. ; Jin Q. Q. ; Liang J. S. ; Ma F. ; Wang T. Y. ; Zheng S. J. ; Hwang B. J. ; Huang Y. H. ; et al Adv. Energy Mater. 2018, 8, 1801226.
doi: 10.1002/aenm.201801226 |
9 |
He D. S. ; He D. P. ; Wang J. ; Lin Y. ; Yin P. Q. ; Hong X. ; Wu Y. ; Li Y. D. J. Am. Chem. Soc. 2016, 138, 1494.
doi: 10.1021/jacs.5b12530 |
10 |
Liang J. ; Ma F. ; Hwang S. ; Wang X. ; Sokolowski J. ; Li Q. ; Wu G. ; Su D. Joule 2019, 3, 956.
doi: 10.1016/j.joule.2019.03.014 |
11 |
Li J. R. ; Xi Z. ; Pan Y. T. ; Spendelow J. S. ; Duchesne P. N. ; Su D. ; Li Q. ; Yu C. ; Yin Z. Y. ; Shen B. ; et al J. Am. Chem. Soc. 2018, 140, 2926.
doi: 10.1021/jacs.7b12829 |
12 | US Department of Energy, DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components. https: //www.energy.gov/eere/fuelcells/doe-technicaltargets-polymer-electrolyte-membrane-fuelcell-components |
13 |
Stamenkovic V. ; Mun B. S. ; Mayrhofer K. J. J. ; Ross P. N. ; Markovic N. M. ; Rossmeisl J. ; Greeley J. ; Norskov J. K. Angew. Chem. Int. Ed. 2006, 45, 2897.
doi: 10.1002/anie.200504386 |
14 |
Stamenkovic V. R. ; Fowler B. ; Mun B. S. ; Wang G. ; Ross P. N. ; Lucas C. A. ; Markovic N. M. Science 2007, 315, 493.
doi: 10.1126/science.1135941 |
15 |
Stamenkovic V. R. ; Mun B. S. ; Arenz M. ; Mayrhofer K. J. J. ; Lucas C. A. ; Wang G. F. ; Ross P. N. ; Markovic N. M. Nat. Mater. 2007, 6, 241.
doi: 10.1038/nmat1840 |
16 |
Greeley J. ; Stephens I. E. L. ; Bondarenko A. S. ; Johansson T. P. ; Hansen H. A. ; Jaramillo T. F. ; Rossmeisl J. ; Chorkendorff I. ; Norskov J. K. Nat. Chem. 2009, 1, 552.
doi: 10.1038/Nchem.367 |
17 |
Chen C. ; Kang Y. ; Huo Z. ; Zhu Z. ; Huang W. ; Xin H. L. ; Snyder J. D. ; Li D. ; Herron J. A. ; Mavrikakis M. ; et al Science 2014, 343, 1339.
doi: 10.1126/science.1249061 |
18 |
Becknell N. ; Kang Y. J. ; Chen C. ; Resasco J. ; Kornienko N. ; Guo J. H. ; Markovic N. M. ; Somorjai G. A. ; Stamenkovic V. R. ; Yang P. D. J. Am. Chem. Soc. 2015, 137, 15817.
doi: 10.1021/jacs.5b09639 |
19 | Luo M. C. ; Sun Y. J. ; Qin Y. N. ; Yang Y. ; Wu D. ; Guo S. J. Acta Phys. -Chim. Sin 2018, 34, 361. |
骆明川; 孙英俊; 秦英楠; 杨勇; 吴冬; 郭少军. 物理化学学报, 2018, 34, 361.
doi: 10.3866/PKU.WHXB201708312 |
|
20 |
Greeley J. ; Mavrikakis M. Nat. Mater. 2004, 3, 810.
doi: 10.1038/nmat1223 |
21 |
Nørskov J. K. ; Bligaard T. ; Logadottir A. ; Kitchin J. R. ; Chen J. G. ; Pandelov S. ; Stimming U. J. Electrochem. Soc. 2005, 152, J23.
doi: 10.1149/1.1856988 |
22 |
Strasser P. ; Koh S. ; Anniyev T. ; Greeley J. ; More K. ; Yu C. F. ; Liu Z. C. ; Kaya S. ; Nordlund D. ; Ogasawara H. ; et al Nat. Chem. 2010, 2, 454.
doi: 10.1038/Nchem.623 |
23 |
Luo M. C. ; Guo S. J. Nat. Rev. Mater. 2017, 2, 17059.
doi: 10.1038/natrevmats.2017.59 |
24 |
Liu M. L. ; Zhao Z. P. ; Duan X. F. ; Huang Y. Adv. Mater. 2019, 31, 1802234.
doi: 10.1002/adma.201802234 |
25 |
Chung D. Y. ; Yoo J. M. ; Sung Y. E. Adv. Mater. 2018, 30, 1704123.
doi: 10.1002/adma.201704123 |
26 |
Wang X. X. ; Swihart M. T. ; Wu G. Nat. Catal. 2019, 2, 578.
doi: 10.1038/s41929-019-0304-9 |
27 |
Borup R. ; Meyers J. ; Pivovar B. ; Kim Y. S. ; Mukundan R. ; Garland N. ; Myers D. ; Wilson M. ; Garzon F. ; Wood D. ; et al Chem. Rev. 2007, 107, 3904.
doi: 10.1021/cr050182l |
28 | Pourbaix M. NACE 1974, 307. |
29 |
Jinnouchi R. ; Toyoda E. ; Hatanaka T. ; Morimoto Y. J. Phys. Chem. C 2010, 114, 17557.
doi: 10.1021/jp106593d |
30 |
Tetteh E. B. ; Lee H. Y. ; Shin C. H. ; Kim S. H. ; Ham H. C. ; Tran T. N. ; Jang J. H. ; Yoo S. J. ; Yu J. S. ACS Energy Lett. 2020, 5, 1601.
doi: 10.1021/acsenergylett.0c00184 |
31 |
Yoo S. J. ; Hwang S. J. ; Lee J. G. ; Lee S. C. ; Lim T. H. ; Sung Y. E. ; Wieckowski A. ; Kim S. K. Energy Environ. Sci. 2012, 5, 7521.
doi: 10.1039/c2ee02691k |
32 |
Hwang S. J. ; Kim S. K. ; Lee J. G. ; Lee S. C. ; Jang J. H. ; Kim P. ; Lim T. H. ; Sung Y. E. ; Yoo S. J. J. Am. Chem. Soc. 2012, 134, 19508.
doi: 10.1021/ja307951y |
33 |
Tang H. L. ; Su Y. ; Zhang B. S. ; Lee A. F. ; Isaacs M. A. ; Wilson K. ; Li L. ; Ren Y. G. ; Huang J. H. ; Haruta M. ; et al Sci. Adv. 2017, 3, e1700231.
doi: 10.1126/sciadv.1700231 |
34 |
Zhang J. ; Wang H. ; Wang L. ; Ali S. ; Wang C. ; Wang L. ; Meng X. ; Li B. ; Su D. S. ; Xiao F. S. J. Am. Chem. Soc. 2019, 141, 2975.
doi: 10.1021/jacs.8b10864 |
35 |
Xiong Y. ; Yang Y. ; DiSalvo F. J. ; Abruña H. D. ACS Nano 2020, 14, 13069.
doi: 10.1021/acsnano.0c04559 |
36 |
Chong L. ; Wen J. G. ; Kubal J. ; Sen F. G. ; Zou J. X. ; Greeley J. ; Chan M. ; Barkholtz H. ; Ding W. J. ; Liu D. J. Science 2018, 362, 1276.
doi: 10.1126/science.aau0630 |
37 |
Ao X. ; Zhang W. ; Zhao B. T. ; Ding Y. ; Nam G. ; Soule L. ; Abdelhafiz A. ; Wang C. D. ; Liu M. L. Energy Environ. Sci. 2020, 13, 3032.
doi: 10.1039/d0ee00832j |
38 |
Greeley J. ; Norskov J. K. Electrochim. Acta 2007, 52, 5829.
doi: 10.1016/j.electacta.2007.02.082 |
39 |
Marcus R. A. J. Electroanal. Chem. 1997, 438, 251.
doi: 10.1016/S0022-0728(97)00091-0 |
40 | David A. ; Porter K. E. E. ; Mohamed S. Phase Transformations in Metals and Alloys 3rd ed London: Chapman & Hall, 2009. |
41 | Mullin J. W. ; Mohamed S. Crystallization 3rd ed Oxford: Oxford University Press, 1997. |
42 |
Vej-Hansen U. G. ; Rossmeisl J. ; Stephens I. E. L. ; Schiotz J. Phys. Chem. Chem. Phys. 2016, 18, 3302.
doi: 10.1039/c5cp04694g |
43 |
Liang J. S. ; Zhao Z. L. ; Li N. ; Wang X. M. ; Li S. Z. ; Liu X. ; Wang T. Y. ; Lu G. ; Wang D. L. ; Hwang B. J. ; et al Adv. Energy Mater. 2020, 10, 2000179.
doi: 10.1002/aenm.202000179 |
44 |
Zhang J. ; Yang H. Z. ; Fang J. Y. ; Zou S. Z. Nano Lett. 2010, 10, 638.
doi: 10.1021/nl903717z |
45 |
Choi S. I. ; Xie S. F. ; Shao M. H. ; Odell J. H. ; Lu N. ; Peng H. C. ; Protsailo L. ; Guerrero S. ; Park J. H. ; Xia X. H. ; et al Nano Lett. 2013, 13, 3420.
doi: 10.1021/nl401881z |
46 |
Cui C. H. ; Gan L. ; Li H. H. ; Yu S. H. ; Heggen M. ; Strasser P. Nano Lett. 2012, 12, 5885.
doi: 10.1021/nl3032795 |
47 |
Chan Q. W. ; Xu Y. ; Duan Z. Y. ; Xiao F. ; Fu F. ; Hong Y. M. ; Kim J. ; Choi S. I. ; Su D. ; Shao M. H. Nano Lett. 2017, 17, 3926.
doi: 10.1021/acs.nanolett.7b01510 |
48 |
Wu J. B. ; Gross A. ; Yang H. Nano Lett. 2011, 11, 798.
doi: 10.1021/nl104094p |
49 |
Huang X. Q. ; Zhao Z. P. ; Cao L. ; Chen Y. ; Zhu E. B. ; Lin Z. Y. ; Li M. F. ; Yan A. M. ; Zettl A. ; Wang Y. M. ; et al Science 2015, 348, 1230.
doi: 10.1126/science.aaa8765 |
50 |
Jia Q. Y. ; Zhao Z. P. ; Cao L. ; Li J. K. ; Ghoshal S. ; Davies V. ; Stavitski E. ; Attenkofer K. ; Liu Z. Y. ; Li M. F. ; et al Nano Lett. 2018, 18, 798.
doi: 10.1021/acs.nanolett.7b04007 |
51 |
Beermann V. ; Gocyla M. ; Willinger E. ; Rudi S. ; Heggen M. ; Dunin-Borkowski R. E. ; Willinger M. G. ; Strasser P. Nano Lett. 2016, 16, 1719.
doi: 10.1021/acs.nanolett.5b04636 |
52 |
Lim J. ; Shin H. ; Kim M. ; Lee H. ; Lee K. S. ; Kwon Y. ; Song D. ; Oh S. ; Kim H. ; Cho E. Nano Lett 2018, 18, 2450.
doi: 10.1021/acs.nanolett.8b00028 |
53 |
Zhang C. L. ; Sandorf W. ; Peng Z. M. ACS Catal. 2015, 5, 2296.
doi: 10.1021/cs502112g |
54 |
Li Y. J. ; Quan F. X. ; Chen L. ; Zhang W. J. ; Yu H. B. ; Chen C. F. RSC Adv. 2014, 4, 1895.
doi: 10.1039/c3ra46299d |
55 |
Zhang J. ; Sasaki K. ; Sutter E. ; Adzic R. R. Science 2007, 315, 220.
doi: 10.1126/science.1134569 |
56 |
Wu Z. F. ; Su Y. Q. ; Hensen E. J. M. ; Tian X. L. ; You C. H. ; Xu Q. J. Mater. Chem. A 2019, 7, 26402.
doi: 10.1039/c9ta08682j |
57 |
Lu B. A. ; Sheng T. ; Tian N. ; Zhang Z. C. ; Xiao C. ; Cao Z. M. ; Ma H. B. ; Zhou Z. Y. ; Sun S. G. Nano Energy 2017, 33, 65.
doi: 10.1016/j.nanoen.2017.01.003 |
58 |
Kuttiyiel K. A. ; Kattel S. ; Cheng S. B. ; Lee J. H. ; Wu L. J. ; Zhu Y. M. ; Park G. G. ; Liu P. ; Sasaki K. ; Chen J. G. G. ; et al ACS Appl. Energy Mater. 2018, 1, 3771.
doi: 10.1021/acsaem.8b00555 |
59 |
Sun S. H. ; Murray C. B. ; Weller D. ; Folks L. ; Moser A. Science 2000, 287, 1989.
doi: 10.1126/science.287.5460.1989 |
60 |
Chen M. ; Kim J. ; Liu J. P. ; Fan H. Y. ; Sun S. H. J. Am. Chem. Soc. 2006, 128, 7132.
doi: 10.1021/ja061704x |
61 |
Kim J. ; Rong C. B. ; Lee Y. ; Liu J. P. ; Sun S. H. Chem. Mater. 2008, 20, 7242.
doi: 10.1021/cm8024878 |
62 |
Zhang L. ; Roling L. T. ; Wang X. ; Vara M. ; Chi M. ; Liu J. ; Choi S. I. ; Park J. ; Herron J. A. ; Xie Z. ; et al Science 2015, 349, 412.
doi: 10.1126/science.aab0801 |
63 |
Qi Z. Y. ; Xiao C. X. ; Liu C. ; Goh T. W. ; Zhou L. ; Maligal-Ganesh R. ; Pei Y. C. ; Li X. L. ; Curtiss L. A. ; Huang W. Y. J. Am. Chem. Soc. 2017, 139, 4762.
doi: 10.1021/jacs.6b12780 |
64 |
Kim J. M. ; Rong C. B. ; Liu J. P. ; Sun S. H. Adv. Mater. 2009, 21, 906.
doi: 10.1002/adma.200801620 |
65 |
Kang S. S. ; Miao G. X. ; Shi S. ; Jia Z. ; Nikles D. E. ; Harrell J. W. J. Am. Chem. Soc. 2006, 128, 1042.
doi: 10.1021/ja057343n |
66 |
Yi D. K. ; Selvan S. T. ; Lee S. S. ; Papaefthymiou G. C. ; Kundaliya D. ; Ying J. Y. J. Am. Chem. Soc. 2005, 127, 4990.
doi: 10.1021/ja0428863 |
67 |
Lee D. C. ; Mikulec F. V. ; Pelaez J. M. ; Koo B. ; Korgel B. A. J. Phys. Chem. B 2006, 110, 11160.
doi: 10.1021/jp060974z |
68 |
Wang T. ; Liang J. ; Zhao Z. ; Li S. ; Lu G. ; Xia Z. ; Wang C. ; Luo J. ; Han J. ; Ma C. ; et al Adv. Energy Mater. 2019, 9, 1803771.
doi: 10.1002/aenm.201803771 |
69 |
Chung D. Y. ; Jun S. W. ; Yoon G. ; Kwon S. G. ; Shin D. Y. ; Seo P. ; Yoo J. M. ; Shin H. ; Chung Y. H. ; Kim H. ; et al J. Am. Chem. Soc. 2015, 137, 15478.
doi: 10.1021/jacs.5b09653 |
70 |
Du X. X. ; He Y. ; Wang X. X. ; Wang J. N. Energy Environ. Sci. 2016, 9, 2623.
doi: 10.1039/C6EE01204C |
71 |
Jung C. ; Lee C. ; Bang K. ; Lim J. ; Lee H. ; Ryu H. J. ; Cho E. ; Lee H. M. ACS Appl. Mater. Inter. 2017, 9, 31806.
doi: 10.1021/acsami.7b07648 |
72 |
Chen H. ; Wang D. ; Yu Y. ; Newton K. A. ; Muller D. A. ; Abruna H. ; DiSalvo F. J. J. Am. Chem. Soc. 2012, 134, 18453.
doi: 10.1021/ja308674b |
73 |
Dong A. G. ; Chen J. ; Ye X. C. ; Kikkawa J. M. ; Murray C. B. J. Am. Chem. Soc. 2011, 133, 13296.
doi: 10.1021/ja2057314 |
74 |
Zhang S. ; Zhang X. ; Jiang G. M. ; Zhu H. Y. ; Guo S. J. ; Su D. ; Lu G. ; Sun S. H. J. Am. Chem. Soc. 2014, 136, 7734.
doi: 10.1021/ja5030172 |
75 |
Wang D. L. ; Xin H. L. L. ; Hovden R. ; Wang H. S. ; Yu Y. C. ; Muller D. A. ; DiSalvo F. J. ; Abruna H. D. Nat. Mater. 2013, 12, 81.
doi: 10.1038/Nmat3458 |
76 |
Li J. ; Sharma S. ; Liu X. ; Pan Y. T. ; Spendelow J. S. ; Chi M. ; Jia Y. ; Zhang P. ; Cullen D. A. ; Xi Z. ; et al Joule 2019, 3, 124.
doi: 10.1016/j.joule.2018.09.016 |
77 |
Liang J. S. ; Li N. ; Zhao Z. L. ; Ma L. ; Wang X. M. ; Li S. Z. ; Liu X. ; Wang T. Y. ; Du Y. P. ; Lu G. ; et al Angew. Chem. Int. Ed. 2019, 58, 15471.
doi: 10.1002/anie.201908824 |
78 |
Wang X. X. ; Hwang S. ; Pan Y. T. ; Chen K. ; He Y. ; Karakalos S. ; Zhang H. ; Spendelow J. S. ; Su D. ; Wu G. Nano Lett. 2018, 18, 4163.
doi: 10.1021/acs.nanolett.8b00978 |
79 |
Gimenez-Lopez M. D. ; Kurtoglu A. ; Walsh D. A. ; Khlobystov A. N. Adv. Mater. 2016, 28, 9103.
doi: 10.1002/adma.201602485 |
80 |
Cheng N. C. ; Banis M. N. ; Liu J. ; Riese A. ; Li X. ; Li R. Y. ; Ye S. Y. ; Knights S. ; Sun X. L. Adv. Mater. 2015, 27, 277.
doi: 10.1002/adma.201404314 |
81 |
Jiang K. Z. ; Zhao D. D. ; Guo S. J. ; Zhang X. ; Zhu X. ; Guo J. ; Lu G. ; Huang X. Q. Sci. Adv. 2017, 3, e1601705.
doi: 10.1126/sciadv.1601705 |
82 |
Gao F. ; Zhang Y. P. ; Song P. P. ; Wang J. ; Yan B. ; Sun Q. W. ; Li L. ; Zhu X. ; Du Y. K. Nanoscale 2019, 11, 4831.
doi: 10.1039/c8nr09892a |
83 |
Song P. P. ; Xu H. ; Wang J. ; Zhang Y. P. ; Gao F. ; Guo J. ; Shiraishi Y. ; Du Y. K. Nanoscale 2018, 10, 16468.
doi: 10.1039/c8nr04918a |
84 |
Huang H. W. ; Li K. ; Chen Z. ; Luo L. H. ; Gu Y. Q. ; Zhang D. Y. ; Ma C. ; Si R. ; Yang J. L. ; Peng Z. M. ; et al J. Am. Chem. Soc. 2017, 139, 8152.
doi: 10.1021/jacs.7b01036 |
85 |
Li K. ; Li X. X. ; Huang H. W. ; Luo L. H. ; Li X. ; Yan X. P. ; Ma C. ; Si R. ; Yang J. L. ; Zeng J. J. Am. Chem. Soc. 2018, 140, 16159.
doi: 10.1021/jacs.8b08836 |
86 |
Jung S. M. ; Yun S. W. ; Kim J. H. ; You S. H. ; Park J. ; Lee S. ; Chang S. H. ; Chae S. C. ; Joo S. H. ; Jung Y. ; et al Nat. Catal. 2020, 3, 681.
doi: 10.1038/s41929-020-00501-0 |
87 |
Liu Y. ; Mustain W. E. J. Am. Chem. Soc. 2013, 135, 530.
doi: 10.1021/ja307635r |
88 |
Jimenez-Morales I. ; Haidar F. ; Cavaliere S. ; Jones D. ; Roziere J. ACS Catal. 2020, 10, 10399.
doi: 10.1021/acscatal.0c02220 |
89 |
He C. ; Sankarasubramanian S. ; Matanovic I. ; Atanassov P. ; Ramani V. ChemSusChem 2019, 12, 3468.
doi: 10.1002/cssc.201900499 |
90 |
Park C. ; Lee E. ; Lee G. ; Tak Y. Appl. Catal. B-Environ. 2020, 268, 118414.
doi: 10.1016/j.apcatb.2019.118414 |
91 |
Qiao Z. ; Hwang S. ; Li X. ; Wang C. Y. ; Samarakoon W. ; Karakalos S. ; Li D. G. ; Chen M. J. ; He Y. H. ; Wang M. Y. ; et al Energy Environ. Sci. 2019, 12, 2830.
doi: 10.1039/c9ee01899a |
[1] | Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang. Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912052-0. |
[2] | . Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-0. |
[3] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-0. |
[4] | Hongsa Han, Yanqing Wang, Yunlong Zhang, Yuanyuan Cong, Jiaqi Qin, Rui Gao, Chunxiao Chai, Yujiang Song. Oxygen Reduction Reaction Electrocatalysts Derived from Metalloporphyrin-Modified Meso-/Macroporous Polyaniline [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008017-0. |
[5] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-0. |
[6] | Liang Ding, Tang Tang, Jin-Song Hu. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010048-0. |
[7] | Jian Wang, Wei Ding, Zidong Wei. Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009094-0. |
[8] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-0. |
[9] | Rui Qin, Pengyan Wang, Can Lin, Fei Cao, Jinyong Zhang, Lei Chen, Shichun Mu. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009099-0. |
[10] | Kangning Zhao, Xiao Li, Dong Su. High-Entropy Alloy Nanocatalysts for Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009077-0. |
[11] | Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033-0. |
[12] | Xueqing Gao, Shujiao Yang, Wei Zhang, Rui Cao. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007031-0. |
[13] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-0. |
[14] | Bingyan Xu, Ying Zhang, Yecan Pi, Qi Shao, Xiaoqing Huang. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009074-0. |
[15] | Yao Xiao, Yu Pei, Yifan Hu, Ruguang Ma, Deyi Wang, Jiacheng Wang. Co2P@P-Doped 3D Porous Carbon for Bifunctional Oxygen Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009051-0. |
|