Density functional theory dictates that the electron density determines everything in a molecular system's ground state, including its structure and reactivity properties. However, little is known about how to use density functionals to predict molecular reactivity. Density functional reactivity theory is an effort to fill this gap: it is a theoretical and conceptual framework through which electron-related functionals can be used to accurately predict structure and reactivity. Such density functionals include quantities from the information-theoretic approach, such as Shannon entropy and Fisher information, which have shown great potential as reactivity descriptors. In this work, we introduce three closely related quantities: Rényi entropy, Tsallis entropy, and Onicescu information energy. We evaluated these quantities for a number of neutral atoms and molecules, revealing their scaling properties with respect to electronic energy and the total number of electrons. In addition, using the example of second-order Onicescu information energy, we examined how its patterns change with the angle of dihedral rotation of an ethane molecule at both the molecular level and atoms-in-molecules level. Using these quantities as additional reactivity descriptors, researchers can more accurately predict the structure and reactivity of molecular systems.