In Quantum Information Theory (QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generated by the state phase or its gradient (electronic current). The classical Shannon (*S*[*p*]) and Fisher (I[*p*]) information terms probe the entropic content of incoherent local events of the particle localization, embodied in the probability distribution *p*, while their nonclassical phase-companions, *S*[*φ*] and I[*φ*], provide relevant *coherence* information supplements. Thermodynamic-like couplings between the entropic and energetic descriptors of molecular states are shown to be precluded by the principles of quantum mechanics. The maximum of resultant entropy determines the phase-equilibrium state, defined by "thermodynamic" phase related to electronic density, which can be used to describe reactants in hypothetical stages of a bimolecular chemical reaction. Information channels of molecular systems and their entropic bond indices are summarized, the complete-bridge propagations are examined, and sequential cascades involving the complete sets of the atomic-orbital intermediates are interpreted as Markov chains. The QIT description is applied to reactive systems R=A-B, composed of the Acidic (A) and Basic (B) reactants. The electronegativity equalization processes are investigated and implications of the concerted patterns of electronic flows in equilibrium states of the complementarily arranged substrates are investigated. Quantum communications between reactants are explored and the QIT descriptors of the A-B bond multiplicity/composition are extracted.