高压下 β-HMX 热分解机理的 ReaxFF 反应分子动力学模拟

周婷婷 石一丁 黄风雷*

(北京理工大学, 爆炸科学与技术国家重点实验室, 北京 100081)

Thermal Decomposition Mechanism of β-HMX under High Pressures via ReaxFF Reactive Molecular Dynamics Simulations

ZHOU Ting-Ting SHI Yi-Ding HUANG Feng-Lei*

(State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China)

*Corresponding author. Email: huangfl@bit.edu.cn; Tel: +86-10-68914518.
图S1 T=2500K 时不同压缩态 β-HMX 晶体中平均每个 HMX 分子的分解产物 H_2CO (a), HCON (b) 和 HCN (c) 的数量随时间的变化

Fig. S1 Evolution of quantities of H_2CO (a), HCON (b), and HCN (c) per HMX molecule for β-HMX crystals with different densities at T=2500 K
Fig.S2 $T=2500$ K时不同压缩态β-HMX晶体中平均每个HMX分子的分解产物O$_2$(a)和HO(b)的数量随时间的变化

Evolution of quantities of O$_2$ (a) and HO (b) per HMX molecule for β-HMX crystals with different densities at $T=2500$ K
图S3 $T=2500$ K时不同压缩态β-HMX晶体中平均每个HMX分子的分解产物H$_2$O(a)、N$_2$(b)和CO$_2$(c)的数量随时间的变化

Fig.S3 Evolution of quantities of H$_2$O (a), N$_2$ (b), and CO$_2$ (c) per HMX molecule for β-HMX crystals with different densities at $T=2500$ K

表S1 不同压缩态晶体中β-HMX分子的键长

Table S1 Bond length in β-HMX molecule for crystals with different densities

<table>
<thead>
<tr>
<th>Bond length/nm</th>
<th>Density/(g/cm3)</th>
<th>1.89</th>
<th>2.11</th>
<th>2.22</th>
<th>2.46</th>
<th>2.80</th>
<th>3.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1–N2</td>
<td></td>
<td>0.1354</td>
<td>0.1304</td>
<td>0.1279</td>
<td>0.1236</td>
<td>0.1167</td>
<td>0.1063</td>
</tr>
<tr>
<td>N3–N4</td>
<td></td>
<td>0.1373</td>
<td>0.1331</td>
<td>0.1307</td>
<td>0.1253</td>
<td>0.1202</td>
<td>0.1146</td>
</tr>
<tr>
<td>N2–C2</td>
<td></td>
<td>0.1472</td>
<td>0.1417</td>
<td>0.1394</td>
<td>0.1357</td>
<td>0.1313</td>
<td>0.1331</td>
</tr>
<tr>
<td>C2–N3</td>
<td></td>
<td>0.1437</td>
<td>0.1384</td>
<td>0.1358</td>
<td>0.1313</td>
<td>0.1239</td>
<td>0.1128</td>
</tr>
<tr>
<td>N3–C1</td>
<td></td>
<td>0.1455</td>
<td>0.1403</td>
<td>0.1382</td>
<td>0.1362</td>
<td>0.1319</td>
<td>0.1363</td>
</tr>
<tr>
<td>C1–N2</td>
<td></td>
<td>0.1448</td>
<td>0.1392</td>
<td>0.1364</td>
<td>0.1299</td>
<td>0.1234</td>
<td>0.1123</td>
</tr>
<tr>
<td>C1–H1</td>
<td></td>
<td>0.1110</td>
<td>0.1083</td>
<td>0.1064</td>
<td>0.1021</td>
<td>0.0977</td>
<td>0.0923</td>
</tr>
<tr>
<td>C1–H2</td>
<td></td>
<td>0.1091</td>
<td>0.1044</td>
<td>0.1026</td>
<td>0.0996</td>
<td>0.0958</td>
<td>0.0950</td>
</tr>
<tr>
<td>C2–H3</td>
<td></td>
<td>0.1101</td>
<td>0.1046</td>
<td>0.1023</td>
<td>0.0976</td>
<td>0.0930</td>
<td>0.0867</td>
</tr>
<tr>
<td>C2–H4</td>
<td></td>
<td>0.1094</td>
<td>0.1075</td>
<td>0.1061</td>
<td>0.1035</td>
<td>0.1006</td>
<td>0.1029</td>
</tr>
<tr>
<td>N1–O1</td>
<td></td>
<td>0.1233</td>
<td>0.1185</td>
<td>0.1166</td>
<td>0.1134</td>
<td>0.1097</td>
<td>0.1109</td>
</tr>
<tr>
<td>N1–O2</td>
<td></td>
<td>0.1221</td>
<td>0.1188</td>
<td>0.1167</td>
<td>0.1120</td>
<td>0.1072</td>
<td>0.1016</td>
</tr>
<tr>
<td>N4–O3</td>
<td></td>
<td>0.1209</td>
<td>0.1167</td>
<td>0.1150</td>
<td>0.1134</td>
<td>0.1099</td>
<td>0.1138</td>
</tr>
<tr>
<td>N4–O4</td>
<td></td>
<td>0.1205</td>
<td>0.1159</td>
<td>0.1137</td>
<td>0.1103</td>
<td>0.1043</td>
<td>0.0967</td>
</tr>
</tbody>
</table>
表S2 不同压缩态晶体中β-HMX分子的二面角

<table>
<thead>
<tr>
<th>Dihedral angle</th>
<th>Density/(g·cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.89</td>
</tr>
<tr>
<td>H₃—C₂—N₃—N₄</td>
<td>32.692</td>
</tr>
<tr>
<td>N₂—C₂—N₃—C₁</td>
<td>101.683</td>
</tr>
<tr>
<td>C₂—N₃—C₁—N₂</td>
<td>-117.116</td>
</tr>
<tr>
<td>N₃—C₁—N₂—C₂</td>
<td>43.334</td>
</tr>
</tbody>
</table>