Theoretical Investigation of Structure-Sensitivity of Styrene Epoxidation on Ag(111) and Ag(110) Surfaces

WANG Chen¹ WEI Zi-Zhang² LÜ Yong-Kang¹,* XING Bin³ WANG Gui-Chang³,*

¹Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China; ²Tianjin Environmental Engineering Assessment Center, Tianjin 300191, P. R. China; ³College of Chemistry and Tianjin Key Laboratory of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, P. R. China

¹Corresponding authors. WANG Gui-Chang, Email: wangguichang@nankai.edu.cn. LÜ Yong-Kang, Email: lykang@tyut.edu.cn; Tel: +86-22-23503824; Fax: +86-22-23502458.
Micro-kinetic model

To make a quantitative analysis and compare with the experimental findings more directly, the micro-kinetic analysis of the styrene epoxidation has been also performed. Here the favorable reaction path via linear oxametallacycle is chosen to perform the micro-kinetic analysis, and thus the simulation implicitly contains the reaction steps of M1, M5~11 (Table 2) and the reverse reaction process is not considered because the corresponding reaction rates are about nine orders of magnitude smaller than the forward reaction. The reaction step of styrene adsorption (M1) was assumed to be pre-equilibrium, and other steps were treated by stead-state approximation.

During the styrene epoxidation process, the catalyst surface will be covered by different species, which can be represented by the formulas: \(\theta_{\text{C}_8\text{H}_8} = K_1 \times P_{\text{C}_8\text{H}_8} \times \theta \),

\[\theta_{\text{OMMS}(2)} = \frac{k_8 \times \theta_{\text{C}_8\text{H}_8} \times 0.375}{k_8 + k_7 + k_8} , \]

where 0.375 is the oxygen coverage on both Ag(111) and Ag(110) surfaces. The coverage of different products can be calculated by the formulas: \(\theta_{\text{C}_8\text{H}_8\text{O}} = \frac{k_8 \times \theta_{\text{OMMS}(2)}}{k_{10}} \), \(\theta_{\text{C}_8\text{H}_8\text{CHO}} = \frac{k_7 \times \theta_{\text{OMMS}(2)}}{k_{11}} \), \(\theta_{\text{C}_8\text{H}_8\text{CH}_2\text{CHO}} = \frac{k_8 \times \theta_{\text{OMMS}(2)}}{k_9} \). The total surface coverage is defined to 1, so we can obtain the free site of the surface. So the free active site is \(\theta = 1 - \theta_{\text{C}_8\text{H}_8} - \theta_{\text{OMMS}(2)} - \theta_{\text{C}_8\text{H}_8\text{O}} - \theta_{\text{C}_8\text{H}_8\text{CH}_2\text{CHO}} - \theta_{\text{C}_8\text{H}_8\text{CH}_2\text{CHO}} - 0.375 \). Finally, the formation rate of different products can be obtained by: \(R_{\text{C}_8\text{H}_8\text{O}} = k_{10} \times \theta_{\text{C}_8\text{H}_8\text{O}} \), \(R_{\text{C}_8\text{H}_8\text{CH}_2\text{CHO}} = k_7 \times \theta_{\text{C}_8\text{H}_8\text{CH}_2\text{CHO}} \), \(R_{\text{C}_8\text{H}_8\text{CH}_2\text{CHO}} = k_8 \times \theta_{\text{OMMS}(2)} \). The relative selectivity is defined as: \(S = \frac{R_{\text{C}_8\text{H}_8\text{O}}}{R_{\text{C}_8\text{H}_8\text{O}} + R_{\text{C}_8\text{H}_8\text{CH}_2\text{CHO}} + R_{\text{C}_8\text{H}_8\text{CH}_2\text{CHO}}} \). The partial pressure of styrene is \(5 \times 10^{-6} \) Pa, which is used to simulate the UHV condition The simulation results showed that the formation rate of styrene oxide on Ag(111) and Ag(110) is near zero although the selectivity towards the formation of styrene oxide on Ag(111) surface is higher than that on Ag(110) surface. By checking the parameters used in the micro-kinetic model analysis, it was found that the binding energy of styrene plays a key role in controlling the styrene epoxidation process. It should be noted here that the present calculated adsorption energy of styrene on Ag(110) and Ag(111) surface is smaller than the experimental results. The temperature programmed desorption
experiment performed by Zhou and Madix \(^1\) showed that the desorption temperature of styrene is 230 K on Ag(110) and 200 K on Ag(111), and the estimated binding energy is 0.62 eV on Ag(110) and 0.53 eV on Ag(111) if the desorption process is assumed to be first order and the pre-exponential factor is \(10^{13} \text{ s}^{-1}\). After the correction of dispersion effect \(^2\), the adsorption energy of styrene is quite close to the experimental values. In order to compare with the experimental results directly, we used the experimental binding energy of styrene \(^1\) (namely, 0.62 eV on Ag(110) and 0.53 eV on Ag(111)) during the micro-kinetic model analysis. Moreover, the ZPE correction is also considered for the activation barriers of different reaction steps (See Table 2). Figure 8 shows the temperature-dependence of relative selectivity for epoxidation process on Ag(111) and Ag(110) surface. The relative selectivity of styrene epoxidation on Ag(111) surface\(0.38\) is much higher than on Ag(110) surface\(0.003\), and the reaction rate of styrene oxide formation on Ag(111) is \(10^{-5} \text{ site}^{-1}\text{.s}^{-1}\) at the reaction temperature of 280 K. The possible reasons for the lower selectivity on Ag(110) is that the energy barrier for the styrene epoxidation formation is higher than the formation of phenyl acetaldehyde and combustion intermediate\(\text{(Scheme 1 as well as Table 2).}\)

References:
Fig. S1 The top view of surface models used in our calculation
The light grey and black sphere represent Ag and oxygen atom, respectively.
Fig.S2 Adsorption configuration of possible species during styrene epoxidation process on Ag(110) (a) and Ag(111) (b)

The dark grey and white sphere represent carbon and hydrogen atom, respectively.
Fig.S3 PDOS onto molecular orbital of different species on different surfaces
Fig. S4 The reaction coordination of styrene epoxidation on different surfaces
via different pathways
Fig.S5 The TS configuration of different reaction steps on different surfaces
Fig. S6 The normalized density of states onto surface Ag atoms at the TS of different reaction steps
Fig.S7 The relationships between energy barriers and calculated stable energy