磷烯包覆的高性能硅基锂离子电池负极材料

彭 勃 1,2  徐耀林 2  Fokko M. Mulder 2,*

(1 中国人民大学物理系，北京 100872； 2 Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Science, Delft University of Technology, Delft 2629 HZ, The Netherlands)

Improving the Performance of Si-based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation

PENG Bo 1,2  XU Yao-Lin 2  MULDER Fokko M. 2,*

(1 Department of Physics, Renmin University of China, Beijing 100872, China; 2 Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Science, Delft University of Technology, Delft 2629 HZ, The Netherlands)

*Corresponding author. Email: F.M.Mulder@tudelft.nl; Tel: +31-15-2785037.
Fig. S1  Electrochemical performance.

Capacity retentions and Coulombic efficiencies of the Si electrodes with different amounts of phosphorene in the $p$-Si sample cycling at 0.8 A g$^{-1}$. 