1,8-萘酰亚胺衍生物的合成、表征及电存储性能

Wang Yi, Jia Nan-Fang, Qi Sheng-Li, Tian Guo-Feng, Wu De-Zhen

1State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China; 2Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, Jiangsu Province, P. R. China

*Corresponding author. Email: qisl@mail.buct.edu.cn; Tel: +86-10-64412381.
Fig. S1 The 1H-NMR spectrum of ATPA

Fig. S2 The 1H-NMR spectrum of NACN
Fig. S3 The 1H-NMR spectrum of NA-ATPA

Fig. S4 The 1H-NMR spectrum of NA(CN)-ATPA
Fig. S5 The 1H-NMR spectrum of NA(NO$_2$)-ATPA

Fig. S6 Calculated molecular orbitals and the possible electronic transition processes occurring in (a) NA-ATPA, (b) NA(CN)-ATPA and (c) NA(NO$_2$)-ATPA.
Fig. S7 Mulliken population analysis of NA, NA(CN) and NA(NO₂)

(a) NA-ATPA

(b) NA(CN)-ATPA

(c) NA(NO₂)-ATPA
Fig. S8 Mulliken population analysis of the NA-ATPA, NA(CN)-ATPA and NA(NO$_2$)-ATPA at ground state and excited state