低成本富勒烯衍生物电子传输层在钙钛矿太阳能电池的应用

陈瑞 1，王维 1，卜童乐 1，库治良 1，钟杰 1，彭勇 1，肖生强 1,*，尤为 1,2，黄福志 1,*，程一兵 1,3，傅正义 1
1 武汉理工大学材料复合新技术国家重点实验室，武汉 430070
2 Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
3 Department of Materials Science and Engineering, Monash University, VIC 3800, Australia.

Low-Cost Fullerene Derivative as an Efficient Electron Transport Layer for Planar Perovskite Solar Cells

CHEN Rui 1, WANG Wei 1, BU Tongle 1, KU Zhiliang 1, ZHONG Jie 1, PENG Yong 1,
XIAO Shengqiang 1,* , YOU Wei 1,2, HUANG Fuzhi 1,* , CHENG Yi-Bing 1,3, FU Zhengyi 1
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
2 Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
3 Department of Materials Science and Engineering, Monash University, VIC 3800, Australia.

*Corresponding authors. Email: shengqiang@whut.edu.cn (X.S.Q.); fuzhi.huang@whut.edu.cn (H.F.Z.). Tel.: +86-21-8765-1837.
Fig. S1 SEM image of the prepared NiO_x film.

Fig. S2 SEM image of the deposited perovskite film on the NiO_x film.

Fig. S3 AFM images of NMPFP and PCBM.

Fig. S4 UV-Vis absorption spectra of the PCBM film and the NMPFP film.

All films were fabricated by spin-coating the dichlorobenzene solution on the glass substrate.
Fig. S5 *J–V* curves of the PSCs based on PCBM with the forward and reverse scan.