Metallic Tungsten Carbide Coupled with Liquid-Phase Dye Photosensitizer for Efficient Photocatalytic Hydrogen Production

Yonggang Lei 1,2,†, Tianyu Zhao 3,†, Kim Hoong Ng 4, Yingzhen Zhang 1, Xuerui Zang 5, Xiao Li 1, Weilong Cai 1,2, Jianying Huang 1,2, Jun Hu 3, Yuekun Lai 1,2,*

1 National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China.
2 Qingyuan Innovation Laboratory, Quanzhou 362801, Fujian Province, China.
3 School of Chemical Engineering, Northwest University, Xi’an, 710069, China.
4 R&D Center of Biochemical Engineering Technology, Ming Chi University of Technology, New Taipei 24301, Taiwan, China.
5 College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong Province, China.

*Corresponding author. Email: yklai@fzu.edu.cn; Tel.: +86-17805911918.
Computational details

The Dmol3 module of the Materials Studio software (Accelrys Inc.) was employed for the quantum chemistry calculations. Based on XRD and TEM results, W(001) (W riched WC (001) surface), W(001) + V_W (W riched WC(001) surface with W vacancy), C(001) (C riched WC(001) surface), C(001) + V_C (C riched WC(001) surface with C vacancy) were chosen to be calculated the ability of H_2 production.

The Tri (light absorbing) molecule was used to calculate the energy of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LOMO). During the calculations, the structural properties were obtained by the local density approximation (LDA) method in the form of the PWC exchange-correlation energy 1. The 3 × 3 × 1 k-points samplings were used with smearing 0.005 Ha. And the global orbital cutoff is 4.9 Å. DNP (Double-Numeric basis with polarization functions) atomic orbital basis set will be used in the calculation 2. All electrons are included in the calculation. Gibbs free energy of adsorption hydrogen atom are calculated by the following equation.

\[\Delta G_H = E_{\text{surface} + H^*} - E_{\text{surface}} - \frac{1}{2}E_{\text{H}_2} + \Delta E_{ZPE} - T\Delta S_H \]

where \(E_{\text{surface} + H^*} \) is the total energy of the system, including the adsorbed molecules and facet; \(E_{\text{surface}} \) is the energy of the facet; \(E_{\text{H}_2} \) represents the total energy of a gas phase \(\text{H}_2 \) molecule; \(\Delta E_{ZPE} \) denotes the zero-point energy of the system simplified as 0.05 eV; The \(-T\Delta S_H \) is the contribution from entropy at temperature \(T \), taken as 0.20 eV at 298 K.

![Fig. S1 UV-Vis absorption spectrum along with the color of WC catalyst.](image1)

![Fig. S2 N_2 adsorption-desorption isotherm and pore size distribution (inset) of WC.](image2)

![Fig. S3 H_2 evolution from TEOA (10% (volume fraction, φ), 100 mL) solution containing WC (4 mmol·L⁻¹) and ErB (1 mmol·L⁻¹) at different pH values.](image3)
Fig. S4 H₂ evolution from systems containing 0.5 mmol·L⁻¹ ErB and different concentrations of WC catalyst.

Fig. S5 TON of H₂ evolution from TEOA solution (10% (φ), 100 mL, pH 8) containing ErB (0.5 mmol·L⁻¹) and different concentrations of WC catalyst.

Fig. S6 Average rate of H₂ evolution after 5 h reaction per cycle.

Fig. S7 XRD patterns of WC catalyst before and after reactions.
Fig. S8 TEM image of WC after stabilization reaction.

Fig. S9 UV-Vis absorption spectra before and after the reaction for the dye ErB.

Fig. S10 Photocurrent responses of Carbon cloth, Carbon cloth/WC electrodes recorded in Na$_2$SO$_4$ (0.5 mol·L$^{-1}$) containing TEOA (10% (φ), pH 8) at bias of 0.5 V vs. Ag/AgCl.

References
