物理化学学报  2018, Vol. 34 Issue (2): 194-200   (1059 KB)
 Article Options PDF (1059 KB) Full Text HTML Abstract Figures References History Received: June 16, 2017 Revised: July 11, 2017 Accepted: July 13, 2017 Published on Web: July 26, 2017 扩展功能 把本文推荐给朋友 加入我的书架 加入引用管理器 Email Alert 文章反馈 浏览反馈信息 本文作者相关文章 佟静 屈晔 井立强 刘璐 刘春辉

1 引言

2 实验部分
2.1 试剂

2.2 离子液体[C6mim][Thr]的制备

2.3 AAIL [C6mim][Thr]和苯甲酸的恒温热重分析

 图 1 AAIL [C6mim][Thr]和苯甲酸的(m0 -m)分别对(t -t0)作图 Fig. 1 Plots of (m0 -m) vs (t -t0) for IL [C6mim][Thr] and benzoic acid. (a) for IL [C6mim][Thr], x: (t -t0)/s; y: 106 (m0 -m)/kg. ■ 413.15 K: y = -7.77 × 10-10 + 1.15 × 10-10 x, r2 = 0.99449, standard deviation(SD) = 2.97 × 10-9; ● 423.15 K: y = -3.88 × 10-7 + 2.55 × 10-10 x, r2 = 0.99998, SD = 4.67 × 10-10; ▲ 433.15 K: y = -1.25 × 10-6 + 5.52 × 10-10 x, r2 = 0.99958, SD = 3.94 × 10-9; ▼ 443.15 K: y = -1.08 × 10-9 + 1.50 × 10-9 x, r2 = 0.99992, SD = 3.54 × 10-9; ◆453.15 K: y = -2.41 × 10-10 + 2.96 × 10-9 x, r2 = 0.99992, SD = 5.38 × 10-9; ◄ 463.15 K: y = 4.08 × 10-9 + 5.54 × 10-9 x, r2 = 0.99994, SD = 4.09 × 10-9. (b) for benzoic acid, x: (t -t0)/s; y: 107 (m0 -m)/kg. ■ 353.15K: y = -1.71 × 10-9 + 5.78 × 10-11 x, r2 = 0.99962, SD = 5.08 × 10-10; ●358.15K: y = -2.20×10-9 + 1.06 × 10-11 x, r2 = 0.99998, SD = 5.78 × 10-10; ▲363.15K: y = -5.97 × 10-9 + 1.70 × 10-10 x, r2 = 0.99950, SD = 1.34 × 10-9; ▼368.15K: y = -7.18 × 10-9 + 2.60 × 10-10 x, r2 = 0.99926, SD =1.85 × 10-9; ◆373.15K: y = -8.91 × 10-9 + 3.87 × 10-10 x, r2 = 0.99914, SD = 2.41 × 10-9; ◄ 378.15K: y = -1.09×10-8 +5.68×10-10 x, r2 = 0.99914, SD = 3.04 × 10-9; u 383.15K: y = -1.51 × 10-8 + 8.29 × 10-10 x, r2 = 0.99966, SD = 3.94 × 10-9.

3 结果和讨论
3.1 离子液体[C6mim][Thr]的蒸汽压

Price23指出液体在真空中自由蒸发可以用Langmuir方程描述：

 $-{\rm{d}}m/{\rm{d}}t = p\alpha {\left( {M/2\pi RT} \right)^{1/2}}$ (1)

 $p = k\nu$ (2)

3.2 AAIL离子液体[C6mim][Thr]的蒸发焓ΔglHmɵ

 ${\rm{ln}}p = c-{\Delta ^{\rm{g}}}_{\rm{l}}H_{\rm{m}}^{ɵ}/RT$ (3)

 $\ln v = c-{\Delta ^{\rm{g}}}_{\rm{l}}H_{\rm{m}}^{ɵ}/RT-\ln k$ (4)

 图 2 AAIL [C6mim][Thr]的ln ν vs 1/T作图 Fig. 2 Plot of ln ν vs 1/T for ILC6mim][Thr]. ■ y = 18.18-1.548 × 104x, r2 = 0.998, SD = 0.08429. x: 1/T; y: ln ν.

 ${\Delta ^{\rm{g}}}_{\rm{l}}H_{\rm{m}}^{ɵ}\left( {{T_{{\rm{av}}}}} \right){\rm{ }} =-R\cdot{S_{\rm{L}}}$ (5)

 $\begin{array}{l} {\Delta ^{\rm{g}}}_{\rm{l}}H_{\rm{m}}^{ɵ}\left( {298} \right) = {\Delta ^{\rm{g}}}_{\rm{l}}H_{\rm{m}}^{ɵ}\left( {{T_{{\rm{av}}}}} \right) + \\ {\Delta ^{\rm{g}}}_{\rm{l}}{C_p}{^{ɵ}_{\rm{m}}}\left( {298.15-{T_{{\rm{av}}}}} \right) \end{array}$ (6)

 ${\Delta ^{\rm{g}}}_{\rm{l}}{C_p}{^{ɵ}_{\rm{m}}}-2R-\left( {{\alpha _{\rm{p}}}^2/{\kappa _{\rm{T}}}} \right){V_{\rm{m}}}T$ (7)

 ${\kappa _{\rm{T}}} = {\rho ^{-1}}\left( {{W^{-2}} + {\rm{M}}T\alpha _{\rm{p}}^2/C_{p{\rm{m}}}^{ɵ}} \right)$ (8)

 $W = {\rm{ }}{\left[{\gamma /\left( {6.3 \times {{10}^{-10}}\rho } \right)} \right]^{2/3}}$ (9)

3.3 离子液体蒸发焓模型和摩尔表面自由能

2014年我们提出了非质子离子液体蒸发焓模型16，其工作方程为：

 $\begin{array}{l} \gamma {V_{\rm{m}}}^{2/3} = {\rm{ }}\left( {1{\rm{ }}-x} \right){N^{2/3}}\Delta \varepsilon \left( {{\rm{kin}}} \right) + {\rm{ }}\left( {1{\rm{ }}-x} \right){N^{-1/3}}\\ \;\;\;\;\;\;\;\;\;\;\;\;({\Delta ^{\rm{g}}}_{\rm{l}}H_{\rm{m}}^{ɵ}-RT) \end{array}$ (10)

 $g = {\rm{ }}\left( {1{\rm{ }}-x} \right)N\Delta \varepsilon \left( {{\rm{kin}}} \right) + {\rm{ }}\left( {1{\rm{ }}-x} \right){\rm{ }}({\Delta ^{\rm{g}}}_{\rm{l}}H_{\rm{m}}^{ɵ}-RT)$ (11)

 $g = A + B({\Delta ^{\rm{g}}}_{\rm{l}}H_{\rm{m}}^{ɵ}-RT)$ (12)

3.4 离子液体[C6mim][Thr]的蒸发熵

 ${\rm{ln }}\left( {{p_{\rm{b}}}/{p_1}} \right){\rm{ }} = {\rm{ }}[{\Delta ^{\rm{g}}}_{\rm{l}}H_{\rm{m}}^{ɵ}/R]\left( {1/{T_1} -{\rm{ }}1/{T_{\rm{b}}}} \right)$ (13)

 ${\Delta ^{\rm{g}}}_{\rm{l}}S_{\rm{m}}^{ɵ}\left( {{T_{\rm{b}}}} \right){\rm{ }} = {\Delta ^{\rm{g}}}_{\rm{l}}H_{\rm{m}}^{ɵ}\left( {{T_{\rm{b}}}} \right)/{T_{\rm{b}}}$ (14)

 $\begin{array}{l} {\Delta ^{\rm{g}}}_{\rm{l}}S_{\rm{m}}^{ɵ}\left( {298} \right){\rm{ }} = {\Delta ^{\rm{g}}}_{\rm{l}}S_{\rm{m}}^{ɵ}\left( {{T_{\rm{b}}}} \right){\rm{ }} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\Delta ^g}_{\rm{l}}{C_{\rm{P}}}{\rm{ln }}\left( {298.15/{T_{\rm{b}}}} \right) \end{array}$ (15)

 ${\Delta ^{\rm{g}}}_{\rm{l}}G_{\rm{m}}^{ɵ}\left( {298} \right) = {\Delta ^{\rm{g}}}_{\rm{l}}H_{\rm{m}}^{ɵ}-{\rm{ }}298.15{\Delta ^{\rm{g}}}_{\rm{l}}S_{\rm{m}}^{ɵ}\left( {298} \right)$ (16)

 图 3 不同温度下的离子液体[C6mim][Thr]的ΔglHmɵ(T)、TΔglSmɵ(T)、ΔglGmɵ(T) vs T和p(T) vs T作图 Fig. 3 Plots of ΔglHmɵ(T), TΔglSmɵ(T), ΔglGmɵ(T) and p(T) vs T for [C6mim][Thr]. ● y = 159.44 − 0.07061 x; r2 = 0.99996, SD = 0.02949; x: T, y: ΔglHmɵ(T); ■ y = 28.323 + 0.18181 x; r2 = 0.99908, SD = 0.42178; x: T, y: TΔglSmɵ(T); ▲ y = 131.16 − 0.25249 x; r2 = 0.99954, SD = 0.41492; x: T, y: ΔglGmɵ(T); ○ x: T,   y: p(T)

4 结论

Supporting Information:  Details of1H NMR of [C6mim][Thr], analysis of 1H NMR spectrum for [C6mim][Thr], 13C NMR of [C6mim][Thr], analysis of 1C NMR for [C6mim][Thr], elemental analysis of [C6mim][Thr], and DSC of [C6mim][Thr] were given. Data needed in the calculation of ΔglCpmɵ/(J·K-1·mol-1) for [C6mim][Thr] at p = 0.1 MPa have been included. This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

 (1) Zhang S. J., Liu X. M. Ionic Liquid: From Basic Research to Industrial Applications. Science Press: Beijing, 2006. [张锁江, 吕兴梅. 离子液体:从基础研究到工业应用. 北京: 科学出版社, 2006] (2) Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621. doi: 10.1038/NMAT2448 (3) Bu, X. X.; Fan, B. H.; Wei, J.; Xing, N. N.; Ma, X. X.; Guan, W. Acta Phys. -Chim. Sin. 2016, 32, 267. [卜晓雪, 樊本汉, 魏杰, 邢楠楠, 马晓雪, 关伟.物理化学学报. 物理化学学报, 2016, 32, 267.] doi: 10.3866/PKU.WHXB201510303 (4) Tao, G. H.; He, L.; Liu, W. S.; Xu, L.; Xiong, W.; Wang, T.; Kou, Y. Green Chem. 2006, 8, 639. doi: 10.1039/B600813E (5) Fukumoto, K.; Yoshizawa, M.; Ohno, H. J. Am. Chem. Soc. 2005, 127, 2398. doi: 10.1021/ja043451i (6) Zhang S., Wang J., Lu X., Zhou Q. Structures and Interactions of Ionic Liquids. Springer: Heidelberg, 2014. (7) Fang, D. W.; Tong, J.; Guan, W.; Wang, H.; Yang, J. Z. J. Phys. Chem. B 2010, 114, 13808. doi: 10.1021/jp107452q (8) Tong, J.; Song, B.; Wang, C. X.; Li, L.; Guan, W.; Fang, D. W.; Yang, J. Z. Ind. Eng. Chem. Res. 2011, 50, 2418. doi: 10.1021/ie101903t (9) Earle, M. J.; Esperanc, J. M. S. S.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. Nature 2006, 439, 831. doi: 10.1038/nature04451 (10) Deyko, A.; Lovelock, K. R.; Corfield, J. A.; Taylor, A. W.; Gooden, P. N.; Villar-Garcia, I. J.; Licence, P.; Jones, R. G.; Krasovskiy, V. G.; Chernikova, E. A. Phys. Chem. Chem. Phys. 2009, 11, 8544. doi: 10.1039/b908209c (11) Esperanc, J. M. S. S.; Lopes, J. N. C.; Tariq, M.; Santos, L. M. N. B. F.; Magee, J. W.; Rebelo, L. P. N. J. Chem. Eng. Data 2010, 55, 3. doi: 10.1021/je900458w (12) Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A.; Paulechka, Y. U.; Tschersich, A.; Verevkin, S. P.; Heintz, A. J. Chem. Phys. A 2006, 110, 7303. doi: 10.1021/jp060896f (13) Luo, H.; Baker, G. A.; Dai, S. J. Chem. Phys. B 2008, 112, 10077. doi: 10.1021/jp805340f (14) Heym, F.; Etzold, B. J. M.; Kern, C.; Jess, A. Green Chem. 2011, 13, 1453. doi: 10.1039/C0GC00876A (15) Verevkin, S. P.; Ralys, R. V.; Zaitsau, D. H.; Emel'yanenko, V. N.; Schick, C. Thermochim. Acta 2012, 538, 55. doi: 10.1016/j.tca.2012.03.018 (16) Tong, J.; Yang, H. X.; Liu, R. J.; Li, C.; Xia, L. X.; Yang, J. Z J. Phys. Chem. B 2014, 118, 12972. doi: 10.1021/jp509240w (17) Hong, M.; Liu, R. J.; Yang, H. X.; Guan, W.; Tong, J.; Yang, J. Z. J. Chem. Thermodyn. 2014, 70, 214. doi: 10.1016/j.jct.2013.11.004 (18) Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A.; Paulechka, Y. U.; Tschersich, A.; Verevkin, S. P.; Heintz, A. J. Chem. Phys. A 2006, 110, 7303. doi: 10.1021/jp060896f (19) Tong, J.; Chen, T. F.; Zhang, D.; Wang, L. F.; Tong, J.; Yang, J. Z. Acta Phys. -Chim. Sin. 2016, 32, 1161. [佟静, 陈滕飞, 张朵, 王林富, 佟健, 杨家振. 物理化学学报, 2016, 32, 1161.] doi: 10.3866/PKU.WHXB201602232 (20) Li, C.; Yang, H. X.; Liu, R. J.; Yang, Q.; Tong, J.; Yang, J. Z. Acta Phys. -Chim. Sin. 2015, 31, 11. [李驰, 杨宏旭, 刘入境, 杨奇, 佟静, 杨家振. 物理化学学报, 2015, 31, 11.] doi: 10.3866/PKU.WHXB201411063 (21) Stewart, L. N. In Proceedings of the Third Toronto Symposium on Thermal Analysis; McAdie, H. G. Ed.; Chemical Institute of Canada: Toronto, 1969; p. 205. (22) Hinks, D.; Rafiq, M. I.; Price, D. M.; Montero, G. A.; Smith, B. A. Color Technol. 2003, 119, 84. doi: 10.1111/j.1478-4408.2003.tb00155.x (23) Price, D. M. Thermochim. Acta 2001, 253, 367. doi: 10.1016/S0040-6031(00)00676-6 (24) Verevkin, S. P.; Zaitsau, D. H.; Emel'yanenko, V. N.; Yermalayeu, A. V. J. Phys. Chem. B 2013, 117, 6473. doi: 10.1021/jp311429r (25) Zaitsau, D. H.; Yernalayeu, A. V.; Emel'yanenko, V. N.; Verevkin, S. P.; Welz-Biermann, U.; Schubert, T. Sci. China Chem. 2012, 55, 1526. doi: 10.1002/cphc.201100879 (26) Paulechka, Y. U.; Zaitsau, D. H.; Kabo, G. J. J. Mol. Liq. 2004, 115, 105. doi: 10.1016/j.molliq.2004.03.002 (27) Zhang, D.; Qu, Y.; Gong, Y. Y.; Tong, J.; Fang, D. W.; Tong, J. J. Chem. Thermodyn. Submitted. (28) Tong, J.; Liu, L.; Li, H.; Guan, W.; Chen, X. J. Chem. Thermodyn. 2017, 112, 293. doi: 10.1016/j.jct.2017.05.015 (29) Archer, D. G.; Widegren, J. A.; Kirklin, D. R.; Magee, J. W. J. Chem. Eng. Data 2005, 50, 1484. doi: 10.1021/je050136i