物理化学学报 >> 2014, Vol. 30 >> Issue (3): 476-484.doi: 10.3866/PKU.WHXB201401071

电化学和新能源 上一篇    下一篇

WO3纳米棒/石墨烯复合材料的制备及电化学储锂性能

张晴晴, 李容, 张萌萌, 苟兴龙   

  1. 西华师范大学化学化工学院, 化学合成与污染控制四川省重点实验室, 四川南充 637000
  • 收稿日期:2013-08-06 修回日期:2014-01-06 发布日期:2014-02-27
  • 通讯作者: 苟兴龙 E-mail:gouxlr@126.com
  • 基金资助:

    国家自然科学基金(51071131)和教育部新世纪优秀人才计划(NCET-10-0890)项目资助

Synthesis and Electrochemical Lithium Storage Performance of WO3 Nanorods/Graphene Nanocomposites

ZHANG Qing-Qing, LI Rong, ZHANG Meng-Meng, GOU Xing-Long   

  1. Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, Sichuan Province, P. R. China
  • Received:2013-08-06 Revised:2014-01-06 Published:2014-02-27
  • Contact: GOU Xing-Long E-mail:gouxlr@126.com
  • Supported by:

    The project was supported by the Natural Science Foundation of China (51071131) and Program for New Century Excellent Talents in University (NCET-10-0890).

摘要:

以氯化钨和氧化石墨烯(GO)为原料,乙醇为溶剂,一步合成了WO3纳米棒/石墨烯纳米复合材料(WO3/RGO). 将WO3/RGO纳米复合材料用于锂离子电池负极,并通过充放电测试、循环伏安(CV)和电化学阻抗谱(EIS)技术综合考察了该材料的储锂性能. 结果显示,在0.1C (1C=638 mA·g-1)倍率下,复合物的首次放电比容量达到761.4 mAh·g-1,100次循环后可逆容量仍保持在635 mAh·g-1,保持率为83.4%. 即使在5C倍率下容量仍高达460 mAh·g-1. 由此说明,WO3/RGO纳米复合物具有优异的循环稳定性及倍率性能,可望用于高性能锂离子电池.

关键词: 三氧化钨, 石墨烯, 纳米复合材料, 锂离子电池, 负极材料

Abstract:

WO3 nanorods/graphene nanocomposites (WO3/RGO) were prepared by the solvothermal treatment of tungsten hexachloride and graphene oxide in alcohol. The electrochemical performance of WO3/RGO as anode materials for lithium-ion batteries was investigated by galvanostatic charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The discharge capacity of the composite at the first cycle was 761.4 mAh·g-1, and about 635 mAh·g-1 of reversible capacity remained after 100 cycles at a rate of 0.1C (1C=638 mA·g-1). The corresponding retention rate was 83.4%. The reversible capacity remained lager than 460 mAh·g-1 at a rate of 5C. WO3/RGO exhibited excellent cycling stability and rate performance, and has potential in advanced lithium-ion batteries.

Key words: Tungsten trioxide, Graphene, Nanocomposite, Lithium-ion battery, Anode material