物理化学学报 >> 2015, Vol. 31 >> Issue (7): 1345-1350.doi: 10.3866/PKU.WHXB201504271

电化学和新能源 上一篇    下一篇

用三电极体系研究铜在微液滴下的电化学腐蚀

程庆利, 张卫华, 陶彬   

  1. 中国石油化工有限公司青岛安全工程研究院, 山东青岛266700
  • 收稿日期:2015-01-07 修回日期:2015-04-27 发布日期:2015-07-08
  • 通讯作者: 程庆利 E-mail:chengqingli328@gmail.com
  • 基金资助:

    青岛市民生计划项目(11-2-3-56-nsh)资助

Investigation of the Electrochemical Corrosion of Copper under a Micrometric Electrolyte Droplet Using a Three-Electrode System

CHENG Qing-Li, ZHANG Wei-Hua, TAO Bin   

  1. China Petroleum and Chemical Corporation Qingdao Safety Engineering Institute, Qingdao 266700, Shandong Province, P. R. China
  • Received:2015-01-07 Revised:2015-04-27 Published:2015-07-08
  • Contact: CHENG Qing-Li E-mail:chengqingli328@gmail.com
  • Supported by:

    The project was supported by the Qingdao People's Livelihood Science and Technology Project, China (11-2-3-56-nsh).

摘要:

由于大气腐蚀高阻抗的特征, 传统的参比电极难以用于大气腐蚀研究之中. 为了获取准确的大气腐蚀电化学信息, 我们需要对传统的参比电极进行修改. 本文在三电极体系中采用修改的参比电极, 通过电化学阻抗和电化学极化两种方法研究铜在含有(NH4)2SO4液滴下的腐蚀行为, 结果表明液滴下铜的平均腐蚀速率随着液滴体积从1到20 μL增加而减小; 当液滴高度不超过850 μm时, 平均腐蚀速率随着液滴高度的减小却迅速地增大. 此外, 电化学阻抗和电化学极化得出的腐蚀速率相一致, 这证明修改的参比电极可以用于液滴下的大气腐蚀研究.

关键词: 大气腐蚀, 铜, 电化学阻抗谱, 液滴, 极化曲线, 微电极

Abstract:

Owing to its high impedance, studying atmospheric corrosion using a traditional reference electrode (RE) is difficult. To obtain more accurate information on the electrochemical processes involved in atmospheric corrosion, it is necessary to improve the traditional RE. In this paper, the corrosion behavior of copper under an electrolyte droplet containing (NH4)2SO4 was investigated by electrochemical impedance spectroscopy (EIS) and polarization measurements using a three-electrode system with a modified RE. The average corrosion rate increased with decreasing electrolyte volumes (from 1 to 20 μL) and with decreasing heights of the droplet at heights below 850 μm. The EIS and polarization results were in agreement, thereby demonstrating that the modified RE could be effectively used to study atmospheric corrosion under an electrolyte droplet.

Key words: Atmospheric corrosion, Copper, Electrochemical impedance spectroscopy, Droplet, Polarization curve, Microelectrode