物理化学学报 >> 2016, Vol. 32 >> Issue (10): 2503-2510.doi: 10.3866/PKU.WHXB201607051

论文 上一篇    下一篇

理论研究BBPQ-PC61BM体系的光伏性质

赵蔡斌1,*(),葛红光1,*(),张强1,靳玲侠1,王文亮2,尹世伟2   

  1. 1 陕西理工学院化学与环境科学学院,陕西省催化基础与应用重点实验室,陕西汉中723000
    2 陕西师范大学化学化工学院,陕西省大分子科学重点实验室,西安710062
  • 收稿日期:2016-05-13 发布日期:2016-09-30
  • 通讯作者: 赵蔡斌,葛红光 E-mail:zhaocb@snut.edu.cn;gehg@snut.edu.cn
  • 基金资助:
    国家自然科学基金(21373132,21502109);陕西理工学院博士科研启动基金(SLGKYQD2-13,SLGKYQD2-10,SLGQD14-10);和陕西省教育厅专项科研计划资助项目(16JK1142)

Theoretical Investigation on Photovoltaic Properties of the BBPQ-PC61BM System

Cai-Bin ZHAO1,*(),Hong-Guang GE1,*(),Qiang ZHANG1,Ling-Xia JIN1,Wen-Liang WANG2,Shi-Wei YIN2   

  1. 1 Shaanxi Province Key Laboratory of Catalytic Fundamentals and Applications, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, Shaanxi Province, P. R. China
    2 Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
  • Received:2016-05-13 Published:2016-09-30
  • Contact: Cai-Bin ZHAO,Hong-Guang GE E-mail:zhaocb@snut.edu.cn;gehg@snut.edu.cn
  • Supported by:
    The project was supported by the National Natural Science Foundation of China(21373132,21502109);Doctor Research Start Foundation of Shaanxi University of Technology, China(SLGKYQD2-13,SLGKYQD2-10,SLGQD14-10);and Education Department of Shaanxi Provincial Government Research Projects, China(16JK1142)

摘要:

探索和制备具有高能量转换效率(PCE)的有机太阳能电池体系是有机电子学的重要领域和研究热点。本文利用量子化学和分子动力学计算结合Marcus-Hush电荷传输模型理论研究了BBPQ-PC61BM(BBPQ:7,12-二((三异丙基甲硅烷基)乙炔基)苯并(g)吡啶并(2’,3’:5,6)吡嗪并(2,3-b)喹喔啉-2(1H)-酮;PC61BM:(6,6)苯基-C61-丁酸甲酯)体系的光伏性质。结果表明,BBPQ-PC61BM体系具有相当大的开路电压(1.22 V)、高的填充因子(0.90)和高的光电转换效率(9%-10%)。此外,本文研究还发现BBPQ-PC61BM体系拥有中等大小的激子结合能(0.607 eV),但相对较小的激子分离和电荷复合重组能(0.345和0.355 eV)。借助于一个简单的分子复合物模型,本文预测BBPQ-PC61BM体系的激子解离速率常数kdis高达1.775×1013 s-1,而预测的电荷复合速率常数krec相当小(<1.0 s-1),这表明在BBPQ-PC61BM相界面上,激子解离效率非常高。总之,理论研究表明,BBPQ-PC61BM是一个非常有前途的有机太阳能电池候选体系,值得实验上做出进一步研究。

关键词: BBPQ, PC61BM, 理论研究, 光伏性质, 密度泛函理论

Abstract:

Exploring and fabricating organic solar cell devices with the high power conversion efficiency (PCE) has kept a major challenge and hot topic in organic electronics research. In this study, we have used quantum chemical and molecular dynamics calculations in conjunction with the Marcus-Hush charge transfer model to investigate the photovoltaic properties of BBPQ-PC61BM. The results revealed that the BBPQ-PC61BM (BBPQ:7,12-bis((triisopropylsilyl)-ethynyl)benzo(g)pyrido(2',3':5,6)pyrazino(2,3-b)quinoxalin-2(1H)-one; PC61BM:(6, 6)-phenyl-C61-butyric acid methyl ester) system theoretically possesses a large open-circuit voltage (1.22 V), high fill factor (0.90), and high PCE of 9%-10%. The calculations also reveal that the BBPQ-PC61BM system has a medium-sized exciton binding energy (0.607 eV), with relatively small reorganization energies (0.345 and 0.355 eV) for its exciton-dissociation and charge-recombination processes. Based on a simplified molecular complex, the exciton dissociation rate constant, kdis, was estimated to be as large as 1.775×1013 s-1 at the BBPQPC61BM interface. In contrast, the charge-recombination rate constant, krec, was very small under the same conditions (<1.0 s-1), which indicated a rapid and efficient exciton-dissociation process at the donor-acceptor interface. Overall, our calculations show that the BBPQ-PC61BM system is a very promising organic solar cell system that is worthy of further research.

Key words: BBPQ, PC61BM, Theoretical investigation, Photovoltaic property, Density functional theory