物理化学学报 >> 2020, Vol. 36 >> Issue (4): 1903021.doi: 10.3866/PKU.WHXB201903021
所属专题: 固体核磁共振
收稿日期:
2019-03-11
录用日期:
2019-04-11
发布日期:
2020-03-12
通讯作者:
张维萍
E-mail:wpzhang@dlut.edu.cn
基金资助:
Shihan Li,Zhenchao Zhao,Shikun Li,Youdong Xing,Weiping Zhang*()
Received:
2019-03-11
Accepted:
2019-04-11
Published:
2020-03-12
Contact:
Weiping Zhang
E-mail:wpzhang@dlut.edu.cn
Supported by:
摘要:
具有菱沸石(CHA)结构的SSZ-13分子筛在甲醇制烯烃(MTO)及柴油机车尾气氨选择性催化还原(NH3-SCR)反应中具有重要的应用,采用富铝SSZ-13可以调节MTO反应的烯烃选择性和提升NH3-SCR的低温脱硝活性,因此SSZ-13中的铝含量和分布与对应的酸性决定了其催化性能。本文采用密度泛函理论结合固体核磁共振实验研究了富铝和富硅H-SSZ-13的Al位置与Brønsted酸强度的内在关系。通过计算取代能发现,对于孤立Al位,质子位于Al周围4个不同O位时能量差异较小,最稳定的B酸位点是O(1)―H。对于富铝SSZ-13,两个Al原子位于同一六元环的对位是Al-Si-Si-Al (NNNN)序列中最稳定的结构,而Al-Si-Al (NNN)序列中能量最优的Al分布是两个铝原子排布于六棱柱上下不同的六元环上。通过计算最稳定构型下的质子亲和势、NH3脱附能和吸附氘代乙腈后的1H NMR化学位移,发现富铝SSZ-13中含有Si(2Al)分布的NNN序列导致了其Brønsted酸强度弱于高硅的分子筛。分峰拟合29Si魔角旋转核磁共振(MAS NMR)谱图表明富铝SSZ-13中Si(2Al)的含量在43%以上,而吸附氘代乙腈后的1H MAS NMR实验显示富铝SSZ-13的桥羟基化学位移向低场移动,进一步证明富铝SSZ-13具有较弱的Brønsted酸强度。
李诗涵,赵侦超,李世坤,邢友东,张维萍. DFT计算结合固体NMR研究富铝SSZ-13的铝分布和Brønsted酸性[J]. 物理化学学报, 2020, 36(4), 1903021. doi: 10.3866/PKU.WHXB201903021
Shihan Li,Zhenchao Zhao,Shikun Li,Youdong Xing,Weiping Zhang. Aluminum Distribution and Brønsted Acidity of Al-Rich SSZ-13 Zeolite: A Combined DFT Calculation and Solid-State NMR Study[J]. Acta Physico-Chimica Sinica 2020, 36(4), 1903021. doi: 10.3866/PKU.WHXB201903021
表2
2Al-H模型中的相对取代能"
Al-Si-Si-Al | Erel(2AlH/Si)/(kJ•mol−1) | Al-Si-Al | Erel(2AlH/Si)/(kJ•mol−1) | ||
M1 a | M2 b | M1 | M2 | ||
NNNN-1-O1O1-H | 0 | 0 | NNN-1-O1O1-H | 45.6 | 43.1 |
NNNN-1-O3O1-H | 0.8 | 5.4 | NNN-1-O1O3-H | 41.0 | 42.3 |
NNNN-1-O3O3-H | 26.8 | 32.7 | NNN-1-O3O3-H | 24.7 | 25.1 |
NNNN-2-O1O1-H | 4.6 | 5.4 | NNN-2-O1O1-H | 0 | 0 |
NNNN-2-O1O3-H | 10.9 | 17.2 | NNN-2-O1O3-H | 77.0 | 77.9 |
NNNN-2-O3O3-H | 26.4 | 33.9 | NNN-2-O3O3-H | 38.1 | 40.6 |
表4
SSZ-13分子筛上吸附氘代乙腈后的结构参数、吸附能和1H NMR化学位移"
Types | d(N―H)/Å a | ∠NO1O1/(°)b | Edes/(kJ•mol−1) | 1H δcal c | 1H δave d | 1H δexp e |
1Al-CH3CN-1 | 1.62 | 30.8 | 99.2 | 10.8 | 10.9 | 11.0 |
1Al-CH3CN-2 | 1.63 | 25.5 | 103.0 | 10.9 | ||
NNNN-CH3CN-1 | 1.63/1.63 | 21.9/21.9 | 99.2 | 10.0/10.0 | 10.1 | 9.8 |
NNNN-CH3CN-2 | 1.63/1.62 | 21.7/28.0 | 101.3 | 10.0/10.1 | ||
NNNN-CH3CN-3 | 1.62/1.62 | 28.4/28.3 | 103.4 | 10.1/10.1 | ||
NNN-CH3CN-1 | 1.64/1.66 | 25.8/33.4 | 99.2 | 9.3/9.7 | 9.6 | |
NNN-CH3CN-2 | 1.61/1.81 | 47.4/10.3 | 98.8 | 10.2/8.3 | ||
NNN-CH3CN-3 | 1.63/1.63 | 29.2/30.0 | 103.0 | 9.8/9.9 |
1 |
Yang B. ; Guo C. ; Cheng J. Chem. Eng. Prog. 2014, 33, 368.
doi: 10.3969/j.issn.1000-6613.2014.02.018 |
杨博; 郭翠梨; 程景耀. 化工进展, 2014, 33, 368.
doi: 10.3969/j.issn.1000-6613.2014.02.018 |
|
2 |
Zhang R. ; Liu N. ; Lei Z. ; Chen B. Chem. Rev. 2016, 116, 3658.
doi: 10.1021/acs.chemrev.5b00474 |
3 |
Zhou Z. ; Wang Z. ; Liu Z. Sci. China Chem. 2018, 48, 562.
doi: 10.1360/N032017-00215 |
周子正; 王智华; 刘志明. 中国科学:化学, 2018, 48, 562.
doi: 10.1360/N032017-00215 |
|
4 | Bull, I.; Boorse, R. S.; Jaglowski, W. M.; Koermer, G. S.; Moini, A.; Patchett, J. A.; Xue, W.; Burk, P.; Dettling, J. C.; Caudle, M. T. Processes for Reducing Nitrogen Oxides Using Copper Cha Zeolite Catalysts. U.S. Patent 8404203.B2, 3013-03-26 |
5 |
Beale A. M. ; Gao F. ; Lezcano-Gonzalez I. ; Peden C. H. F. ; Szanyi J. Chem. Soc. Rev. 2015, 44, 7371.
doi: 10.1039/c5cs00108k |
6 |
Song J. ; Wang Y. ; Walter E. D. ; Washton N. M. ; Mei D. ; Kovarik L. ; Engelhard M. H. ; Prodinger S. ; Wang Y. ; Peden C. H. F. ; et al ACS Catal. 2017, 7, 8214.
doi: 10.1021/acscatal.7b03020 |
7 |
Yu H. ; Zhang G. ; Han L. ; Chang L. ; Bao W. ; Wang J. Acta Phys. -Chim. Sin. 2015, 31, 2165.
doi: 10.3866/PKU.WHXB201509184 |
俞华峰; 张国佩; 韩丽娜; 常丽萍; 鲍卫仁; 王建成. 物理化学学报, 2015, 31, 2165.
doi: 10.3866/PKU.WHXB201509184 |
|
8 |
Zhao Z. ; Yu R. ; Zhao R. ; Shi C. ; Gies H. ; Xiao F. ; De Vos D. ; Yokoi T. ; Bao X. ; Kolb U. ; et al Appl. Catal. B: Environ. 2017, 217, 421.
doi: 10.1016/j.apcatb.2017.06.013 |
9 |
Gao F. ; Wang Y. ; Washton N. M. ; Kollar M. ; Szanyi J. ; Peden C. H. F. J. Catal. 2015, 331, 25.
doi: 10.1016/j.jcat.2015.08.004 |
10 |
Deimund M. A. ; Harrison L. ; Lunn J. D. ; Liu Y. ; Malek A. ; Shayib R. ; Davis M. E. ACS Catal. 2016, 6, 542.
doi: 10.1021/acscatal.5b01450 |
11 |
Di Iorio J. R. ; Nimlos C. T. ; Gounder R. ACS Catal. 2017, 7, 6663.
doi: 10.1021/acscatal.7b01273 |
12 |
Zhao Z. ; Xing Y. ; Li S. ; Meng X. ; Xiao F. ; McGuire R. ; Parvulescu A. N. ; Müller U. ; Zhang W. J. Phys. Chem. C 2018, 122, 9973.
doi: 10.1021/acs.jpcc.8b01423 |
13 |
Civalleri B. ; Ferrari A. M. ; Llunell M. ; Orlando R. ; Mérawa M. ; Ugliengo P. Chem. Mater. 2003, 15, 3996.
doi: 10.1021/cm0342804 |
14 |
Zheng A. ; Chen L. ; Yang J. ; Zhang M. ; Su Y. ; Yue Y. ; Ye C. ; Deng F. J. Phys. Chem. B 2005, 109, 24273.
doi: 10.1021/jp0527249 |
15 |
Zheng A. ; Liu S. B. ; Deng F. Chem. Rev. 2017, 117, 12475.
doi: 10.1021/acs.chemrev.7b00289 |
16 |
Li S. ; Li J. ; Zheng A. ; Deng F. Acta Phys. -Chim. Sin. 2017, 33, 270.
doi: 10.3866/PKU.WHXB201611022 |
李申慧; 李静; 郑安民; 邓风. 物理化学学报, 2017, 33, 270.
doi: 10.3866/PKU.WHXB201611022 |
|
17 |
Sazama P. ; Tabor E. ; Klein P. ; Wichterlova B. ; Sklenak S. ; Mokrzycki L. ; Pashkkova V. ; Ogura M. ; Dedecek J. J. Catal. 2016, 333, 102.
doi: 10.1016/j.jcat.2015.10.010 |
18 |
Zhang W. ; Xu S. ; Han X. ; Bao X. Chem. Soc. Rev. 2012, 41 (1), 192.
doi: 10.1039/c1cs15009j |
19 |
Shah R. ; Gale J. D. ; Payne M. C. J. Phys. Chem-Us 1996, 100, 11688.
doi: 10.1021/Jp960365z |
20 |
Lo C. ; Trout B. L. J. Catal. 2004, 227 (1), 77.
doi: 10.1016/j.jcat.2004.06.018 |
21 |
Solans-Monfort X. ; Sodupe M. ; Branchadell V. ; Sauer J. ; Orlando R. ; Ugliengo P. J. Phys. Chem. B 2005, 109, 3539.
doi: 10.1021/jp045531e |
22 |
Haw J. F. ; Hall M. B. ; Alvarado-Swaisgood A. E. ; Munson E. J. ; Lin Z. ; Beck L. W. ; Howard T. J. Am. Chem. Soc. 1994, 116, 7308.
doi: 10.1021/ja00095a039 |
23 |
Gil B. ; Zones S. I. ; Hwang S. J. ; Bejblová M. ; Čejka J. J. Phys. Chem. C 2008, 112, 2997.
doi: 10.1021/jp077687v |
24 |
Calligaris M. ; Nardin G. ; Randaccio L. Zeolites 1983, 3, 205.
doi: 10.1016/0144-2449(83)90008-8 |
25 |
Zheng A. ; Zhang H. ; Chen L. ; Yue Y. ; Ye C. ; Deng F. J. Phys. Chem. B 2007, 111, 3085.
doi: 10.1021/jp067340c |
26 |
Dunning T. H. J. Phys. Chem. A 2000, 104, 9062.
doi: 10.1021/jp001507z |
27 | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D.01; Gaussian Inc: Wallingford, CT, 2013 |
28 |
Jobic H. ; Tuel A. ; Krossner M. ; Sauer J. J. Phys. Chem. C 1996, 100, 19545.
doi: 10.1021/jp9619954 |
29 |
Zygmunt S. A. ; Curtiss L. A. ; Iton L. E. ; Erhardt M. K. J. Phys. Chem-Us 1996, 100, 6663.
doi: 10.1021/Jp952913z |
30 |
Ryder J. A. ; Chakraborty A. K. ; Bell A. T. J. Phys. Chem. B 2000, 104, 6998.
doi: 10.1021/jp9943427 |
31 |
Wang J. ; Li S. ; Zhao Z. ; Zhou D. ; Lu A. ; Zhang W. Acta Phys. -Chim. Sin. 2016, 32, 1666.
doi: 10.3866/PKU.WHXB201604012 |
王娟; 李世坤; 赵侦超; 周丹红; 陆安慧; 张维萍. 物理化学学报, 2016, 32, 1666.
doi: 10.3866/PKU.WHXB201604012 |
|
32 |
Li S. ; Zhao Z. ; Zhao R. ; Zhou D. ; Zhang W. ChemCatChem 2017, 9, 1494.
doi: 10.1002/cctc.201601623 |
33 |
Zhao R. ; Zhao Z. ; Li S. ; Zhang W. J. Phys. Chem. Lett. 2017, 8, 2323.
doi: 10.1021/acs.jpclett.7b00711 |
34 |
Calligaris M. ; Nardin G. ; Randaccio L. ; Chiaramonti P. C. Acta Crystallogr. B 1982, 38, 602.
doi: 10.1107/S0567740882003483 |
35 |
Jeanvoine Y. ; Angyan J. G. ; Kresse G. ; Hafner J. J. Phys. Chem. B 1998, 102, 5573.
doi: 10.1021/Jp980341n |
36 |
Nielsen M. ; Brogaard R. Y. ; Falsig H. ; Beato P. ; Swang O. ; Svelle S. ACS Catal. 2015, 5, 7131.
doi: 10.1021/acscatal.5b01496 |
37 |
Smith L. J. ; Davidson A. ; Cheetham A. K. Catal. Lett. 1997, 49, 143.
doi: 10.1023/A:1019097019846 |
38 |
Wang N. ; Zhang M. ; Yu Y. Micropor. Mesopor. Mat. 2013, 169, 47.
doi: 10.1016/j.micromeso.2012.10.019 |
39 |
Chai J. D. ; Head-Gordon M. Phys. Chem. Chem. Phys. 2008, 10, 6615.
doi: 10.1039/b810189b |
40 |
Jänchen J. ; Van Wolput J. H. M. C. ; Van de Ven L. J. M. ; De Haan J. W. ; Van Santen R. A. Catal. Lett. 1996, 39, 147.
doi: 10.1007/bf00805574 |
41 |
Dai W. ; Sun X. ; Tang B. ; Wu G. ; Li L. ; Guan N. ; Hunger M. J. Catal. 2014, 314, 10.
doi: 10.1016/j.jcat.2014.03.006 |
[1] | 徐涵煜, 宋雪旦, 张青, 于畅, 邱介山. 理论研究Cu@C2N催化剂表面上水分子对电催化CO2还原反应机理的影响[J]. 物理化学学报, 2024, 40(1): 2303040 - . |
[2] | 王鹤然, 陈凯, 伏硕, 王晧暄, 袁加轩, 胡星奕, 许文娟, 密保秀. 三种同分异构的双苯并吩噻嗪材料的合成、理论计算及光物理性质[J]. 物理化学学报, 2024, 40(1): 2303047 - . |
[3] | 罗铖, 龙庆, 程蓓, 朱必成, 王临曦. Pt-C3N4/BiOCl S型异质结应用于光催化CO2还原的理论计算研究[J]. 物理化学学报, 2023, 39(6): 2212026 - . |
[4] | 李若宁, 张雪, 薛娜, 李杰, 吴天昊, 徐榛, 王一帆, 李娜, 唐浩, 侯士敏, 王永锋. Ag(111)表面Ag配位结构的分等级组装[J]. 物理化学学报, 2022, 38(8): 2011060 - . |
[5] | 卢浩然, 魏雅清, 龙闰. 纳米孔缺陷导致单层黑磷电荷局域极大抑制非辐射电子-空穴复合的时域模拟[J]. 物理化学学报, 2022, 38(5): 2006064 - . |
[6] | 杨贻顺, 周敏, 邢燕霞. 基于γ-石墨炔分子磁隧道结对称性依赖的输运性质[J]. 物理化学学报, 2022, 38(4): 2003004 - . |
[7] | 李孟婷, 郑星群, 李莉, 魏子栋. 碱性介质中氢氧化和析氢反应机理研究现状[J]. 物理化学学报, 2021, 37(9): 2007054 - . |
[8] | 周君慧, 敖志敏, 安太成. 基于密度泛函理论下H2S在单原子催化剂V/Ti2CO2上的分解机理研究[J]. 物理化学学报, 2021, 37(8): 2007086 - . |
[9] | 王云飞, 刘建华, 于美, 钟锦岩, 周琪森, 邱俊明, 张晓亮. SnO2表面卤化提高钙钛矿太阳能电池光伏性能[J]. 物理化学学报, 2021, 37(3): 2006030 - . |
[10] | 施俊杰, 胡子琦, 杨逸豪, 步宇翔, 施祖进. 内嵌金属碳氮化物团簇富勒烯的稳定性与生成机理[J]. 物理化学学报, 2021, 37(10): 1907077 - . |
[11] | 李超, 沈明, 胡炳文. 面向金属离子电池研究的固体核磁共振和电子顺磁共振方法[J]. 物理化学学报, 2020, 36(4): 1902019 - . |
[12] | 石峰,胡丽丽,任进军,杨秋红. 固体核磁共振研究碱土金属磷硅酸盐玻璃的六配位硅结构[J]. 物理化学学报, 2020, 36(4): 1902018 - . |
[13] | 纪毅, 梁力鑫, Changmiao Guo, 包信和, Tatyana Polenova, 侯广进. 固体核磁共振高速魔角旋转条件下对称性脉冲零量子同核重耦技术[J]. 物理化学学报, 2020, 36(4): 1905029 - . |
[14] | 刘小龙, 王强, 王超, 徐君, 邓风. Silicalite-1分子筛氢键诱导晶化机制的固体核磁共振研究[J]. 物理化学学报, 2020, 36(4): 1905035 - . |
[15] | 邓静,马涛,常自伟,赵伟静,杨俊. 基于固体核磁共振方法的蛋白质组装体三维结构解析[J]. 物理化学学报, 2020, 36(4): 1905019 - . |
|