物理化学学报 >> 2020, Vol. 36 >> Issue (2): 1903055.doi: 10.3866/PKU.WHXB201903055
所属专题: 超级电容器
收稿日期:
2019-03-25
录用日期:
2019-05-24
发布日期:
2019-06-03
通讯作者:
张苏,王鲁香
E-mail:suzhangs@163.com;wangluxiangxju@163.com
作者简介:
张苏,男,1989年生。分别于2011年、2016年在北京化工大学获得学士和博士学位,师从宋怀河教授。现为新疆大学应用化学研究所副教授,主要从事炭材料及其在超级电容器、锂离子电池方面的应用研究|王鲁香,男,1979年生。分别于2005年、2011年在新疆大学获得学士和博士学位,师从贾殿赠教授。现为新疆大学应用化学研究所研究员,主要从事炭材料及其在超级电容器、水处理方面的应用研究
基金资助:
Nannan Guo,Su Zhang*(),Luxiang Wang*(),Dianzeng Jia
Received:
2019-03-25
Accepted:
2019-05-24
Published:
2019-06-03
Contact:
Su Zhang,Luxiang Wang
E-mail:suzhangs@163.com;wangluxiangxju@163.com
Supported by:
摘要:
植物基多孔炭具有发达的孔结构、大的表面积、较为成熟的制备工艺、丰富的来源、低廉的价格,是目前商业应用范围最广的超级电容器电极材料。然而在实际应用中仍然存在着质量/体积比容量较低、倍率性能差等问题。本文针对先进电容器件的高能量密度、优异功率性能的要求,首先介绍了近年来发展的植物基多孔炭的制备方法,讨论了植物前驱体的组成和结构对其产物结构的影响以及与其电化学性能之间的构效关系,特别总结了近年来植物基超大比表面积多孔炭、中孔炭、层次化多孔炭的制备方法和电容储能性能。针对大比表面积多孔炭用于超级电容器时的体积性能不佳这一关键问题,本文还总结了提高植物基多孔炭体积电化学性能的方法。最后,对植物基多孔电极材料存在的问题进行了分析与总结,并展望了其研究前景。
郭楠楠,张苏,王鲁香,贾殿赠. 植物基多孔炭材料在超级电容器中的应用[J]. 物理化学学报, 2020, 36(2), 1903055. doi: 10.3866/PKU.WHXB201903055
Nannan Guo,Su Zhang,Luxiang Wang,Dianzeng Jia. Application of Plant-Based Porous Carbon for Supercapacitors[J]. Acta Physico-Chimica Sinica 2020, 36(2), 1903055. doi: 10.3866/PKU.WHXB201903055
表1
不同活化方法制备植物基多孔炭材料织构参数"
Precursor | Activator | Specific surface area/(m2∙g−1) | Pore volume/ (cm3∙g−1) | Micropore surface area/(m2∙g−1) | Mesopore surface area/(m2∙g−1) | Micropore volume/(cm3∙g−1) | Mesopore Volume/(cm3∙g−1) | Reference | |
Physical activation | Bean pod | Steam | 258 | 0.21 | – | – | – | -- | |
Jatropha hull | CO2 | 1350 | 1.07 | – | – | 0.44 | 0.56 | ||
Corncob | Steam | 675 | 0.36 | – | – | – | – | ||
CO2 | 836 | 0.43 | – | – | – | – | |||
Date stone | Steam | 635 | 0.72 | – | – | – | – | ||
Coconut shell | CO2 | 1162 | 0.72 | – | – | 0.57 | 0.15 | ||
Steam | 1101 | 0.59 | – | – | 0.51 | 0.08 | |||
Coffee endocarp | CO2 | 1287 | 0.64 | – | – | – | – | ||
Steam | 630 | 0.35 | – | – | – | – | |||
Chemical activation | Apricot shell | KCl | 2244 | 1.44 | – | – | 0.5 | 0.94 | |
Sugar cane bagasse | ZnCl2 | 1788 | 1.74 | – | – | 0.48 | 0.33 | ||
Moringa oleifera stem | ZnCl2 | 2250 | 2.3 | 736 | 1514 | – | – | ||
Shaddock skin | ZnCl2 | 2327 | 1.56 | – | – | 0.27 | 1.29 | ||
Apricot shell | NaOH | 2335 | 0.99 | – | – | 0.80 | 0.19 | ||
Pomelo skin | NaOH | 1355 | 0.77 | 524 | 844 | 0.48 | 0.94 | ||
Cotton stalk | H3PO4 | 653 | 0.48 | 127 | 526 | 0.06 | 0.42 | ||
Lotus stalk | H3PO4 | 1434 | 1.34 | 454 | 526 | 0.31 | 1.03 | ||
Grapevine rhytidome | H3PO4 | 1607 | 1.42 | 617 | 990 | 0.48 | 0.94 | ||
Soybean oil cake | K2CO3 | 1352 | 0.68 | – | – | 0.4 | 0.28 | ||
Orange peel | K2CO3 | 1104 | 0.62 | 420 | 684 | 0.25 | 0.37 | ||
Eucalyptus sawdust | KHCO3 | 2950 | 1.6 | – | – | 1.18 | 0.28 | ||
Glucose | KHCO3 | 3050 | 2.4 | – | – | 0.96 | 1.14 | ||
Hemp stem | KOH | 3062 | 1.44 | 1600 | 456 | 0.83 | 0.27 | ||
Spruce bark | KOH | 2385 | 1.68 | 2018 | 367 | 1.28 | 0.4 | ||
Pomelo peel | KOH | 2725 | 1.28 | 2610 | 115 | 1.16 | 0.11 |
表2
不同孔结构的植物基多孔炭材料的电化学性能对比"
Precursor | Specific surface area/ (m2∙g−1) | Pore Volume/ (cm3∙g−1) | Specific capacitance/ (F∙g−1) | Scan rate | Specific capacitance / (F∙g−1) | Scan rate | Unit surface area capacitance /(F∙m−2) | Rate performance | Electrolyte | Testing system | Reference | |
Tremella | 3760 | 2.15 | 284 | 1 A∙g−1 | 214 | 30 A∙g−1 | 0.076 | 0.75 | 6 mol∙L−1 KOH | Two electrode | ||
Celtuce leave | 3404 | 1.88 | 421 | 0.5 A∙g−1 | 293 | 10 A∙g-1 | 0.124 | 0.70 | 2 mol∙L-1 KOH | Three electrode | ||
271 | 0.5 A∙g−1 | 156 | 10 A∙g-1 | 0.08 | 0.58 | 2 mol∙L-1 KOH | Two electrode | |||||
Corn gluten meal | 3353 | 2.07 | 488 | 0.5 A∙g−1 | 220 | 20 A∙g−1 | 0.146 | 0.45 | 6 mol∙L−1 KOH | Three electrode | ||
298 | 0.5 A∙g−1 | 165 | 20 A∙g−1 | 0.089 | 0.55 | 6 mol∙L−1 KOH | Two electrode | |||||
Liquefied wood | 3223 | 1.686 | 247 | 0.5 A∙g−1 | 227 | 10 A∙g−1 | 0.077 | 0.92 | 1 mol∙L−1 H2SO4 | Two electrode | ||
Cabbage leaves | 3102 | 1.41 | 336 | 1 A∙g−1 | 271 | 10 A∙g−1 | 0.108 | 0.80 | 2 mol∙L−1 KOH | Three electrode | ||
Hemp stem | 3062 | 1.44 | 318 | 0.1 A∙g−1 | 193 | 50 A∙g−1 | 0.104 | 0.61 | 6 mol∙L−1 KOH | Three electrode | ||
230 | 1 A∙g−1 | 170 | 50 A∙g−1 | 0.075 | 0.74 | 6 mol∙L−1 KOH | Two electrode | |||||
Bamboo | 3061 | 1.46 | 258 | 0.1 A∙g−1 | 93 | 5 A∙g−1 | 0.084 | 0.36 | 6 mol∙L−1 KOH | Three electrode | ||
Glucose | 2760 | 1.3 | ~240 | 1 A∙g−1 | 138 | 90 A∙g−1 | 0.087 | 0.58 | 1 mol∙L−1 H2SO4 | Two electrode | ||
3050 | 2.4 | 138 | 0.2 A∙g−1 | 113 | 30 A∙g−1 | 0.041 | 0.82 | EMIM BF4 | ||||
Various pollen | 3037 | 2.27 | 185 | 1 A∙g−1 | – | – | 0.061 | – | TEABF4 | Two electrode | ||
207 | 1 A∙g−1 | – | – | 0.068 | – | EMIMBF4 | Two electrode | |||||
Eucalyptus sawdust | 2950 | 1.46 | 268 | 0.2 A∙g−1 | 132 | 100 A∙g−1 | 0.091 | 0.49 | 1 mol∙L−1 H2SO4 | Two electrode | ||
168 | 1 A∙g−1 | 128 | 60 A∙g−1 | 0.057 | 0.76 | EMIM TFSI | ||||||
Garlic skin | 2818 | 1.33 | 427 | 0.5 A∙g−1 | 315 | 50 A∙g−1 | 0.152 | 0.74 | 6 mol∙L−1 KOH | Two electrode | ||
Pomelo peel | 2725 | 1.28 | ~245 | 1 A∙g−1 | 163.2 | 20 A∙g−1 | 0.09 | 0.67 | 6 mol∙L−1 KOH | Two electrode | ||
Corn straw | 2790 | 2.04 | ~282 | 1 A∙g−1 | 205 | 100 A∙g−1 | 0.101 | 0.73 | 6 mol∙L−1 KOH | Two electrode | ||
~210 | 1 A∙g−1 | 68 | 60 A∙g−1 | 0.075 | 0.32 | 1 mol∙L−1 Na2SO4 | Two electrode | |||||
Spruce bark | 2385 | 1.68 | ~280 | 1 A∙g−1 | 249 | 10 A∙g−1 | 0.117 | 0.89 | 6 mol∙L−1 KOH | Two electrode | ||
Sugarcane bagasse | 2341 | 1.07 | 320 | 1 A∙g−1 | 264 | 100 A∙g−1 | 0.137 | 0.83 | 6 mol∙L−1 KOH | Two electrode | ||
Shaddock skin | 2327 | 1.56 | 152 | 1 A∙g−1 | 132 | 100 A∙g−1 | 0.065 | 0.87 | EMIMTFSI | Two electrode | ||
shaddock skin | 2300 | 1 | 180 | 1 A∙g−1 | – | – | 0.078 | – | 0.5 mol∙L−1 H2SO4 | Three electrode | ||
Moringa oleifera stem | 2250 | 2.5 | ~220 | 0.2 A∙g−1 | 195 | 5 A∙g−1 | 0.097 | 0.87 | 1 mol∙L−1 H2SO4 | Two electrode | ||
Clover | 2244 | 1.44 | 436 | 1 A∙g−1 | 298 | 50 A∙g−1 | 0.194 | 0.68 | 1 mol∙L−1 H2SO4 | Three electrode | ||
Soybean root | 2143 | 0.94 | 260 | 1 A∙g−1 | 225 | 20 A∙g−1 | 0.121 | 0.87 | 6 mol∙L−1 KOH | Two electrode | ||
Soybean residue | 2130 | 0.92 | 258 | 0.2 A∙g−1 | 159 | 80 A∙g−1 | 0.121 | 0.62 | 1 mol∙L−1 H2SO4 | Two electrode | ||
Tobacco rod | 2115 | 1.22 | ~224 | 1 A∙g−1 | ~148 | 15 A∙g−1 | 0.117 | 0.66 | 6 mol∙L−1 KOH | Two electrode | ||
Elm samara | 1947 | 1.33 | 310 | 1 A∙g−1 | 198 | 20 A∙g−1 | 0.159 | 0.64 | 6 mol∙L−1 KOH | Two electrode | ||
Apricot shell | 1790 | 0.96 | 268 | 0.5 A∙g−1 | 212 | 20 A∙g−1 | 0.15 | 0.79 | 1 mol∙L−1 H2SO4 | Two electrode | ||
Lignin | 1690 | 0.78 | 240 | 1 A∙g−1 | 209 | 30 A∙g−1 | 0.142 | 0.87 | 6 mol∙L−1 KOH | Two electrode | ||
Cherry calyce | 1612 | 1.2 | 303 | 1 A∙g−1 | 259 | 20 A∙g−1 | 0.188 | 0.85 | 6 mol∙L−1 KOH | Two electrode | ||
Auricularia | 1607 | 1.57 | 347 | 1 A∙g−1 | 278 | 50 A∙g−1 | 0.216 | 0.8 | 6 mol∙L−1 KOH | Three electrode | ||
Cellulose | 1535 | 0.87 | 198 | 1 A∙g−1 | 133 | 10 A∙g−1 | 0.129 | 0.67 | 6 mol∙L−1 KOH | Three electrode | ||
Algae | 1338 | 0.59 | 143 | 1 A∙g−1 | 79 | 20 A∙g−1 | 0.107 | 0.55 | 6 mol∙L−1 KOH | Two electrode | ||
Cellulose | 1326 | – | 296 | 2 mV∙s−1 | 221 | 500mV∙s−1 | 0.223 | 0.75 | 6 mol∙L−1 KOH | Three electrode | ||
Banana fiber | 1097 | – | 86 | 5 mV∙s−1 | 83 | 100 mV∙s−1 | 0.078 | 0.97 | 1 mol∙L−1 Na2SO4 | Two electrode | ||
Lotus | 1015 | 0.824 | 340 | 0.5 A∙g−1 | 240 | 20 A∙g−1 | 0.335 | 0.71 | 2 mol∙L−1 KOH | Three electrode | ||
Coffee bean | 1019 | 0.48 | 368 | 0.05 A∙g−1 | – | – | 0.361 | – | 1 mol∙L−1 H2SO4 | Three electrode | ||
Lignin | 903 | 0.53 | 247 | 1 A∙g−1 | 110 | 20 A∙g−1 | 0.274 | 0.45 | 7 mol∙L−1 KOH | Two electrode | ||
Cork | 689 | 0.75 | 242 | 0.1 A∙g−1 | 199 | 50 A∙g−1 | 0.351 | 0.82 | 6 mol∙L−1 KOH | Two electrode | ||
Comparison of electrochemical performance of other porous carbon materials with different porous structure | ||||||||||||
Activated graphene | 3290 | – | 174 | 2.1 A∙g−1 | – | – | 0.053 | – | EMIM TFSI/ EMIM BF4 | Two electrode | ||
Hierarchical carbon | 2582 | – | 410 | 5 A∙g−1 | 349 | 100 A∙g−1 | 0.159 | 0.85 | 1 mol∙L−1 H2SO4 | Three electrode | ||
Carbon nanocage | 2561 | -- | 205 | 1 A∙g−1 | 179 | 200 A∙g−1 | 0.008 | 0.87 | 6 mol∙L−1 KOH | Two electrode | ||
Porous carbon | 2000 | 0.58 | 202 | 0.2 A∙g−1 | – | – | 0.101 | – | 1 mol∙L−1 H2SO4 | Two electrode | ||
Graphene | 1435 | 4.11 | 236.8 | 1 A∙g−1 | 171 | 30 A∙g−1 | 0.217 | 0.72 | 6 mol∙L−1 KOH | Two electrode | ||
Carbon xerogel microspheres | 1133 | 0.46 | 251 | 0.125 A∙g−1 | 141 | 4 A∙g−1 | 0.222 | 0.56 | 1 mol∙L−1 H2SO4 | Three electrode | ||
Graphene | 890 | -- | 200 | 0.5 A∙g−1 | 166 | 10 A∙g−1 | 0.224 | 0.83 | 2 mol∙L−1 KOH | Two electrode | ||
Graphene/Carbon nanotube | 652 | -- | 199 | 0.5 A∙g−1 | 99 | 20 A∙g−1 | 0.305 | 0.50 | EMIM BF4 | Two electrode | ||
Graphene | 630 | 0.42 | 255 | 0.5 A∙g−1 | 100 | 30 A∙g−1 | 0.403 | 0.39 | 6 mol∙L−1 KOH | Three electrode | ||
Activated carbon | 511 | 0.25 | 164 | 0.1 mA∙cm−2 | 134 | 20 mA∙cm-2 | 0.320 | 0.82 | 30% (w) KOH | Two electrode |
表3
植物基氮掺杂多孔炭表面氮、氧含量"
Precursor | Activator | Reagent | O (mole fraction) | N (mole fraction) | Reference |
Hemp stem | KOH | NH3 | 17.9% | 4.4% | |
Clover | KCl | – | 6.9% | 2.6% | |
Soybean residue | KOH | – | 13.9% (w) | 1.6 %(w) | |
Tobacco rod | KOH | – | 9.8% | 1.3% | |
Wheat gluten | KOH | – | 8.5% | 1.3% | |
Algae | KOH | – | 11.8% | 0.9% | |
Soybean dreg | KOH | 12.5% | 1.9% | ||
Mushroom | KOH | – | 8.4% | 1.7% | |
Flour | KOH | – | 11.2% | 1.1% | |
Loofa sponge | KOH | – | 4.8% | 0.7% | |
Pine needle | KOH | – | – | 1.5% | |
Potato residue | ZnCl2 | – | – | 0.4% (w) | |
Honeysuckles | Pyrolysis | – | 14.4% | 2% | |
Perilla frutescens | Pyrolysis | – | 18.8% | 1.7% | |
Sugar bagasse | CaCl2 | Urea | 7.0% | 5.6% | |
Cotton fabric | Air | Melamine | 7.1% | 6.9% |
表4
不同孔结构的植物基多孔炭材料的体积、质量电化学性能对比"
Precursor | Specific surface area/(m2∙g−1) | Pore volume/ (cm3∙g−1) | Gravimetric capacitance/(F∙g−1) | Density/ (g∙cm−3) | Volumetric capacitance/(F∙cm−3) | Scan rate | Electrolyte | Testing system | Reference |
Elm samara | 1947 | 1.33 | 470 | 0.57 | 267 | 1 A∙g−1 | 6 mol∙L−1 KOH | Two electrode | |
Hemp stem | 3062 | 1.72 | 318 | 0.23 | 73 | 0.1 A∙g−1 | 6 mol∙L−1 KOH | Two electrode | |
Pomelo peel | 2725 | 1.28 | 342 | 0.5 | 171 | 0.2 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Celtuce leave | 3290 | 1.71 | 421 | 0.45 | 190 | 0.5 A∙g−1 | 2 mol∙L−1 KOH | Three electrode | |
Garlic skin | 2818 | 1.32 | 427 | 0.38 | 162 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Two electrode | |
Sodium lignosulfonate | 905 | 0.53 | 247 | 0.97 | 240 | 0.05 A∙g−1 | 7 mol∙L−1 KOH | Three electrode | |
Soybean | 580 | 0.41 | 425 | 1.1 | 468 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Perilla frutescens | 655 | 0.44 | 270 | 1.06 | 287 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Pomelo peel | 832 | 0.57 | 374 | 0.93 | 349 | 0.1 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Willow catkin | 997 | 0.51 | 306 | 0.99 | 303 | 0.1 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Auricularia | 1103 | 0.54 | 374 | 0.96 | 360 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Kelp | 1002 | 0.62 | 440 | 0.82 | 360 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Waxberry | 658.5 | 0.38 | -- | -- | 1320.4 | 0.1 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Jujube | 829 | 0.45 | 449 | 1.06 | 476 | 1 mV∙s−1 | 1 mol∙L−1 H2SO4 | Three electrode | |
Bacterial cellulose | 1037 | 1.04 | 261 | 0.65 | 170 | 2 mV∙s−1 | 6 mol∙L−1 KOH | Three electrode | |
Corn straw | 1413 | 0.68 | 378.9 | 0.85 | 321.1 | 0.05 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Comparison of electrochemical performance of other porous carbon materials with different pore structures | |||||||||
Activated graphene | 3290 | – | 174 | 0.59 | 100 | 1 A∙g−1 | EMIMTFSI | Two electrode | |
Hierarchical carbon | 2582 | – | 207 | 0.72 | 149 | 0.5 A∙g−1 | BMIMPF6/AN | Two electrode | |
Carbon nanocage | 2561 | – | 205 | 0.46 | 94 | 1 A∙g−1 | KOH | Two electrode | |
Graphene/Carbon nanotube | 652 | – | 199 | 1.06 | 211 | 0.5 A∙g−1 | EMIM BF4 | Two electrode | |
Graphene | 630 | 0.42 | 255 | 0.77 | 196 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Activated carbon | 511 | 0.25 | 164 | 1.04 | 170 | 1 mA∙cm−2 | 30% KOH (w) | Two electrode | |
Carbon nanotube | – | – | 159 | 0.83 | 132 | 50 mV∙s−1 | 1 mol∙L−1 H2SO4 | Three electrode | |
Carbon nanotube | – | – | 260 | 0.5 | 130 | 0.1 A∙g−1 | EMIM BF4 | Two electrode | |
Porous graphene | – | – | 298 | 0.70 | 212 | 1 A∙g−1 | EMIM BF4 | Two electrode |
1 |
Wang J. ; Nie P. ; Ding B. ; Dong S. ; Hao X. ; Dou H. ; Zhang X. J. Mater. Chem. A 2017, 5 (6), 2411.
doi: 10.1039/C6TA08742F |
2 |
Xie K. ; Wei B. Adv. Mater. 2014, 26 (22), 3592.
doi: 10.1002/adma.201305919 |
3 |
Yan J. ; Wang Q. ; Wei T. ; Fan Z. Adv. Energy Mater. 2014, 4 (4), 1300816.
doi: 10.1002/aenm.201300816 |
4 |
El-Kady M. F. ; Strong V. ; Dubin S. ; Kaner R. B. Science 2012, 335 (6074), 1326.
doi: 10.1126/science.1216744 |
5 |
Islam M. S. ; Fisher C. A. J. Chem. Soc. Rev. 2014, 43 (1), 185.
doi: 10.1039/C3CS60199D |
6 |
Wu Z. S. ; Parvez K. ; Feng X. ; Müllen K. Nat. Commun. 2013, 4, 2487.
doi: 10.1038/ncomms3487 |
7 |
Zhu Y. ; Murali S. ; Stoller M. D. ; Ganesh K. J. ; Cai W. ; Ferreira P. J. ; Pirkle A. ; Wallace R. M. ; Cychosz K. A. ; Thommes M. ; et al Science 2011, 332 (6037), 1537.
doi: 10.1126/science.1200770 |
8 |
Weingarth D. ; Zeiger M. ; Jäckel N. ; Aslan M. ; Feng G. ; Presser V. Adv. Energy Mater. 2014, 4 (13), 1400316.
doi: 10.1002/aenm.201400316 |
9 |
Chen C. ; Yu D. ; Zhao G. ; Du B. ; Tang W. ; Sun L. ; Sun Y. ; Besenbacher F. ; Yu M. Nano Energy 2016, 27, 377.
doi: 10.1016/j.nanoen.2016.07.020 |
10 |
Li D. Y. ; Zhang J. C. ; Wang Z. Y. ; Jin X. B. Acta Phys. -Chim. Sin. 2017, 33 (11), 2245.
doi: 10.3866/PKU.WHXB201705241 |
李道琰; 张基琛; 王志勇; 金先波. 物理化学学报, 2017, 33 (11), 2245.
doi: 10.3866/PKU.WHXB201705241 |
|
11 |
Long W. ; Fang B. ; Ignaszak A. ; Wu Z. ; Wang Y. J. ; Wilkinson D. Chem. Soc. Rev. 2017, 46 (23), 7176.
doi: 10.1039/C6CS00639F |
12 |
Deng J. ; Li M. ; Wang Y. Green Chem. 2016, 18 (18), 4824.
doi: 10.1039/C6GC01172A |
13 |
Field C. B. ; Behrenfeld M. J. ; Randerson J. T. ; Falkowski P. Science 1998, 281 (5374), 237.
doi: 10.1126/science.281.5374.237 |
14 |
Long C. ; Jiang L. ; Wu X. ; Jiang Y. ; Yang D. ; Wang C. ; Wei T. ; Fan Z. Carbon 2015, 93, 412.
doi: 10.1016/j.carbon.2015.05.040 |
15 |
Guo N. ; Li M. ; Wang Y. ; Sun X. ; Wang F. ; Yang R. ACS Appl. Mater. Interfaces 2016, 8 (49), 33626.
doi: 10.1021/acsami.6b11162 |
16 |
Qiu Z. ; Wang Y. ; Bi X. ; Zhou T. ; Zhou J. ; Zhao J. ; Miao Z. ; Yi W. ; Fu P. ; Zhuo S. J. Power Sources 2018, 376, 82.
doi: 10.1016/j.jpowsour.2017.11.077 |
17 |
Qiu D. ; Guo N. ; Gao A. ; Zheng L. ; Xu W. ; Li M. ; Wang F. ; Yang R. Electrochim. Acta 2019, 294, 398.
doi: 10.1016/j.electacta.2018.10.049 |
18 |
Sun L. ; Tian C. ; Li M. ; Meng X. ; Wang L. ; Wang R. ; Yin J. ; Fu H. J. Mater. Chem. A 2013, 1 (21), 6462.
doi: 10.1039/C3TA10897J |
19 |
Li Z. ; Lv W. ; Zhang C. ; Li B. ; Kang F. ; Yang Q. H. Carbon 2015, 92, 11.
doi: 10.1016/j.carbon.2015.02.054 |
20 |
Wang Y. ; Ben T. ; Qiu S. L. Chem. J. Chin. Univ. 2016, 37 (6), 1042.
doi: 10.7503/cjcu20160075 |
王昀; 贲腾; 裘式纶. 高等学校化学学报, 2016, 37 (6), 1042.
doi: 10.7503/cjcu20160075 |
|
21 | Ma Y. W. ; Xiong C. Y. ; Huang W. ; Zhao J. ; Li X. A. ; Fan Q. L. ; Huang W. Chin. J. Inorg. Chem. 2012, 28 (3), 546. |
马延文; 熊传银; 黄雯; 赵进; 李兴螯; 范曲立; 黄维. 无机化学学报, 2012, 28 (3), 546. | |
22 |
Wu. Z. Y ; Fan L. ; Tao Y. R. ; Wang W. ; Wu X. C. ; Zhao J. W. Chin. J. Inorg. Chem. 2018, 34 (7), 1249.
doi: 10.11862/CJIC.2018.166 |
武中钰; 范蕾; 陶友荣; 王伟; 吴兴才; 赵健伟. 无机化学学报, 2018, 34 (7), 1249.
doi: 10.11862/CJIC.2018.166 |
|
23 |
Guo P. ; Ji Q. ; Zhang L. ; Zhao S. ; Zhao X. Acta Phys. -Chim. Sin. 2011, 27 (12), 2836.
doi: 10.3866/PKU.WHXB20112836 |
郭培志; 季倩倩; 张丽莉; 赵善玉; 赵修松. 物理化学学报, 2011, 27 (12), 2836.
doi: 10.3866/PKU.WHXB20112836 |
|
24 |
Jiang L. ; Sheng L. ; Fan Z. Sci. China Mater. 2018, 61 (2), 133.
doi: 10.1007/s40843-017-9169-4 |
25 |
Lu H. ; Zhao X. S. Sustain. Energy Fuels 2017, 1 (6), 1265.
doi: 10.1039/C7SE00099E |
26 |
Xia W. ; Li Z. ; Xu Yin. ; Zhuang X. ; Jia S. ; Zhang J. Prog. Chem. 2016, 28 (11), 1682.
doi: 10.7536/PC160517 |
夏文; 李政; 徐银莉; 庄旭品; 贾士儒; 张健飞. 化学进展, 2016, 28 (11), 1682.
doi: 10.7536/PC160517 |
|
27 |
Wu Z. ; Zhang X. B. Acta Phys. -Chim. Sin. 2017, 33 (2), 305.
doi: 10.3866/PKU.WHXB201611012 |
吴中; 张新波. 物理化学学报, 2017, 33 (2), 305.
doi: 10.3866/PKU.WHXB201611012 |
|
28 |
Li X. Q. ; Chang L. ; Zhao S. L. ; Hao C. L. ; Lu C. G. ; Zhu Y. H. ; Tang Z. Y. Acta Phys. -Chim. Sin. 2017, 33 (1), 130.
doi: 10.3866/PKU.WHXB201609012 |
李雪芹; 常琳; 赵慎龙; 郝昌龙; 陆晨光; 朱以华; 唐智勇. 物理化学学报, 2017, 33 (1), 130.
doi: 10.3866/PKU.WHXB201609012 |
|
29 |
Isikgor F. H. ; Becer C. R. Polym. Chem. 2015, 6 (25), 4497.
doi: 10.1039/C5PY00263J |
30 |
Balat M. Energy Source Part A 2008, 30 (7), 620.
doi: 10.1080/15567030600817258 |
31 |
Mészáros E. ; Jakab E. ; Várhegyi G. ; Bourke J. ; Manley-Harris M. ; Nunoura T. ; Antal M. J. Ind. Eng. Chem. Res. 2007, 46 (18), 5943.
doi: 10.1021/ie0615842 |
32 |
Mi J. ; Wang X. R. ; Fan R. J. ; Qu W. H. ; Li W. C. Energy Fuels 2012, 26 (8), 5321.
doi: 10.1021/ef3009234 |
33 |
Wei J. ; Iglesia E. J. Catal. 2004, 224 (2), 370.
doi: 10.1016/j.jcat.2004.02.032 |
34 |
Sevilla M. ; Fuertes A. B. ; Mokaya R. Energy Environ. Sci. 2011, 4 (4), 1400.
doi: 10.1039/C0EE00347F |
35 |
Wang J. ; Kaskel S. J. Mater. Chem. 2012, 22 (45), 23710.
doi: 10.1039/C2JM34066F |
36 |
Cabal B. ; Budinova T. ; Ania C. O. ; Tsyntsarski B. ; Parra J. B. ; Petrova B. J. Hazard. Mater. 2009, 161 (2), 1150.
doi: 10.1016/j.jhazmat.2008.04.108 |
37 |
Duan X. H. ; Srinivasakannan C. ; Peng J. H. ; Zhang L. B. ; Zhang Z. Y. Fuel Process. Technol. 2011, 92 (3), 394.
doi: 10.1016/j.fuproc.2010.09.033 |
38 |
Aworn A. ; Thiravetyan P. ; Nakbanpote W. J. Anal. Appl. Pyrolysis 2008, 82 (2), 279.
doi: 10.1016/j.jaap.2008.04.007 |
39 |
Bouchelta C. ; Medjram M. S. ; Bertrand O. ; Bellat J. P. J. Anal. Appl. Pyrolysis 2008, 82 (1), 70.
doi: 10.1016/j.jaap.2007.12.009 |
40 |
Yang K. ; Peng J. ; Srinivasakannan C. ; Zhang L. ; Xia H. ; Duan X. Bioresour. Technol. 2010, 101 (15), 6163.
doi: 10.1016/j.biortech.2010.03.001 |
41 |
Nabais J. M. V. ; Nunes P. ; Carrott P. J. M. ; Ribeiro Carrott M. M. L. ; GarcíaA. M. ; Díaz-Díez M. A. Fuel Process. Technol. 2008, 89 (3), 262.
doi: 10.1016/j.fuproc.2007.11.030 |
42 |
Shu Y. ; Maruyama J. ; Iwasaki S. ; Maruyama S. ; Shen Y. ; Uyama H. J. Power Sources 2017, 364, 374.
doi: 10.1016/j.jpowsour.2017.08.059 |
43 |
Rufford T. E. ; Hulicova-Jurcakova D. ; Khosla K. ; Zhu Z. ; Lu G. Q. J. Power Sources 2010, 195 (3), 912.
doi: 10.1016/j.jpowsour.2009.08.048 |
44 |
Cai Y. ; Luo Y. ; Dong H. ; Zhao X. ; Xiao Y. ; Liang Y. ; Hu H. ; Liu Y. ; Zheng M. J. Power Sources 2017, 353, 260.
doi: 10.1016/j.jpowsour.2017.04.021 |
45 |
Tian W. ; Gao Q. ; Tan Y. ; Li Z. Carbon 2017, 119, 287.
doi: 10.1016/j.carbon.2017.04.050 |
46 |
Xu B. ; Chen Y. ; Wei G. ; Cao G. ; Zhang H. ; Yang Y. Mater. Chem. Phys. 2010, 124 (1), 504.
doi: 10.1016/j.matchemphys.2010.07.002 |
47 |
Foo K. Y. ; Hameed B. H. Chem. Eng. J. 2011, 173 (2), 385.
doi: 10.1016/j.cej.2011.07.073 |
48 |
Deng H. ; Zhang G. ; Xu X. ; Tao G. ; Dai J. J. Hazard. Mater. 2010, 182 (1), 217.
doi: 10.1016/j.jhazmat.2010.06.018 |
49 |
Huang L. ; Sun Y. ; Wang W. ; Yue Q. ; Yang T. Chem. Eng. J. 2011, 171 (3), 1446.
doi: 10.1016/j.cej.2011.05.041 |
50 |
Hejazifar M. ; Azizian S. ; Sarikhani H. ; Li Q. ; Zhao D. J. Anal. Appl. Pyrolysis 2011, 92 (1), 258.
doi: 10.1016/j.jaap.2011.06.007 |
51 |
Tay T. ; Ucar S. ; Karagöz S. J. Hazard. Mater. 2009, 165 (1), 481.
doi: 10.1016/j.jhazmat.2008.10.011 |
52 |
Foo K. Y. ; Hameed B. H. Bioresour. Technol. 2012, 104, 679.
doi: 10.1016/j.biortech.2011.10.005 |
53 |
Sevilla M. ; Ferrero G. A. ; Fuertes A. B. Carbon 2017, 114, 50.
doi: 10.1016/j.carbon.2016.12.010 |
54 |
Sevilla M. ; Fuertes A. B. ChemSusChem 2016, 9 (14), 1880.
doi: 10.1002/cssc.201600426 |
55 |
Wang Y. ; Yang R. ; Li M. ; Zhao Z. Ind. Crop. Prod. 2015, 65, 216.
doi: 10.1016/j.indcrop.2014.12.008 |
56 |
Sun Z. ; Zheng M. ; Hu H. ; Dong H. ; Liang Y. ; Xiao Y. ; Lei B. ; Liu Y. Chem. Eng. J. 2018, 336, 550.
doi: 10.1016/j.cej.2017.12.019 |
57 |
Liang Q. ; Ye L. ; Huang Z. H. ; Xu Q. ; Bai Y. ; Kang F. ; Yang Q. H. Nanoscale 2014, 6 (22), 13831.
doi: 10.1039/C4NR04541F |
58 |
Yu Z. L. ; Li G. C. ; Fechler N. ; Yang N. ; Ma Z. Y. ; Wang X. ; Antonietti M. ; Yu S. H. Angew. Chem. Int. Ed. 2016, 55 (47), 14623.
doi: 10.1002/anie.201605510 |
59 |
Hou J. ; Cao C. ; Idrees F. ; Ma X. ACS Nano 2015, 9 (3), 2556.
doi: 10.1021/nn506394r |
60 |
Yahya M. A. ; Al-Qodah Z. ; Ngah C. W. Z. Renewable Sustain. Energy Rev. 2015, 46, 218.
doi: 10.1016/j.rser.2015.02.051 |
61 |
Donald J. ; Ohtsuka Y. ; Xu C. Mater. Lett. 2011, 65 (4), 744.
doi: 10.1016/j.matlet.2010.11.049 |
62 |
Funke A. ; Ziegler F. Bioful Bioprod. Biorefin. 2010, 4 (2), 160.
doi: 10.1002/bbb.198 |
63 |
Titirici M. M. ; White R. J. ; Brun N. ; Budarin V. L. ; Su D. S. ; del Monte F. ; Clark J. H. ; MacLachlan M. J. Chem. Soc. Rev. 2015, 44 (1), 250.
doi: 10.1039/C4CS00232F |
64 |
Baccile N. ; Falco C. ; Titirici M. M. Green Chem. 2014, 16 (12), 4839.
doi: 10.1039/C3GC42570C |
65 |
Libra J. A. ; Ro K. S. ; Kammann C. ; Funke A. ; Berge N. D. ; Neubauer Y. ; Titirici M. M. ; Fühner C. ; Bens O. ; Kern J. R. Biofuels 2011, 2 (1), 71.
doi: 10.4155/bfs.10.81 |
66 |
Titirici M. M. ; Antonietti M. ; Baccile N. Green Chem. 2008, 10 (11), 1204.
doi: 10.1039/B807009A |
67 |
Zhao L. ; Fan L. Z. ; Zhou M. Q. ; Guan H. ; Qiao S. ; Antonietti M. ; Titirici M. M. Adv. Mater. 2010, 22 (45), 5202.
doi: 10.1002/adma.201002647 |
68 |
Kubo S. ; Tan I. ; White R. J. ; Antonietti M. ; Titirici M. M. Chem. Mater. 2010, 22 (24), 6590.
doi: 10.1021/cm102556h |
69 |
Ren Y. ; Xu Q. ; Zhang J. ; Yang H. ; Wang B. ; Yang D. ; Hu J. ; Liu Z. ACS Appl. Mater. Interfaces 2014, 6 (12), 9689.
doi: 10.1021/am502035g |
70 |
Yu Z. ; Wang X. ; Song X. ; Liu Y. ; Qiu J. Carbon 2015, 95, 852.
doi: 10.1016/j.carbon.2015.08.105 |
71 |
Wang J. ; Ding B. ; Hao X. ; Xu Y. ; Wang Y. ; Shen L. ; Dou H. ; Zhang X. Carbon 2016, 102, 255.
doi: 10.1016/j.carbon.2016.02.047 |
72 |
Chang Y. ; Antonietti M. ; Fellinger T.-P. Angew. Chem. Int. Ed. 2015, 54 (18), 5507.
doi: 10.1002/anie.201411685 |
73 |
Yin H. ; Lu B. ; Xu Y. ; Tang D. ; Mao X. ; Xiao W. ; Wang D. ; Alshawabkeh A. N. Environ. Sci. Technol. 2014, 48 (14), 8101.
doi: 10.1021/es501739v |
74 |
Elumeeva K. ; Fechler N. ; Fellinger T. P. ; Antonietti M. Mater. Horiz. 2014, 1 (6), 588.
doi: 10.1039/C4MH00123K |
75 |
Liu X. ; Giordano C. ; Antonietti M. Small 2014, 10 (1), 193.
doi: 10.1002/smll.201300812 |
76 |
Simon P. ; Gogotsi Y. Nat. Mater. 2008, 7, 845.
doi: 10.1038/nmat2297 |
77 |
Wang D. W. ; Li F. ; Liu M. ; Lu G. Q. ; Cheng H. M. Angew. Chem. Int. Ed. 2008, 47 (2), 373.
doi: 10.1002/anie.200702721 |
78 |
Wang Q. ; Yan J. ; Wang Y. ; Wei T. ; Zhang M. ; Jing X. ; Fan Z. Carbon 2014, 67, 119.
doi: 10.1016/j.carbon.2013.09.070 |
79 |
Huang W. ; Zhang H. ; Huang Y. ; Wang W. ; Wei S. Carbon 2011, 49 (3), 838.
doi: 10.1016/j.carbon.2010.10.025 |
80 |
Chen C. ; Zhang Y. ; Li Y. ; Dai J. ; Song J. ; Yao Y. ; Gong Y. ; Kierzewski I. ; Xie J. ; Hu L. Energy Environ. Sci. 2017, 10 (2), 538.
doi: 10.1039/C6EE03716J |
81 |
Cheng P. ; Li T. ; Yu H. ; Zhi L. ; Liu Z. ; Lei Z. J. Phys. Chem. C 2016, 120 (4), 2079.
doi: 10.1021/acs.jpcc.5b11280 |
82 |
Guo N. ; Li M. ; Wang Y. ; Sun X. ; Wang F. ; Yang R. RSC Adv. 2016, 6 (103), 101372.
doi: 10.1039/C6RA22426A |
83 |
Li H. ; Qi. C. ; Tao Y. ; Liu H. ; Wang D. ; Li F. ; Yang Q. H. ; Cheng H. M. Adv. Energy Mater. 2019, 1900079.
doi: 10.1002/aenm.201900079 |
84 |
Wang Q. ; Yan J. ; Dong Z. L. ; Qu L. T. ; Fan Z. J. Energy. Storage. Mater. 2015, 1 (42), 504.
doi: 10.1016/j.ensm.2015.09.001 |
85 |
Xu B. ; Wu F. ; Chen R. ; Cao G. P. ; Chen S. ; Zhou Z. ; Yang Y. S. Electrochem. Commun. 2008, 10 (5), 795.
doi: 10.1016/j.elecom.2008.02.033 |
86 | Xu B. ; Zhang H. ; Cao G. P. ; Zhang W. F. ; Yang Y. S. Prog. Chem. 2011, 23 (Z1), 605. |
徐斌; 张浩; 曹高萍; 张文峰; 杨裕生. 化学进展, 2011, 23 (Z1), 605. | |
87 |
Wang Q. ; Yan J. ; Fan Z. Energy Environ. Sci. 2016, 9 (3), 729.
doi: 10.1039/C5EE03109E |
88 |
Liu H. ; Song H. ; Chen X. ; Zhang S. ; Zhou J. ; Ma Z. J. Power Sources 2015, 285, 303.
doi: 10.1016/j.jpowsour.2015.03.115 |
89 |
Xu B. ; Zheng D. ; Jia M. ; Cao G. P. ; Yang Y. S. Electrochim. Acta 2013, 98, 176.
doi: 10.1016/j.electacta.2013.03.053 |
90 |
Zhu Z. H. ; Hatori H. ; Wang S. B. ; Lu G. Q. J. Phys. Chem. B 2005, 109 (35), 16744.
doi: 10.1021/jp051787o |
91 |
Zhi M. ; Xiang C. ; Li J. ; Li M. ; Wu N. Nanoscale 2013, 5 (1), 72.
doi: 10.1039/C2NR32040A |
92 |
Wang G. ; Zhang L. ; Zhang J. Chem. Soc. Rev. 2012, 41 (2), 797.
doi: 10.1039/C1CS15060J |
93 |
Wang P. ; Ye H. ; Yin Y. X. ; Chen H. ; Bian Y. B. ; Wang Z. R. ; Cao F. F. ; Guo Y. G. Adv. Mater. 2019, 31 (4), 1805134.
doi: 10.1002/adma.201805134 |
94 |
Guo N. ; Li M. ; Sun X. ; Wang F. ; Yang R. Mater. Chem. Phys. 2017, 201, 399.
doi: 10.1016/j.matchemphys.2017.08.054 |
95 |
Wang R. ; Wang P. ; Yan X. ; Lang J. ; Peng C. ; Xue Q. ACS Appl. Mater. Interfaces 2012, 4 (11), 5800.
doi: 10.1021/am302077c |
96 |
Cheng B. H. ; Tian K. ; Zeng R. J. ; Jiang H. Sustain. Energy Fuels 2017, 1 (4), 891.
doi: 10.1039/C7SE00029D |
97 |
Jin Z. ; Yan X. ; Yu Y. ; Zhao G. J. Mater. Chem. A 2014, 2 (30), 11706.
doi: 10.1039/C4TA01413H |
98 |
Wang P. ; Wang Q. ; Zhang G. ; Jiao H. ; Deng X. ; Liu L. J. Solid State Electrochem. 2016, 20 (2), 319.
doi: 10.1007/s10008-015-3042-1 |
99 |
Yang C. S. ; Jang Y. S. ; Jeong H. K. Current Applied Phys. 2014, 14 (12), 1616.
doi: 10.1016/j.cap.2014.09.021 |
100 |
Zhang L. ; Zhang F. ; Yang X. ; Leng K. ; Huang Y. ; Chen Y. Small 2013, 9 (8), 1342.
doi: 10.1002/smll.201202943 |
101 |
Zhang Q. ; Han K. ; Li S. ; Li M. ; Li J. ; Ren K. Nanoscale 2018, 10 (5), 2427.
doi: 10.1039/C7NR07158B |
102 |
Niu Q. ; Gao K. ; Tang Q. ; Wang L. ; Han L. ; Fang H. ; Zhang Y. ; Wang S. ; Wang L. Carbon 2017, 123, 290.
doi: 10.1016/j.carbon.2017.07.078 |
103 |
Falco C. ; Sieben J. M. ; Brun N. ; Sevilla M. ; vander Mauelen T. ; Morallón E. ; Cazorla-Amorós D. ; Titirici M. M. ChemSusChem 2013, 6 (2), 374.
doi: 10.1002/cssc.201200817 |
104 |
Wang C. ; Wu D. ; Wang H. ; Gao Z. ; Xu F. ; Jiang K. J. Power Sources 2017, 363, 375.
doi: 10.1016/j.jpowsour.2017.07.097 |
105 |
Ferrero G. A. ; Fuertes A. B. ; Sevilla M. Sci. Rep. 2015, 5, 16618.
doi: 10.1038/srep16618 |
106 |
Zhao Y. Q. ; Lu M. ; Tao P. Y. ; Zhang Y. J. ; Gong X. T. ; Yang Z. ; Zhang G. Q. ; Li H. L. J. Power Sources 2016, 307, 391.
doi: 10.1016/j.jpowsour.2016.01.020 |
107 |
Guo N. ; Li M. ; Sun X. ; Wang F. ; Yang R. Green Chem. 2017, 19 (11), 2595.
doi: 10.1039/C7GC00506G |
108 |
Yu D. ; Chen C. ; Zhao G. ; Sun L. ; Du B. ; Zhang H. ; Li Z. ; Sun Y. ; Besenbacher F. ; Yu M. ChemSusChem 2018, 11 (10), 1678.
doi: 10.1002/cssc.201800202 |
109 |
Jiang L. ; Sheng L. ; Chen X. ; Wei T. ; Fan Z. J. Mater. Chem. A 2016, 4 (29), 11388.
doi: 10.1039/C6TA02570F |
110 |
Yi J. ; Qing Y. ; Wu C. ; Zeng Y. ; Wu Y. ; Lu X. ; Tong Y. J. Power Sources 2017, 351, 130.
doi: 10.1016/j.jpowsour.2017.03.036 |
111 |
Zhu B. ; Liu B. ; Qu C. ; Zhang H. ; Guo W. ; Liang Z. ; Chen F. ; Zou R. J. Mater. Chem. A 2018, 6 (4), 1523.
doi: 10.1039/C7TA09608A |
112 |
Long C. ; Qi D. ; Wei T. ; Yan J. ; Jiang L. ; Fan Z. Adv. Funct. Mater. 2014, 24 (25), 3953.
doi: 10.1002/adfm.201304269 |
113 |
Subramanian V. ; Luo C. ; Stephan A. M. ; Nahm K. S. ; Thomas S. ; Wei B. J. Phys. Chem. C 2007, 111 (20), 7527.
doi: 10.1021/jp067009t |
114 |
Lu S. Y. ; Jin M. ; Zhang Y. ; Niu Y. B. ; Gao J. C. ; Li C. M. Adv. Energy Mater. 2018, 8 (11), 1702545.
doi: 10.1002/aenm.201702545 |
115 |
Rufford T. E. ; Hulicova-Jurcakova D. ; Zhu Z. ; Lu G. Q. Electrochem. Commun. 2008, 10 (10), 1594.
doi: 10.1016/j.elecom.2008.08.022 |
116 |
Pang J. ; Zhang W. ; Zhang J. ; Cao G. ; Han M. ; Yang Y. Green Chem. 2017, 19 (16), 3916.
doi: 10.1039/C7GC01434A |
117 |
Kim T. ; Jung G. ; Yoo S. ; Suh K. S. ; Ruoff R. S. ACS Nano 2013, 7 (8), 6899- 6905.
doi: 10.1021/nn402077v |
118 |
Xu J. ; Tan Z. ; Zeng W. ; Chen G. ; Wu S. ; Zhao Y. ; Ni K. ; Tao Z. ; Ikram M. ; Ji H. ; et al Adv. Mater. 2016, 28 (26), 5222.
doi: 10.1002/adma.201600586 |
119 |
Bu Y. ; Sun T. ; Cai Y. ; Du L. ; Zhuo O. ; Yang L. ; Wu Q. ; Wang X. ; Hu Z. Adv. Mater. 2017, 29 (24), 1700470.
doi: 10.1002/adma.201700470 |
120 |
Vix-Guterl C. ; Frackowiak E. ; Jurewicz K. ; Friebe M. ; Parmentier J. ; Béguin F. Carbon 2005, 43 (6), 1293.
doi: 10.1016/j.carbon.2004.12.028 |
121 |
Yoon Y. ; Lee K. ; Baik C. ; Yoo H. ; Min M. ; Park Y. ; Lee S. ; Lee H. Adv. Mater. 2013, 25 (32), 4437.
doi: 10.1002/adma.201301230 |
122 |
Zapata-Benabithe Z. ; Carrasco-Marín F. ; de Vicente J. ; Moreno-Castilla C. Langmuir 2013, 29 (20), 6166.
doi: 10.1021/la4007422 |
123 |
Chang L. ; Stacchiola D. ; Hu Y. ACS Appl. Mater. Interfaces 2017, 9 (29), 24655- 24661.
doi: 10.1021/acsami.7b07381 |
124 |
Pham D. ; Lee T. ; Luong D. ; Yao F. ; Ghosh A. ; Le V. ; Kim T. ; Li B. ; Chang J. ; Lee Y. ACS Nano 2015, 9 (2), 2018.
doi: 10.1021/nn507079x |
125 |
Lei Z. ; Lu L. ; Zhao X. S. Energy Environ. Sci. 2012, 5 (4), 6391.
doi: 10.1039/C1EE02478G |
126 |
Hulicova-jurcakova D. ; Seredych M. ; Lu G. Q. ; Bandosz T. J. Adv. Funct. Mater. 2009, 19 (3), 438.
doi: 10.1002/adfm.200801236 |
127 |
He X. ; Ling P. ; Yu M. ; Wang X. ; Zhang X. ; Zheng M. Electrochim. Acta 2013, 105, 635.
doi: 10.1016/j.electacta.2013.05.050 |
128 |
Candelaria S. L. ; Garcia B. B. ; Liu D. W. ; Cao G. Z. J. Mater. Chem. 2012, 22, 9884.
doi: 10.1039/c2jm30923h |
129 |
Paraknowitsch J. P ; Thomas A. ; Antonietti M. J. Mater Chem. 2010, 20, 6746.
doi: 10.1039/C0JM00869A |
130 |
Xu S. W. ; Zhao Y. Q. ; Xu Y. X. ; Chen Q. H. ; Zhang G. Q. ; Xu Q. Q. ; Zhao D. D. ; Zhang X. ; Xu C. L. J. Power Sources 2018, 401, 375.
doi: 10.1016/j.jpowsour.2018.09.012 |
131 |
Li L. ; Zhou Y. ; Zhou H. ; Qu H. ; Zhang C. ; Guo M. ; Liu X. ; Zhang Q. ; Gao B. ACS Sustain. Chem. Eng. 2019, 7 (1), 1337.
doi: 10.1021/acssuschemeng.8b05022 |
132 |
Yu W. ; Wang H. ; Liu S. ; Mao N. ; Liu X. ; Shi J. ; Liu W. ; Chen S. ; Wang X. J. Mater. Chem. A 2016, 4 (16), 5973.
doi: 10.1039/C6TA01821A |
133 |
Li Z. ; Mi H. ; Bai Z. ; Ji C. ; Sun L. ; Gao S. ; Qiu J. J. Power Sources 2019, 418, 112.
doi: 10.1016/j.jpowsour.2019.02.034 |
134 |
Cheng P. ; Gao S. ; Zang P. ; Yang X. ; Bai Y. ; Xu H. ; Liu Z. ; Lei Z. Carbon 2015, 93, 315.
doi: 10.1016/j.carbon.2015.05.056 |
135 |
Wu X. ; Jiang L. ; Long C. ; Fan Z. Nano Energy 2015, 13, 527.
doi: 10.1016/j.nanoen.2015.03.013 |
136 |
Yang X. ; Li M. ; Guo N. ; Yan M. ; Yang R. ; Wang F. RSC Adv. 2016, 6 (6), 4365.
doi: 10.1039/C5RA24055G |
137 |
Zhu G. ; Ma L. ; Lv H. ; Hu Y. ; Chen T. ; Chen R. ; Liang J. ; Wang X. ; Wang Y. ; Yan C. ; et al Nanoscale 2017, 9 (3), 1237.
doi: 10.1039/C6NR08139H |
138 |
Ma G. ; Yang Q. ; Sun K. ; Peng H. ; Ran F. ; Zhao X. ; Lei Z. Bioresour. Technol. 2015, 197, 137.
doi: 10.1016/j.biortech.2015.07.100 |
139 |
Gao S. ; Liu H. ; Geng K. ; Wei X. .Nano Energy 2015, 12, 785.
doi: 10.1016/j.nanoen.2015.02.004 |
140 |
Liu B. ; Liu Y. ; Chen H. ; Yang M. ; Li H. J. Power Sources 2017, 341, 309.
doi: 10.1016/j.jpowsour.2016.12.022 |
141 |
Liu J. ; Deng Y. ; Li X. ; Wang L. ACS Sustain. Chem. Eng. 2016, 4 (1), 177.
doi: 10.1021/acssuschemeng.5b00926 |
142 |
Chen L. ; Ji T. ; Mu L. ; Zhu J. Carbon 2017, 111, 839.
doi: 10.1016/j.carbon.2016.10.054 |
143 |
Shen W. ; Fan W. J. Mater. Chem. A 2013, 1 (4), 999.
doi: 10.1039/C2TA00028H |
144 |
Li Y. ; Zhang S. ; Song H. ; Chen X. ; Zhou J. ; Hong S Electrochim. Acta 2015, 180, 879.
doi: 10.1016/j.electacta.2015.09.039 |
145 |
Liu J. ; Li H. ; Zhang H. ; Liu Q. ; Li R. ; Li B. ; Wang J. J. Solid State Chem. 2018, 257, 64.
doi: 10.1016/j.jssc.2017.07.033 |
146 |
Wang K. ; Yan R. ; Zhao N. ; Tian X. ; Li X. ; Lei S. ; Song Y. ; Guo Q. ; Liu L. Mater. Lett. 2016, 174, 249.
doi: 10.1016/j.matlet.2016.03.063 |
147 |
Long C. ; Chen X. ; Jiang L. ; Zhi L. ; Fan Z. Nano Energy 2015, 12, 141.
doi: 10.1016/j.nanoen.2014.12.014 |
148 |
Li J. ; Liu K. ; Gao X. ; Yao B. ; Huo K. ; Cheng Y. ; Cheng X. ; Chen D. ; Wang B. ; Sun W. ; et al ACS Appl. Mater. Interfaces 2015, 7 (44), 24622.
doi: 10.1021/acsami.5b06698 |
149 |
Dong X. ; Jin H. ; Wang R. ; Zhang J. ; Feng X. ; Yan C. ; Chen S. ; Wang S. ; Wang J. ; Lu J. Adv. Energy Mater. 2018, 8 (11), 1702695.
doi: 10.1002/aenm.201702695 |
150 |
Liu X. ; Ma C. ; Li J. ; Zielinska B. ; Kalenczuk R. J. ; Chen X. ; Chu P. K. ; Tang T. ; Mijowska E. J. Power Sources 2019, 412, 1.
doi: 10.1016/j.jpowsour.2018.11.032 |
151 |
Jiang Y. ; Yan J. ; Wu X. ; Shan D. ; Zhou Q. ; Jiang L. ; Yang D. ; Fan Z. J. Power Sources 2016, 307, 190.
doi: 10.1016/j.jpowsour.2015.12.081 |
152 |
Xie Q. ; Bao R. ; Zheng A. ; Zhang Y. ; Wu S. ; Xie C. ; Zhao P. ACS Sustain. Chem. Eng. 2016, 4 (3), 1422.
doi: 10.1021/acssuschemeng.5b01417 |
153 |
Lee S. W. ; Kim B. S. ; Chen S. ; Shao-Horn Y. ; Hammond P. T. J. Am. Chem. Soc. 2008, 131 (2), 671.
doi: 10.1021/ja807059k |
154 |
Zhou Y. ; Ghaffari M. ; Lin M. ; Parsons E. M. ; Liu Y. ; Wardle B. L. ; Zhang Q. M. Electrochim. Acta 2013, 111, 608.
doi: 10.1016/j.electacta.2013.08.032 |
155 |
Xu Y. ; Lin Z. ; Zhong X. ; Huang X. ; Weiss N. O. ; Huang Y. ; Duan X. Nat. Commun. 2014, 5, 4554.
doi: 10.1038/ncomms5554 |
[1] | 陈帅, 余创, 罗启悦, 魏超超, 李莉萍, 李广社, 程时杰, 谢佳. 卤化物固态电解质研究进展[J]. 物理化学学报, 2023, 39(8): 2210032 -0 . |
[2] | 彭林峰, 余创, 魏超超, 廖聪, 陈帅, 张隆, 程时杰, 谢佳. 锂硫银锗矿固态电解质研究进展[J]. 物理化学学报, 2023, 39(7): 2211034 -0 . |
[3] | 傅焰鹏, 朱昌宝. 钠离子电池电极材料的设计策略——固态离子学视角[J]. 物理化学学报, 2023, 39(3): 2209002 -0 . |
[4] | 齐亚娥, 夏永姚. 电解液调控策略提升水系锌离子电池正极材料电化学性能[J]. 物理化学学报, 2023, 39(2): 2205045 -0 . |
[5] | 莫英, 肖逵逵, 吴剑芳, 刘辉, 胡爱平, 高鹏, 刘继磊. 锂离子电池隔膜的功能化改性及表征技术[J]. 物理化学学报, 2022, 38(6): 2107030 - . |
[6] | 薄拯, 孔竞, 杨化超, 郑周威, 陈鹏鹏, 严建华, 岑可法. 基于混合溶剂有机电解液的超低温孔洞石墨烯超级电容[J]. 物理化学学报, 2022, 38(4): 2005054 - . |
[7] | 姜美慧, 盛利志, 王超, 江丽丽, 范壮军. 超级电容器用石墨烯薄膜:制备、基元结构及表面调控[J]. 物理化学学报, 2022, 38(2): 2012085 - . |
[8] | 李慧, 刘双宇, 袁天赐, 王博, 盛鹏, 徐丽, 赵广耀, 白会涛, 陈新, 陈重学, 曹余良. NaOH浓度对Na0.44MnO2储钠性能的影响[J]. 物理化学学报, 2021, 37(3): 1907049 - . |
[9] | 王玖,吴南石,刘涛,曹少文,余家国. 用于超级电容器的锰钴氧化物/碳纤维材料[J]. 物理化学学报, 2020, 36(7): 1907072 - . |
[10] | 佟永丽, 戴美珍, 邢磊, 刘恒岐, 孙婉婷, 武祥. 基于NiCo2O4纳米片电极的非对称混合电容器[J]. 物理化学学报, 2020, 36(7): 1903046 - . |
[11] | 曹鑫鑫,周江,潘安强,梁叔全. 钠离子电池磷酸盐正极材料研究进展[J]. 物理化学学报, 2020, 36(5): 1905018 - . |
[12] | 朱家瑶, 董玥, 张苏, 范壮军. 炭-/石墨烯量子点在超级电容器中的应用[J]. 物理化学学报, 2020, 36(2): 1903052 - . |
[13] | 王易,霍旺晨,袁小亚,张育新. 二氧化锰与二维材料复合应用于超级电容器[J]. 物理化学学报, 2020, 36(2): 1904007 - . |
[14] | 魏风,毕宏晖,焦帅,何孝军. 超级电容器用相互连接的类石墨烯纳米片[J]. 物理化学学报, 2020, 36(2): 1903043 - . |
[15] | 田地,卢晓峰,李闱墨,李悦,王策. 静电纺纳米纤维基超级电容器无粘合剂电极材料的研究进展[J]. 物理化学学报, 2020, 36(2): 1904056 - . |
|