物理化学学报 >> 2021, Vol. 37 >> Issue (5): 2006080.doi: 10.3866/PKU.WHXB202006080
所属专题: CO2还原
收稿日期:
2020-06-30
录用日期:
2020-07-25
发布日期:
2020-07-31
通讯作者:
崔新江,石峰
E-mail:xinjiangcui@licp.cas.cn;fshi@licp.cas.cn
作者简介:
Xinjiang Cui obtained his Ph.D. degree in 2013 supervised by Prof. Youquan Deng and Prof. Feng Shi at Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences. After a five- and half-year postdoctoral research in Leibniz Institute for Catalysis and École Polytechnique Fédérale de Lausanne (EPFL). Xinjiang Cui joined the faculty of LICP and is focusing on the transformation of light chain hydrocarbons and the synthesis of fine chemicals with olefins by heterogeneous catalysis基金资助:
Received:
2020-06-30
Accepted:
2020-07-25
Published:
2020-07-31
Contact:
Xinjiang Cui,Feng Shi
E-mail:xinjiangcui@licp.cas.cn;fshi@licp.cas.cn
About author:
Email: fshi@licp.cas.cn (F.S.); Tel.: +86-931-4968142 (F.S.)Supported by:
摘要:
近年来,由于其接近100%的原子利用率和独特的催化性能,单原子催化剂研究受到了极大的关注。近年来,人们针对二氧化碳选择性催化转化的单原子催化剂研究开展了大量的工作,实现了一氧化碳、甲烷、甲醇、甲酸以及C2+化合物等化学品的选择性合成。此外,通过引入胺类以及环氧化合物,二氧化碳可以催化转化为高附加值的精细化学品。本综述总结了近几年来单原子催化剂通过电催化、光催化以及热催化的方法在二氧化碳选择性还原方面的研究工作,并深入探讨单原子催化剂在二氧化碳选择还原反应中的结构性能关系以及其结构的调控对催化剂活性的影响。
崔新江, 石峰. 基于单原子催化剂的二氧化碳选择性转化[J]. 物理化学学报, 2021, 37(5), 2006080. doi: 10.3866/PKU.WHXB202006080
Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts[J]. Acta Phys. -Chim. Sin. 2021, 37(5), 2006080. doi: 10.3866/PKU.WHXB202006080
Fig 2
(a, b) Magnified HAADF-STEM images of Ni SAs/N-C. The Ni single atoms are marked with red circles. (c) Corresponding EDS maps revealing the homogeneous distribution of Ni and N on the carbon support. (d) STEM-EDS mapping of Ni in Ni/N-CNTs. (e) AC-STEM-annular dark-field (ADF) images showing the atomic dispersion of Ni in Ni/N-CNTs. (f) ADF image showing the Ni single atoms located on the walls of a CNT (The red circles show typical Ni atoms embedded in the carbon plane of walls. Color online). Adapted from Ref. 51, Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 3
(a) TEM image and (b) Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image of Ni-SSC-N2-C. (c) EDS mapping of Ni, N and C elements in Ni-SSC-N2-C. (d) FEs of CO at different applied potentials and (e) stability of Ni-SSC-N2-C at −0.8 V during 10 h. Adapted from Ref. 57, Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 4
(a) Illustration for the synthesis of Ni-N3-V. (b) HAADF-STEM image for Ni single atoms (bright dots) in Ni-N3-V. (c) The pore diameter distribution for Ni-N3-V obtained by nitrogen adsorption isotherm. (d) Ni K-edge k3-weighted FT-EXAFS spectra of Ni-N3-V, Ni-N4, and Ni foil (the EXAFS intensity of Ni foil is shown at one third value). (e) Specific current density of CO for Ni-N3-V, Ni-N4 and NC. Adapted from Ref. 58. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 5
(a) Photographs of assembled reactor, membrane electrode assembly, and individual cell components. (b) Aberration-corrected HAADF-STEM image. Scale bar represents 2 nm. Adapted from Ref. 60, Copyright 2019, Elsevier Inc. (c) The CO2RR stability test of Ni-NCB on CFP (1.25 mg∙cm−2) in an H-cell under 0.55 V over-potential. Adapted from Ref. 61. Copyright 2019, Elsevier Inc. "
Fig 6
(a) LSV curves of Co-N5/HNPCSs-T. (b) CO Faradaic efficiencies of Co-N5/HNPCSs-T Adapted from Ref. 62, Copyright 2018, American Chemical Society. (c) LSV of Co-N2, Co-N3, Co-N4, Co NPs and pure carbon paper as background.(d) CO Faradaic efficiencies at different applied potentials. Adapted from Ref. 63. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 7
(a) CO and H2 Faradaic efficiency (FE) for STPyP-Co at different applied potential. (b) Chronoamperograms and Faradaic efficiency (FE) of CO and H2 for STPyP-Co at @0.62 V vs RHE. DFT calculation of electrocatalytic CO2 reduction on STPyPCo. (c) Calculated free- energy states of CO2 reduction to CO on STPyPCo and MTPyP-Co. (d) Optimized geometry of intermediate [STPyP-Co-COOH]. (e) and (f) Spatial representation of HOMO orbital of [STPyP-Co-COOH] and [MTPyP-Co-COOH] intermediates, respectively. Adapted from Ref. 64. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 9
(a) N 1s XPS regions of mesoNC-Fe with deconvolution into the N-speciation. (b) N distribution mesoNC-Fe and microNC-Fe. (c) FECO of mesoNC-Fe (black) microNC-Fe (red) mesoNC (blue) and microNC (pink) in CO2 reduction to CO. (d) DFT-optimized geometry for potential local environments of the iron active site in their most stable multiplicity state. Adapted from Ref. 67, Copyright 2019, Elsevier Inc. "
Fig 10
(a) Magnified view of STEM images of uniformly distributed single Fe atoms in graphene, scale bar 2 nm. (b) The experimental XANES curves with FeN5 (pyrolyzed sample of hemin and melamine on graphene, H-M-G). (c) Faradaic efficiency (FE) of the electrocatalytic activity of as-synthesized catalysts. (d) Partial charge density of the plane formed by O-C-Fe-N-pyrrolic N within the energy range of −3.31 to −0.99 eV for the FeN5 system with adsorbed CO. Adapted from Ref. 68, Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 11
(a) Aberration-corrected HAADF-STEM image, (b) EDS spectrum of the red square region. (c) N1s XPS spectra of Fe3+-N-C and Fe3+TPPCl. Red, green and pink peaks are assigned to pyrrolic N coordinated to metals, uncoordinated pyrrolic N and graphitic N, respectively, Color online. (d) Faradaic efficiency (FE) of CO (solid lines) and H2 (dashed lines) production. Adapted from Ref. 37, Copyright 2019, Science. "
Fig 12
(a) Schematic illustration of the synthesis of M-N-C catalysts. (b) Atomic structure of M-N2+2-C8 (M = Fe or Co) active sites. (c) Calculated free energy evolution of CO2 reduction to CO on M-N2+2-C8 sites under an applied electrode potential (U) of 0 V and −0.6 V. Adapted from Ref. 71, Copyright 2018, American Chemical Society. "
Fig 14
(a) TEM image of as-prepared Mo@NG material. (b) HAADF-STEM image of the edge area of Mo@NG in (a). (c) The formate production comparison of NG (blue filled solid column) and Mo@NG (red filled solid column) at different potential vs RHE. Color online. (d) The formate faraday efficiency comparison of NG and Mo@NG. Adapted from Ref. 76, Copyright 2019, American Chemical Society. "
Fig 15
(a) HAADF-STEM image, (b) Cu K-edge EXAFS analysis in the Fourier-transformed space; Faradaic yields of CO2 reduction on Cu0.5NC. Faradaic yields of (c) at @1.2 V vs RHE in a 0.1 mol·L−1 CsHCO3 aqueous solution under various flow rates of CO2 and (d) at 2.5 mL∙min−1 CO2 flow-rate in 0.1 mol·L−1 CsHCO3 aqueous solution, at various applied potentials during CPE. Adapted from Ref. 77, Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 16
(a) View of the 3D network of MOF-525-Co featuring a highly porous framework and incorporated active sites. Time dependent (b) CO and (c) CH4 evolution over MOF-525-Co (green), MOF-525-Zn (orange), MOF-525 (purple) photocatalysts, and H6TCPP ligand (pink). (d) Enhancement of production evolution over MOF-525-Co (green), MOF-525-Zn (orange), and MOF-525 (purple). (e) Production yield of CO (green) and CH4 (orange) over MOF-525-Co photocatalyst as a measure of reproducibility by cycling. Color online. Adapted from Ref. 85, Copyright 2016, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 17
(a) Schematic illustration for the synthetic procedure of the Co1–G catalyst. (b) HAADF-STEM images of the Co1-G catalyst. The atomically dispersed Co atoms are highlighted by the yellow circles. (c) TONs of CO and H2 production by Co1-G nanosheets in the first 3 h under visible-light (λ > 420 nm) irradiation, in comparison with those by graphene (G), CoCl2, graphene with CoCl2 (CoCl2+ G), and graphene oxide with CoCl2 (CoCl2 + GO) under the same condition. (d) TONs of CO and H2 production in the first 3 h using Co1-G nanosheets as a catalyst in cycling tests. Each cycle takes 3 h. Adapted from Ref. 86, Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 18
(a) HAADF-STEM images of Co-Bi3O4Br, (b) EDS mapping images of Co, Bi, O, and Br. (c) Photoreduction of CO2 into CO over Bi3O4Br and Co–Bi3O4Br materials. (d) Mass spectra of 13CO (m/z = 29) produced over Co-Bi3O4Br-1 in photoreduction of 13CO2. Adapted from Ref. 88, Copyright 2019, Nature Communication. "
Fig 19
(a) Illustration for the synthesis of mTiO2 and Cu-mT (mTiO2). (b) Magnified HAADF-STEM image of 1Cu-mT. (c) Time-dependent product yield over mTiO2 and 1Cu-mT. (d) Recycling experiments over 1Cu-mT during every 2 h of reaction time. (e) Converted amount of CO2 as well as produced CH4/CO molar ratios over samples of TiO2, mTiO2, and 1Cu-mT. Adapted from Ref. 91, Copyright 2019, American Chemical Society. "
Fig 20
(a) HAADF-STEM images of Ni-TpBpy. (b) Photocatalytic evolutions of CO and H2 by Ni-TpBpy under 1 and 0.1 atm (1 atm = 101325 Pa) (diluted with Ar, inset). (c) Stability tests of Ni-TpBpy for selective photoreduction of CO2. (d) Ni-TpBpy, Ni-TpPa, and Ni-TbBpy for photocatalytic reduction of CO2 in a 2 h reaction. Adapted from Ref. 92, Copyright 2019, Nature Communication. "
Fig 21
(a) Preparation and nanostructure characterization of HNTM-Au-SA. (b) HAADF STEM image. Single Au atoms are highlighted in red circles. (c) The FT-EXAFS space-fitting curve of HNTM-Au-SA. Inset shows schematic models of HNTM-Au-SA, Au (yellow), N (green), C (gray), and H (white). (d) FECO on HNTM-Au-SA at the potentials of −0.6 V to −1.1 V under visible light (red line)/dark (black line). (e) TOF curves of HNTM-Au-SA under visible light (red line)/dark (black line). Error bars are ± sd 94. Color online. Adapted from Ref. 94, Copyright 2019, American Chemical Society. "
Fig 22
(a) HAADF-STEM images of 0.05Pt/CeO2; (b) Catalytic performance selectivity of (a) 0.05Pt/CeO2 and (b) 2Pt/CeO2 toward CO and CH4 100, Adapted from Ref. 100, Copyright 2018, American Chemical Society; (c) STEM-HAADF image of fresh Ni-SSCs, the brighter spots circled in red; (d) Product formation rate of Ni-SSCs at 30 bar (1 bar = 100 kPa), different temperatures, upper corner left represent the sample after 300 ℃ testing 104. Adapted from Ref. 104, Copyright 2019, American Chemical Society."
Fig 23
(a) STEM image of 0.5% Pd/Al2O3. (b) STEM image of 1% Pd + 2.3% La2O3/MWCNT. (c) CO and (d) CH4 yield profiles during CO2 reduction reaction on 10% (black) and 0.5% (red) Pd/Al2O3. (e) CO2 conversion on 1% Pd/MWCNT (black) and 1% Pd + 2.3% La2O3/MWCNT (red), and (b) CO/CH4 yield profiles 1% Pd + 2.3% La2O3/MWCNT 101. Color online. Adapted from Ref. 101, Copyright 2013, American Chemical Society."
Fig 24
(a) HAADF-STEM images of fresh 1.25% Ir/AP-POP. (b) HAADF-STEM images of used 1.25% Ir/AP-POP after CO2 hydrogenation. (c) Catalytic activities, as reflected by the formic acid to amine ratio (AAR). (d) Formate yield during the hydrogenation of CO2 over 0.66% Ir/AP-POP for the first two sequential reactions, showing essentially identical yields. Inset: reuse of the 1.25% Ir/AP-POP catalyst with no activity loss for up to four runs 103. Adapted from Ref. 103. Copyright 2019, Elsevier Inc. "
Fig 25
(a) Thermal CO2 conversion using the SA Ni/Y2O3 nanosheets (SA Ni/Y2O3) and Ni nanoparticles/Y2O3 nanosheets (Ni/Y2O3) as a function of temperature. (b) CH4 and CO yields from the CO2 hydrogenation over the SA Ni/Y2O3 nanosheets as a function of temperature. (c) CO2 hydrogenation versus reaction time over the SA Ni/Y2O3 nanosheets at 240 ℃. (d) Aberration-corrected TEM image of the SA Ni/Y2O3 nanosheets after used. (e) Spatial temperature mapping of the selective light absorber-assisted quartz tube coated with the SA Ni/Y2O3 nanosheets under 1.0 kW∙m−2 of simulated solar irradiation obtained by an infrared camera. (f) The temperature and CO2 conversion achieved by the SA Ni/Y2O3 nanosheets with the selective light absorber-assisted photothermal system under different intensities of simulated solar light. Adapted from Ref. 105, Copyright 2019, Nature Communication. "
Fig 26
(a) HAADF-STEM image of Pt1/Ti3–xC2Ty. (b) Magnified HAADF image of the area in the yellow box in a. Schematic columns of atoms are overlaid on the experimental images (inset). (c) Catalytic performance of the N-formylation of aniline using different catalysts. (d) Recycling test of Pt1/Ti3−xC2Ty for the catalytic N-formylation of aniline. Color online. Adapted from Ref. 107, Copyright 2019, American Chemical Society. "
1 |
Flytzani-Stephanopoulos M. Acc. Chem. Res. 2014, 47, 783.
doi: 10.1021/ar4001845 |
2 |
Aresta M. ; Dibenedetto A. ; Angelini A. Chem. Rev. 2014, 114, 1709.
doi: 10.1021/cr4002758 |
3 |
Ding M. L. ; Flaig R. W. ; Jiang H. L. ; Yaghi O. M. Chem. Soc. Rev. 2019, 48, 2783.
doi: 10.1039/c8cs00829a |
4 |
Zhou W. ; Cheng K. ; Kang J. C. ; Zhou C. ; Subramanian V. ; Zhang Q. H. ; Wang Y. Chem. Soc. Rev. 2019, 48, 3193.
doi: 10.1039/c8cs00502h |
5 |
Nugent P. ; Belmabkhout Y. ; Burd S. D. ; Cairns A. J. ; Luebke R. ; Forrest K. ; Pham T. ; Ma S. Q. ; Space B. ; Wojtas L. ; et al Nature 2013, 495, 80.
doi: 10.1038/nature11893 |
6 |
Li T. ; Sullivan J. E. ; Rosi N. L. J. Am. Chem. Soc. 2013, 135, 9984.
doi: 10.1021/ja403008j |
7 |
Sarshar Z. ; Sun Z. K. ; Zhao D. Y. ; Kaliaguine S. Energy Fuels 2012, 26, 3091.
doi: 10.1021/ef3003137 |
8 |
Cai R. L. ; You B. ; Chen M. ; Wu L. M. Carbon 2019, 150, 43.
doi: 10.1016/j.carbon.2019.05.001 |
9 |
Ma X. T. ; Li Y. J. ; Duan L. B. ; Anthony E. ; Liu H. T. Appl. Energ. 2018, 225, 402.
doi: 10.1016/j.apenergy.2018.05.008 |
10 |
Chen W. C. ; Shen J. S. ; Jurca T. ; Peng C. J. ; Lin Y. H. ; Wang Y. P. ; Shih W. C. ; Yap G. P. A. ; Ong T. G. Angew. Chem. Int. Ed. 2015, 54, 15207.
doi: 10.1002/anie.201507921 |
11 |
Guo X. P. ; Peng Z. J. ; Traitangwong A. ; Wang G. ; Xu H. Y. ; Meeyoo V. ; Li C. S. ; Zhang S. J. Green Chem. 2018, 20, 4932.
doi: 10.1039/c8gc02337a |
12 |
Sakpal T. ; Lefferts L. J. Catal. 2018, 367, 171.
doi: 10.1016/j.jcat.2018.08.027 |
13 |
Wang X. ; Hong Y. C. ; Shi H. ; Szanyi J. J. Catal. 2016, 343, 185.
doi: 10.1016/j.jcat.2016.02.001 |
14 |
Wang F. ; He S. ; Chen H. ; Wang B. ; Zheng L. R. ; Wei M. ; Evans D. G. ; Duan X. J. Am. Chem. Soc. 2016, 138, 6298.
doi: 10.1021/jacs.6b02762 |
15 |
Gao P. ; Li S. G. ; Bu X. N. ; Dang S. S. ; Liu Z. Y. ; Wang H. ; Zhong L. S. ; Qiu M. H. ; Yang C. G. ; Cai J. ; et al Nat. Chem. 2017, 9, 1019.
doi: 10.1038/Nchem.2794 |
16 |
Dinh C. T. ; Burdyny T. ; Kibria M. G. ; Seifitokaldani A. ; Gabardo C. M. ; de Arquer F. P. G. ; Kiani A. ; Edwards J. P. ; De Luna P. ; Bushuyev O. S. ; et al Science 2018, 360, 783.
doi: 10.1126/science.aas9100 |
17 |
Rao H. ; Chmidt L. C. S. ; Bonin J. ; Robert M. Nature 2017, 548, 74.
doi: 10.1038/nature23016 |
18 |
Olah G. A. ; Prakash G. K. S. ; Goeppert A. J. Am. Chem. Soc. 2011, 133, 12881.
doi: 10.1021/ja202642y |
19 |
Blondiaux E. ; Pouessel J. ; Cantat T. Angew. Chem. Int. Ed. 2014, 53, 12186.
doi: 10.1002/anie.201407357 |
20 |
Liu X. F. ; Li X. Y. ; Qiao C. ; Fu H. C. ; He L. N. Angew. Chem. Int. Ed. 2017, 56, 7425.
doi: 10.1002/anie.201702734 |
21 |
Nguyen T. V. Q. ; Yoo W. J. ; Kobayashi S. Angew. Chem. Int. Ed. 2015, 54, 9209.
doi: 10.1002/anie.201504072 |
22 |
Klankermayer J. ; Wesselbaum S. ; Beydoun K. ; Leitner W. Angew. Chem. Int. Ed. 2016, 55, 7296.
doi: 10.1002/anie.201507458 |
23 |
Das U. K. ; Kumar A. ; Ben-David Y. ; Iron M. A. ; Milstein D. J. Am. Chem. Soc. 2019, 141, 12962.
doi: 10.1021/jacs.9b05591 |
24 |
Kar S. ; Sen R. ; Goeppert A. ; Prakash G. K. S. J. Am. Chem. Soc. 2018, 140, 1580.
doi: 10.1021/jacs.7b12183 |
25 |
Kar S. ; Sen R. ; Kothandaraman J. ; Goeppert A. ; Chowdhury R. ; Munoz S. B. ; Haiges R. ; Prakash G. K. S. J. Am. Chem. Soc. 2019, 141, 3160.
doi: 10.1021/jacs.8b12763 |
26 |
Wang L. ; Yan T. J. ; Song R. ; Sun W. ; Dong Y. C. ; Guo J. L. ; Zhang Z. Z. ; Wang X. X. ; Ozin G. A. Angew. Chem. Int. Ed. 2019, 58, 9501.
doi: 10.1002/anie.201904568 |
27 |
Scott D. J. ; Fuchter M. J. ; Ashley A. E. Chem. Soc. Rev. 2017, 46, 5689.
doi: 10.1039/c7cs00154a |
28 |
Mo Z. B. ; Pit A. ; Campos J. ; Kolychev E. L. ; Aldridge S. J. Am. Chem. Soc. 2016, 138, 3306.
doi: 10.1021/jacs.6b01170 |
29 |
Rokob T. A. ; Hamza A. ; Papai I. J. Am. Chem. Soc. 2009, 131, 10701.
doi: 10.1021/ja903878z |
30 |
Lee H. K. ; Lee Y. H. ; Morabito J. V. ; Liu Y. J. ; Koh C. S. L. ; Phang I. Y. ; Pedireddy S. ; Han X. M. ; Chou L. Y. ; Tsung C. K. ; et al J. Am. Chem. Soc. 2017, 139, 11513.
doi: 10.1021/jacs.7b04936 |
31 |
Li Z. H. ; Rayder T. M. ; Luo L. S. ; Byers J. A. ; Tsung C. K. J. Am. Chem. Soc. 2018, 140, 8082.
doi: 10.1021/jacs.8b04047 |
32 |
Moses-DeBusk M. ; Yoon M. ; Allard L. F. ; Mullins D. R. ; Wu Z. L. ; Yang X. F. ; Veith G. ; Stocks G. M. ; Narula C. K. J. Am. Chem. Soc. 2013, 135, 12634.
doi: 10.1021/ja401847c |
33 |
Qiao B. T. ; Wang A. Q. ; Yang X. F. ; Allard L. F. ; Jiang Z. ; Cui Y. T. ; Liu J. Y. ; Li J. ; Zhang T. Nat. Chem. 2011, 3, 634.
doi: 10.1038/Nchem.1095 |
34 |
Ding K. ; Gulec A. ; Johnson A. M. ; Schweitzer N. M. ; Stucky G. D. ; Marks L. D. ; Stair P. C. Science 2015, 350, 189.
doi: 10.1126/science.aac6368 |
35 |
Yang S. ; Kim J. ; Tak Y. J. ; Soon A. ; Lee H. Angew. Chem. Int. Ed. 2016, 55, 2058.
doi: 10.1002/anie.201509241 |
36 |
Cheng N. C. ; Stambula S. ; Wang D. ; Banis M. N. ; Liu J. ; Riese A. ; Xiao B. W. ; Li R. Y. ; Sham T. K. ; Liu L. M. ; et al Nat. Commun. 2016, 7, 13638.
doi: 10.1038/Ncomms13638 |
37 |
Gu J. ; Hsu C. S. ; Bai L. C. ; Chen H. M. ; Hu X. L. Science 2019, 364, 1091.
doi: 10.1126/science.aaw7515 |
38 |
Lucci F. R. ; Liu J. L. ; Marcinkowski M. D. ; Yang M. ; Allard L. F. ; Flytzani-Stephanopoulos M. ; Sykes E. C. H. Nat. Commun. 2015, 6, 8550.
doi: 10.1038/Ncomms9550 |
39 |
Cui X. J. ; Li W. ; Ryabchuk P. ; Junge K. ; Beller M. Nat. Catal. 2018, 1, 385.
doi: 10.1038/s41929-018-0090-9 |
40 |
Cui X. J. ; Junge K. ; Dai X. C. ; Kreyenschulte C. ; Pohl M. M. ; Wohlrab S. ; Shi F. ; Bruckner A. ; Beller M. ACS Cent. Sci. 2017, 3, 580.
doi: 10.1021/acscentsci.7b00105 |
41 |
Li Q. ; Fu J. J. ; Zhu W. L. ; Chen Z. Z. ; Shen B. ; Wu L. H. ; Xi Z. ; Wang T. Y. ; Lu G. ; Zhu J. J. ; et al J. Am. Chem. Soc. 2017, 139, 4290.
doi: 10.1021/jacs.7b00261 |
42 |
Luc W. ; Collins C. ; Wang S. W. ; Xin H. L. ; He K. ; Kang Y. J. ; Jiao F. J. Am. Chem. Soc. 2017, 139, 1885.
doi: 10.1021/jacs.6b10435 |
43 |
Cored J. ; Garcia-Ortiz A. ; Iborra S. ; Climent M. J. ; Liu L. C. ; Chuang C. H. ; Chan T. S. ; Escudero C. ; Concepcion P. ; Corma A. J. Am. Chem. Soc. 2019, 141, 19304.
doi: 10.1021/jacs.9b07088 |
44 |
Zhai Q. G. ; Xie S. J. ; Fan W. Q. ; Zhang Q. H. ; Wang Y. ; Deng W. P. ; Wang Y. Angew. Chem. Int. Ed. 2013, 52, 5776.
doi: 10.1002/anie.201301473 |
45 |
O'Mara P. B. ; Wilde P. ; Benedetti T. M. ; Andronescu C. ; Cheong S. ; Gooding J. J. ; Tilley R. D. ; Schuhmann W. J. Am. Chem. Soc. 2019, 141, 14093.
doi: 10.1021/jacs.9b07310 |
46 |
Sanchez-Contador M. S. ; Ateka A. ; Aguayo A. T. ; Bilbao J. Fuel Process. Technol. 2018, 179, 258.
doi: 10.1016/j.fuproc.2018.07.009 |
47 |
Wang X. X. ; Yang G. H. ; Zhang J. F. ; Chen S. Y. ; Wu Y. Q. ; Zhang Q. D. ; Wang J. W. ; Han Y. Z. ; Tan Y. S. Chem. Commun. 2016, 52, 7352.
doi: 10.1039/c6cc01965j |
48 |
Humphrey J. J. L. ; Plana D. ; Celorrio V. ; Sadasivan S. ; Tooze R. P. ; Rodriguez P. ; Fermin D. J. ChemCatChem 2016, 8, 952.
doi: 10.1002/cctc.201501260 |
49 |
Ren D. ; Gao J. ; Pan L. F. ; Wang Z. W. ; Luo J. S. ; Zakeeruddin S. M. ; Hagfeldt A. ; Gratzel M. Angew. Chem. Int. Ed. 2019, 58, 15036.
doi: 10.1002/anie.201909610 |
50 |
Zhao C. M. ; Dai X. Y. ; Yao T. ; Chen W. X. ; Wang X. Q. ; Wang J. ; Yang J. ; Wei S. Q. ; Wu Y. E. ; Li Y. D. J. Am. Chem. Soc. 2017, 139, 8078.
doi: 10.1021/jacs.7b02736 |
51 |
Cheng Y. ; Zhao S. Y. ; Johannessen B. ; Veder J. P. ; Saunders M. ; Rowles M. R. ; Cheng M. ; Liu C. ; Chisholm M. F. ; De Marco R. ; et al Adv. Mater. 2018, 30, 1706287.
doi: 10.1002/adma.201706287 |
52 |
Jeong H. Y. ; Balamurugan M. ; Choutipalli V. S. K. ; Jo J. ; Baik H. ; Subramanian V. ; Kim M. ; Sim U. ; Nam K. T. Chem. Eur. J. 2018, 24, 18444.
doi: 10.1002/chem.201803615 |
53 |
Jiang K. ; Siahrostami S. ; Zheng T. T. ; Hu Y. F. ; Hwang S. ; Stavitski E. ; Peng Y. D. ; Dynes J. ; Gangisetty M. ; Su D. ; et al Energy Environ. Sci. 2018, 11, 893.
doi: 10.1039/c7ee03245e |
54 |
Yang H. B. ; Hung S. F. ; Liu S. ; Yuan K. D. ; Miao S. ; Zhang L. P. ; Huang X. ; Wang H. Y. ; Cai W. Z. ; Chen R. ; et al Nat. Energ. 2018, 3, 140.
doi: 10.1038/s41560-017-0078-8 |
55 |
Mou K. W. ; Chen Z. P. ; Zhang X. X. ; Jiao M. Y. ; Zhang X. P. ; Ge X. ; Zhang W. ; Liu L. C. Small 2019, 15, 1903668.
doi: 10.1002/smll.201903668 |
56 |
Yuan C. Z. ; Liang K. ; Xia X. M. ; Yang Z. K. ; Jiang Y. F. ; Zhao T. ; Lin C. ; Cheang T. Y. ; Zhong S. L. ; Xu A. W. Catal. Sci. Technol. 2019, 9, 3669.
doi: 10.1039/c9cy00363k |
57 |
Gong Y. N. ; Jiao L. ; Qian Y. Y. ; Pan C. Y. ; Zheng L. R. ; Cai X. C. ; Liu B. ; Yu S. H. ; Jiang H. L. Angew. Chem. Int. Ed. 2020, 59, 2705.
doi: 10.1002/anie.201914977 |
58 |
Rong X. ; Wang H. J. ; Lu X. L. ; Si R. ; Lu T. B. Angew. Chem. Int. Ed. 2020, 59, 1961.
doi: 10.1002/anie.201912458 |
59 |
Liu S. ; Yang H. B. ; Hung S. F. ; Ding J. ; Cai W. Z. ; Liu L. H. ; Gao J. J. ; Li X. N. ; Ren X. Y. ; Kuang Z. C. ; et al Angew. Chem. Int. Ed. 2019, 59, 789.
doi: 10.1002/anie.201911995 |
60 |
Zhao C. M. ; Wang Y. ; Li Z. J. ; Chen W. X. ; Xu Q. ; He D. S. ; Xi D. S. ; Zhang Q. H. ; Yuan T. W. ; Qu Y. T. ; et al Joule 2019, 3, 584.
doi: 10.1016/j.joule.2018.11.008 |
61 |
Zheng T. T. ; Jiang K. ; Ta N. ; Hu Y. F. ; Zeng J. ; Liu J. Y. ; Wang H. T. Joule 2019, 3, 265.
doi: 10.1016/j.joule.2018.10.015 |
62 |
Pan Y. ; Lin R. ; Chen Y. J. ; Liu S. J. ; Zhu W. ; Cao X. ; Chen W. X. ; Wu K. L. ; Cheong W. C. ; Wang Y. ; et al J. Am. Chem. Soc. 2018, 140, 4218.
doi: 10.1021/jacs.8b00814 |
63 |
Wang X. Q. ; Chen Z. ; Zhao X. Y. ; Yao T. ; Chen W. X. ; You R. ; Zhao C. M. ; Wu G. ; Wang J. ; Huang W. X. ; et al Angew. Chem. Int. Ed. 2018, 57, 1944.
doi: 10.1002/anie.201712451 |
64 |
Han J. Y. ; An P. F. ; Liu S. H. ; Zhang X. F. ; Wang D. W. ; Yuan Y. ; Guo J. ; Qiu X. Y. ; Hou K. ; Shi L. ; et al Angew. Chem. Int. Ed. 2019, 58, 12711.
doi: 10.1002/anie.201907399 |
65 |
He Q. ; Liu D. B. ; Lee J. H. ; Liu Y. M. ; Xie Z. H. ; Hwang S. ; Kattel S. ; Song L. ; Chen J. G. G. Angew. Chem. Int. Ed. 2020, 59, 3033.
doi: 10.1002/anie.201912719 |
66 |
Qin X. P. ; Zhu S. Q. ; Xiao F. ; Zhang L. L. ; Shao M. H. ACS Energy Lett. 2019, 4, 1778.
doi: 10.1021/acsenergylett.9b01015 |
67 |
Sun X. H. ; Wang R. M. ; Ould-Chikh S. ; Osadchii D. ; Li G. N. ; Aguilar A. ; Hazemann J. L. ; Kapteijn F. ; Gascon J. J. Catal. 2019, 378, 320.
doi: 10.1016/j.jcat.2019.09.013 |
68 |
Zhang H. N. ; Li J. ; Xi S. B. ; Du Y. H. ; Hai X. ; Wang J. Y. ; Xu H. M. ; Wu G. ; Zhang J. ; Lu J. ; Wang J. Z. Angew. Chem. Int. Ed. 2019, 58, 14871.
doi: 10.1002/anie.201906079 |
69 |
Chen X. ; Ma D. D. ; Chen B. ; Zhang K. X. ; Zou R. Q. ; Wu X. T. ; Zhu Q. L. Appl. Catal. B-Environ. 2020, 267, 118720.
doi: 10.1016/j.apcatb.2020.118720 |
70 |
Zhang Z. ; Ma C. ; Tu Y. C. ; Si R. ; Wei J. ; Zhang S. H. ; Wang Z. ; Li J. F. ; Wang Y. ; Deng D. H. Nano Res. 2019, 12, 2313.
doi: 10.1007/s12274-019-2316-9 |
71 |
Pan F. P. ; Zhang H. G. ; Liu K. X. ; Cullen D. ; More K. ; Wang M. Y. ; Feng Z. X. ; Wang G. F. ; Wu G. ; Li Y. ACS Catal. 2018, 8, 3116.
doi: 10.1021/acscatal.8b00398 |
72 |
Yang F. ; Song P. ; Liu X. Z. ; Mei B. B. ; Xing W. ; Jiang Z. ; Gu L. ; Xu W. L. Angew. Chem. Int. Ed. 2018, 57, 12303.
doi: 10.1002/anie.201805871 |
73 |
Jia M. W. ; Hong S. ; Wu T. S. ; Li X. ; Soo Y. L. ; Sun Z. Y. Chem. Commun. 2019, 55, 12024.
doi: 10.1039/c9cc06178a |
74 |
Zhang E. H. ; Wang T. ; Yu K. ; Liu J. ; Chen W. X. ; Li A. ; Rong H. P. ; Lin R. ; Ji S. F. ; Zhene X. S. ; et al J. Am. Chem. Soc. 2019, 141, 16569.
doi: 10.1021/jacs.9b08259 |
75 |
He Q. ; Lee J. H. ; Liu D. B. ; Liu Y. M. ; Lin Z. X. ; Xie Z. H. ; Hwang S. ; Kattel S. ; Song L. ; Chen J. G. Adv. Funct. Mater. 2020, 2000407.
doi: 10.1002/adfm.202000407 |
76 |
Huang P. C. ; Cheng M. ; Zhang H. H. ; Zuo M. ; Xiao C. ; Xie Y. Nano Energy 2019, 61, 428.
doi: 10.1016/j.nanoen.2019.05.003 |
77 |
Karapinar D. ; Huan N. T. ; Sahraie N. R. ; Li J. K. ; Wakerley D. ; Touati N. ; Zanna S. ; Taverna D. ; Tizei L. H. G. ; Zitolo A. ; et al Angew. Chem. Int. Ed. 2019, 58, 15098.
doi: 10.1002/anie.201907994 |
78 |
Lee D. K. ; Choi J. I. ; Lee G. H. ; Kim Y. H. ; Kang J. K. Adv. Energy Mater. 2016, 6, 1600583.
doi: 10.1002/aenm.201600583 |
79 |
Guo Q. S. ; Zhang Q. H. ; Wang H. Z. ; Liu Z. F. ; Zhao Z. Catal. Commun. 2016, 77, 118.
doi: 10.1016/j.catcom.2016.01.019 |
80 |
Dong Y. C. ; Ghuman K. K. ; Popescu R. ; Duchesne P. N. ; Zhou W. J. ; Loh J. Y. Y. ; Jelle A. A. ; Jia J. ; Wang D. ; Mu X. K. ; et al Adv. Sci. 2018, 5, 700732.
doi: 10.1002/Advs.201700732 |
81 |
Das S. ; Pexrez-Ramıxrez J. ; Gong J. L. ; Dewangan N. ; Hidajat K. ; Gates B. C. ; Kawi S. Chem. Soc. Rev. 2020, 49, 2937.
doi: 10.1039/C9CS00713J |
82 |
Pougin A. ; Dodekatos G. ; Dilla M. ; Tuysuz H. ; Strunk J. Chem. Eur. J. 2018, 24, 12416.
doi: 10.1002/chem.201801796 |
83 |
Gao G. P. ; Jiao Y. ; Waclawik E. R. ; Du A. J. J. Am. Chem. Soc. 2016, 138, 6292.
doi: 10.1021/jacs.6b02692 |
84 |
Yan Z. H. ; Du M. H. ; Liu J. X. ; Jin S. Y. ; Wang C. ; Zhuang G. L. ; Kong X. J. ; Long L. S. ; Zheng L. S. Nat. Commun. 2018, 9, 3353.
doi: 10.1038/s41467-018-05659-7 |
85 |
Zhang H. B. ; Wei J. ; Dong J. C. ; Liu G. G. ; Shi L. ; An P. F. ; Zhao G. X. ; Kong J. T. ; Wang X. J. ; Meng X. G. ; et al Angew. Chem. Int. Ed. 2016, 55, 14308.
doi: 10.1002/anie.201608597 |
86 |
Gao C. ; Chen S. M. ; Wang Y. ; Wang J. W. ; Zheng X. S. ; Zhu J. F. ; Song L. ; Zhang W. K. ; Xiong Y. J. Adv. Mater. 2018, 30, 1704624.
doi: 10.1002/adma.201704624 |
87 |
Huang P. P. ; Huang J. H. ; Pantovich S. A. ; Carl A. D. ; Fenton T. G. ; Caputo C. A. ; Grimm R. L. ; Frenkel A. I. ; Li G. H. J. Am. Chem. Soc. 2018, 140, 16042.
doi: 10.1021/jacs.8b10380 |
88 |
Di J. ; Chen C. ; Yang S. Z. ; Chen S. M. ; Duan M. L. ; Xiong J. ; Zhu C. ; Long R. ; Hao W. ; Chi Z. ; et a Nat. Commun. 2019, 10, 2840.
doi: 10.1038/s41467-019-10392-w |
89 |
Liu M. ; Mu Y. F. ; Yao S. ; Guo S. ; Guo X. W. ; Zhang Z. M. ; Lu T. B. Appl. Catal. B-Environ. 2019, 245, 496.
doi: 10.1016/j.apcatb.2019.01.014 |
90 |
Jiang Z. Y. ; Sun W. ; Miao W. K. ; Yuan Z. M. ; Yang G. H. ; Kong F. G. ; Yan T. J. ; Chen J. C. ; Huang B. B. ; An C. H. ; Ozin G. A. Adv. Sci. 2019, 6, 1900289.
doi: 10.1002/advs.201900289 |
91 |
Yuan L. ; Hung S. F. ; Tang Z. R. ; Chen H. M. ; Xiong Y. J. ; Xu Y. J. ACS Catal. 2019, 9, 4824.
doi: 10.1021/acscatal.9b00862 |
92 |
Zhong W. F. ; Sa R. J. ; Li L. Y. ; He Y. J. ; Li L. Y. ; Bi J. H. ; Zhuang Z. Y. ; Yu Y. ; Zou Z. G. J. Am. Chem. Soc. 2019, 141, 7615.
doi: 10.1021/jacs.9b02997 |
93 |
Ji S. F. ; Qu Y. ; Wang T. ; Chen Y. J. ; Wang G. F. ; Li X. ; Dong J. C. ; Chen Q. Y. ; Zhang W. Y. ; Zhang Z. D. ; et al Angew. Chem. Int. Ed. 2020, 59, 10651.
doi: 10.1002/anie.202003623 |
94 |
Yang D. R. ; Yu H. D. ; He T. ; Zuo S. W. ; Liu X. Z. ; Yang H. Z. ; Ni B. ; Li H. Y. ; Gu L. ; Wang D. ; Wang X. Nat. Commun. 2019, 10, 3844.
doi: 10.1038/s41467-019-11817-2 |
95 |
Fang C. ; Lu C. L. ; Liu M. H. ; Zhu Y. L. ; Fu Y. ; Lin B. L. ACS Catal. 2016, 6, 7876.
doi: 10.1021/acscatal.6b01856 |
96 |
Lee W. T. ; van Muyden A. P. ; Bobbink F. D. ; Huang Z. J. ; Dyson P. J. Angew. Chem. Int. Ed. 2019, 58, 557.
doi: 10.1002/anie.201811086 |
97 |
Shyshkanov S. ; Nguyen T. N. ; Ebrahim F. M. ; Stylianou K. C. ; Dyson P. J. Angew. Chem. Int. Ed. 2019, 58, 5371.
doi: 10.1002/anie.201901171 |
98 |
Zhu J. ; Usov P. M. ; Xu W. Q. ; Celis-Salazar P. J. ; Lin S. Y. ; Kessinger M. C. ; Landaverde-Alvarado C. ; Cai M. ; May A. M. ; Slebodnick C. ; et al J. Am. Chem. Soc. 2018, 140, 993.
doi: 10.1021/jacs.7b10643 |
99 |
Rochelle G. T. Science 2009, 325, 1652.
doi: 10.1126/science.1176731 |
100 |
Wang Y. ; Arandiyan H. ; Scott J. ; Aguey-Zinsou K. F. ; Amal R. ACS Appl. Energy Mater. 2018, 1, 6781.
doi: 10.1021/acsaem.8b00817 |
101 |
Kwak J. H. ; Kovarik L. ; Szanyi J. ACS Catal. 2013, 3, 2094.
doi: 10.1021/cs4001392 |
102 |
Guo Y. ; Mei S. ; Yuan K. ; Wang D. J. ; Liu H. C. ; Yan C. H. ; Zhang Y. W. ACS Catal. 2018, 8, 6203.
doi: 10.1021/acscatal.7b04469 |
103 |
Shao X. Z. ; Yang X. F. ; Xu J. M. ; Liu S. ; Miao S. ; Liu X. Y. ; Su X. ; Duan H. M. ; Huang Y. Q. ; Zhang T. Chem 2019, 5, 693.
doi: 10.1016/j.chempr.2018.12.014 |
104 |
Millet M. M. ; Algara-Siller G. ; Wrabetz S. ; Mazheika A. ; Girgsdies F. ; Teschner D. ; Seitz F. ; Tarasov A. ; Leychenko S. V. ; Schlogl R. ; et al J. Am. Chem. Soc. 2019, 141, 2451.
doi: 10.1021/jacs.8b11729 |
105 |
Li Y. G. ; Hao J. C. ; Song H. ; Zhang F. Y. ; Bai X. H. ; Meng X. G. ; Zhang H. Y. ; Wang S. F. ; Hu Y. ; Ye J. H. Nat. Commun. 2019, 10, 2359.
doi: 10.1038/s41467-019-10304-y |
106 |
Caparros F. J. ; Soler L. ; Rossell M. D. ; Angurell I. ; Piccolo L. ; Rossell O. ; Llorca J. ChemCatChem 2018, 10, 2365.
doi: 10.1002/cctc.201800362 |
107 |
Zhao D. ; Chen Z. ; Yang W. J. ; Liu S. J. ; Zhang X. ; Yu Y. ; Cheong W. C. ; Zheng L. R. ; Ren F. Q. ; Ying G. B. ; et al J. Am. Chem. Soc. 2019, 141, 4086.
doi: 10.1021/jacs.8b13579 |
108 | Cui, X. J.; Dai, X. C.; Surkus, A. E.; Junge, K.; Kreyenschulte, C.; Agostini, G.; Rockstroh, N.; Beller, M. Chin. J. Catal. 2019, 40, 1679. doi: S1872-2067(19)63316-4 |
[1] | 朱锐杰, 康磊磊, 李林, 潘晓丽, 王华, 苏杨, 李广亿, 程鸿魁, 李仁贵, 刘晓艳, 王爱琴. WO3-TiO2负载的Pt单原子催化剂光热协同催化丙烷和丙烯氧化[J]. 物理化学学报, 2024, 40(1): 2303003 - . |
[2] | 曹玥晗, 郭瑞, 马敏智, 黄泽皑, 周莹. 活性位点电子密度变化对光催化CO2活化和选择转化的影响[J]. 物理化学学报, 2024, 40(1): 2303029 - . |
[3] | 张珹博, 陶晓萍, 蒋文超, 郭俊雪, 张鹏飞, 李灿, 李仁贵. 微波辅助合成促进铬酸铋晶体的光生电荷分离[J]. 物理化学学报, 2024, 40(1): 2303034 - . |
[4] | 张城城, 吴之怡, 沈家辉, 何乐, 孙威. 硅纳米结构阵列:光热CO2催化的新兴平台[J]. 物理化学学报, 2024, 40(1): 2304004 - . |
[5] | 徐涵煜, 宋雪旦, 张青, 于畅, 邱介山. 理论研究Cu@C2N催化剂表面上水分子对电催化CO2还原反应机理的影响[J]. 物理化学学报, 2024, 40(1): 2303040 - . |
[6] | 赖可溱, 李丰彦, 李宁, 高旸钦, 戈磊. 金属-有机骨架衍生的Ni-CNT/ZnIn2S4异质结用于光催化产氢及其电荷转移途径的确定[J]. 物理化学学报, 2024, 40(1): 2304018 - . |
[7] | 段欣漩, Sendeku Marshet Getaye, 张道明, 周道金, 徐立军, 高学庆, 陈爱兵, 邝允, 孙晓明. 钨掺杂镍铁水滑石高效电催化析氧反应[J]. 物理化学学报, 2024, 40(1): 2303055 - . |
[8] | 夏伟锋, 季成宇, 王锐, 裘式纶, 方千荣. 基于四硫富瓦烯的无金属共价有机框架材料用于高效电催化析氧反应[J]. 物理化学学报, 2023, 39(9): 2212057 -0 . |
[9] | 何展军, 黄敏, 林铁军, 钟良枢. 光热催化甲烷干重整研究进展[J]. 物理化学学报, 2023, 39(9): 2212060 -0 . |
[10] | 王宁, 李一, 崔乾, 孙晓玥, 胡悦, 罗运军, 杜然. 金属气凝胶:可控制备与应用展望[J]. 物理化学学报, 2023, 39(9): 2212014 -0 . |
[11] | 罗耀武, 王定胜. 单原子催化剂电子结构调控实现高效多相催化[J]. 物理化学学报, 2023, 39(9): 2212020 -0 . |
[12] | 宋千伟, 何观朝, 费慧龙. 基于单原子催化剂的光热催化转化:原理和应用[J]. 物理化学学报, 2023, 39(9): 2212038 -0 . |
[13] | 于彦会, 饶鹏, 封苏阳, 陈民, 邓培林, 李静, 苗政培, 康振烨, 沈义俊, 田新龙. 钴原子团簇用于高效氧还原反应[J]. 物理化学学报, 2023, 39(8): 2210039 -0 . |
[14] | 兰畅, 楚宇逸, 王烁, 刘长鹏, 葛君杰, 邢巍. 质子交换膜燃料电池阴极非贵金属M-Nx/C型氧还原催化剂研究进展[J]. 物理化学学报, 2023, 39(8): 2210036 -0 . |
[15] | 昝忠奇, 李喜宝, 高晓明, 黄军同, 罗一丹, 韩露. 0D/2D碳氮量子点(CNQDs)/BiOBr复合的S型异质结高效光催化降解和产H2O2[J]. 物理化学学报, 2023, 39(6): 2209016 - . |
|