物理化学学报 >> 2021, Vol. 37 >> Issue (9): 2010048.doi: 10.3866/PKU.WHXB202010048
所属专题: 燃料电池
收稿日期:
2020-10-22
录用日期:
2020-11-16
发布日期:
2020-11-25
通讯作者:
胡劲松
E-mail:hujs@iccas.ac.cn
作者简介:
Jin-Song Hu received his Ph.D. degree in Physical Chemistry at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS) in 2005. After that, he joined in ICCAS as an assistant professor and then was promoted as an associated professor in 2007. In 2008–2011, he worked in the research group of Charles M. Lieber at Harvard University. Then, he joined in ICCAS as a Full Professor. His current research interests focus on the development of non-precious electrocatalysts for electrochemical energy conversion and low-cost thin film solar cells
基金资助:
Liang Ding1,2, Tang Tang1,2, Jin-Song Hu1,2,*()
Received:
2020-10-22
Accepted:
2020-11-16
Published:
2020-11-25
Contact:
Jin-Song Hu
E-mail:hujs@iccas.ac.cn
About author:
Jin-Song Hu, Email: hujs@iccas.ac.cn; Tel.: +86-10-82613929Supported by:
摘要:
质子交换膜燃料电池(PEMFC)可以直接将储存在氢中的化学能无污染地转化为电能,是实现碳减排和碳中和的关键新能源技术。目前的PEMFC技术,尤其是在发生氧还原反应的阴极,还严重依赖铂基贵金属催化剂,导致了燃料电池高昂的成本,限制了其大规模应用。因此,人们对于研究基于低成本非贵金属催化剂的PEMFC展现出了极大的兴趣。自从采用金属-氮-碳结构催化剂作为贵金属催化剂的替代品以来,非铂基PEMFC取得了很多突破,但是当前其在活性和稳定性的表现仍不能令人满意。本文总结了基于金属-氮-碳催化剂的PEMFC性能与活性位点、催化剂结构和催化层结构之间的关系,揭示了催化剂结构对于PEMFC中物质传输的重要作用。另外,为了满足实际需求,本文也总结并讨论了PEMFC可能的失活机理,包括脱金属作用,氮物种的质子化,碳载体腐蚀和孔道水淹等,以及目前发展的可能的解决方案。基于这些认识,本文最后介绍了在提升金属-氮-碳基PEMFC的活性和稳定性方面的最新进展与策略。
丁亮, 唐堂, 胡劲松. 基于金属-氮-碳结构催化剂的质子交换膜燃料电池研究进展[J]. 物理化学学报, 2021, 37(9), 2010048. doi: 10.3866/PKU.WHXB202010048
Liang Ding, Tang Tang, Jin-Song Hu. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts[J]. Acta Phys. -Chim. Sin. 2021, 37(9), 2010048. doi: 10.3866/PKU.WHXB202010048
Table 1
Comparison of different types of fuel cell and their fundamental information."
Type of fuel cell | Operation temperature/℃ | General power density/(mW·cm-2) | System lifetime/h | Start-up time |
PEMFC | 50–80 | 350 | 2500 | Seconds |
PAFC | 160–220 | 200 | > 40000 * | Few minutes |
MCFC | 600–700 | 100 | > 40000 * | Few minutes |
SOFC | 800–1000 | 240 | > 40000 * | Few minutes |
AFC | 60–90 | 100–200 | 500–1000 | Seconds |
Table 2
Recent progress on PGM-free PEMFCs."
Catalysts | Operation condition | Operation temperature/K | Catalyst loading/(mg cm-2) | Pmax/(mW·cm-2) | Current density at 0.8 V/(mA·cm-2) |
Co-N-C@F127 | 100 kPa H2-O2 | 353 | 4 | 870 | 30 at 0.8 V * |
(CM+PANI)-Fe-C | 200 kPa H2-O2 | 353 | 4.0 | 940 | 240 at 0.8 V * |
SA-Fe/NG | 250 kPa H2-O2 | 353 | 2 | 823 | 200 at 0.8 V * |
Fe/N/C-SCN | 200 kPa H2-O2 | 353 | 4.0 | 1030 | 310 at 0.8 V * |
ZIF'-FA-CNT-p | 100 kPa H2-O2 | 353 | 4.5 | 820 | 250 at 0.8 V |
20Co-NC-1100 | 206.8 kPa H2-O2 | 353 | 4.0 | 560 | 50 at 0.8 V |
Fe/TPTZ/ZIF-8 | 100 kPa H2-O2 | 353 | 4 | 770 * | 240 at 0.8 V * |
PANI-FeCo-C | 280 kPa H2-O2 | 353 | 4 | 550 | > 100 at 0.8 V * |
PFeTTPP-1000 | 150 kPa H2-O2 | 353 | 4.1 | 730 | 100 at 0.8 V * |
CNT/PC | 100 kPa H2-O2 | 353 | 3.05 | 580 | 160 at 0.8 V * |
C-FeZIF-1.44-950 | 206.8 kPa H2-O2 | 353 | 1 | 775 | 210 at 0.8 V |
TPI@Z8(SiO2)-650-C | 250 kPa H2-O2 | 353 | 2.7 | 1180 | 560 at 0.8 V * |
Fe/N/CF | 150 kPa H2-O2 | 353 | 2.0 | 900 | 250 at 0.8 V |
(Fe, Co)/N-C | 100 kPa H2-O2 | 353 | 0.77 | 850 | 50 at 0.8 V |
C-FeHZ8@g-C3N4-950 | 206.8 kPa H2-O2 | 353 | 4 | 628 | 133 at 0.8 V * |
(CM+PANI)-Fe-C | 100 kPa H2-air | 353 | 4 | 420 | 90 at 0.8 V |
20Co-NC-1100 | 206.8 kPa H2-air | 353 | 4 | 280 | 40 at 0.8 V |
Fe/TPTZ/ZIF-8 | 100 kPa H2-air | 353 | 4 | 300 | 125 at 0.8 V * |
FePhen@MOF-ArNH3 | 250 kPa H2-air | 353 | 3 | 380 | > 100 at 0.8 V * |
Fe-N-C-Phen-PANI | 137.9 kPa H2-air | 353 | 4 | 380 | 120 at 0.8 V |
Fe-MBZ | 400 kPa H2-air | 353 | 4 | 335 | 77 at 0.8 V |
Fig 5
(a) Scheme for pore-edge Fe-N4 sites model; (b) PEMFC performance in H2-air condition The peak power density was 0.43 W·cm-2; (c, d) correlation between the mass activity and Fe (D1) or Fe (D3) contents without (c) or with (d) correction of surface area. (a, b) Reproduced with permission 28. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c, d) Reproduced with permission 62. Copyright 2014, American Chemical Society."
Fig 7
(a) Synthetic process of TPI@Z8(SiO2)-650-C; (b) schematic illustration of active sites on TPB in TPI@Z8(SiO2)-650-C; (c) comparison of pore size distributions in TPI@Z8(SiO2)-650-C and TPI@Z8-650-C; (d) polarization curves of H2-O2 fuel cells with TPI@Z8(SiO2)-650-C in different loadings, showing the current density at 0.9 V and the volumetric activity at 0.8 V (the Ohmic has been corrected). Reproduced with permission 39. Copyright 2018, Springer Nature."
Fig 8
(a, b) SEM images and (c) pore size distribution and pore volume of PANI-Fe-C and (CM+PANI)-Fe-C; (d) polarization and power density curves of MEAs prepared by Pt/C and (CM + PANI)-Fe-C with different Nafion contents. Reproduced with permission 29. Copyright 2017, American Association for the Advancement of Science."
Fig 9
(a, b) SEM images of C-ZIF-8-950 (a) and C-FeZIF-1.44-950 (b); (c) LSV curves at 0.1 mol·L-1 HClO4; (d) polarization and power density curves of MEAs prepared with C-FeZIF-1.44-950 and Pt/C in H2-air PEMFC tests. Reproduced with permission 38. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim."
Fig 11
(a) SEM images of MEA with GDL and catalyst layers; (b) iR-free polarization curves measured in H2-air fuel cells for the MEAs with various amounts of ionomers; (c) plots of CCL ionic conductance (black line) and cell performance (red line) as a function of relative humidity; (d) power density curves of fuel cells with various amounts of ionomers in H2-air. (a, b) Reproduced with permission 78. Copyright 2017, IOP Publishing Ltd. (c) Reproduced with permission 80. Copyright 2017, Elsevier. (d) Reproduced with permission 81. Copyright 2018, American Association for the Advancement of Science."
Fig 12
(a) Nano-CT images of ionomer distribution in CCLs with various catalyst particle sizes; (b) schematic illustration of catalyst aggregates; (c) EIS plots for CCL with various catalyst particle sizes; (d, e) polarization curves of MEAs prepared with catalysts in various particle sizes; (f) polarization curve of MEA fabricated with the catalyst in 100 nm, measured in the H2-O2 fuel cell. Reproduced with permission 83. Copyright 2020, American Chemical Society."
Fig 14
(a, b, c) Schematic illustration of various catalysts; (d) polarization curves at H2-O2 condition. Solid line: initial curves; dashed line: after first 50 h test; (e) current density curves in the stability tests at H2-O2 condition. Reproduced with permission 92. Copyright 2016, American Chemical Society."
Fig 15
(a) Schematic illustration of the protonation process; (b) current density changes in stability test at H2-air condition; (c) comparison of N 1s XPS spectra of NMCC-800 and NMCC-1000; (d) schematic illustration of anion-binding effects. (a, b, c) Reproduced with permission 93. Copyright 2009, IOP Publishing Ltd. (d) Reproduced with permission 94. Copyright 2011, American Chemical Society."
Fig 16
(a) Schematic illustration of the carbon corrosion; (b) polarization curve in H2-air fuel cell with the catalysts on different carbon supports; (c) current density curves of various catalysts in 500 h stability test in H2-air fuel cell; (d) schematic illustration of the growth process of Fe-N-CNT-2; (e) polarization and power density curve, and (f) current density curves in the stability test for Fe-N-CNT-2 and Fe-ZIF in H2-O2 fuel cell test. (a) Reproduced with permission 96, Copyright 2014, Royal Society of Chemistry; (b, c) Reproduced with permission 102, Copyright 2013, Royal Society of Chemistry; (d, e, f) Reproduced with permission 103, Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim."
Fig 18
(a) Schematic comparison for hydrophilic and hydrophobic catalysts against water flooding and carbon corrosion; (b, c) stability comparison of Fe/N/C (black) and Fe/N/C-F (purple) in the H2-O2 fuel cell tests at 0.5 V (b) and 0.6 V (c). Reproduced with permission 98, Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim."
1 |
Debe M. K. Nature 2012, 486, 43.
doi: 10.1038/nature11115 |
2 |
Wang Y. ; Chen K. S. ; Mishler J. ; Cho S. C. ; Adroher X. C. Appl. Energy 2011, 88, 981.
doi: 10.1016/j.apenergy.2010.09.030 |
3 |
Chen Z. W. ; Higgins D. ; Yu A. P. ; Zhang L. ; Zhang J. J. Energy Environ. Sci. 2011, 4, 3167.
doi: 10.1039/C0EE00558D |
4 |
Peighambardoust S. J. ; Rowshanzamir S. ; Amjadi M. Int. J. Hydrogen Energy 2010, 35, 9349.
doi: 10.1016/j.ijhydene.2010.05.017 |
5 |
Pachauri R. K. ; Chauhan Y. K. Renew. Sustain. Energy Rev. 2015, 43, 1301.
doi: 10.1016/j.rser.2014.11.098 |
6 |
Garland N. L. ; Papageorgopoulos D. C. ; Stanford J. M. Energy Procedia 2012, 28, 2.
doi: 10.1016/j.egypro.2012.08.034 |
7 |
Mustain W. E. ; Chatenet M. ; Page M. ; Kim Y. S. Energy Environ. Sci. 2020, 13, 2805.
doi: 10.1039/D0EE01133A |
8 |
Winter M. ; Brodd R. J. Chem. Rev. 2004, 104, 4245.
doi: 10.1021/cr020730k |
9 |
Cano Z. P. ; Banham D. ; Ye S. Y. ; Hintennach A. ; Lu J. ; Fowler M. ; Chen Z. Nat. Energy 2018, 3, 279.
doi: 10.1038/s41560-018-0108-1 |
10 |
Staffell I. ; Scamman D. ; Velazquez-Abad A. ; Balcombe P. ; Dodds P. E. ; Ekins P. ; Shah N. ; Ward K. R. Energy Environ. Sci. 2019, 12, 463.
doi: 10.1039/C8EE01157E |
11 |
Shin D. W. ; Guiver M. D. ; Lee Y. M. Chem. Rev. 2017, 117, 4759.
doi: 10.1021/acs.chemrev.6b00586 |
12 | Zhang M. ; Li J. J. ; Pan M. ; Xu D. S. Acta Phys. -Chim. Sin. 2011, 27, 1685. |
张敏; 李经建; 潘牧; 徐东升; 物理化学学报, 2011, 27, 1685.
doi: 10.3866/PKU.WHXB20110726 |
|
13 | Tang X. L. ; Zhang S. H. ; Yu J. ; Lü C. X. ; Chi Y. Q. ; Sun J. W. ; Song Y. ; Yuan D. ; Ma Z. L. ; Zhang L. X. Acta Phys. -Chim. Sin. 2020, 36, 1906070. |
唐小龙; 张盛辉; 于婧; 吕春晓; 迟雨晴; 孙君伟; 宋誉; 袁丁; 马兆立; 张立学; 物理化学学报, 2020, 36, 1906070.
doi: 10.3866/PKU.WHXB201906070 |
|
14 |
Jaouen F. ; Jones D. ; Coutard N. ; Artero V. ; Strasser P. ; Kucernak A. Johnson Matthey Technol. Rev. 2018, 62, 231.
doi: 10.1595/205651318X696828 |
15 | Wang J. ; Ding W. ; Wei Z. D. Acta Phys. -Chim. Sin. 2021, 37, 2009094. |
王健; 丁炜; 魏子栋; 物理化学学报, 2021, 37, 2009094.
doi: 10.3866/PKU.WHXB202009094 |
|
16 |
Tang T. ; Jiang W. J. ; Liu X. Z. ; Deng J. ; Niu S. ; Wang B. ; Jin S. F. ; Zhang Q. ; Gu L. ; Hu J. S. ; et al J. Am. Chem. Soc. 2020, 142, 7116.
doi: 10.1021/jacs.0c01349 |
17 |
Tang T. ; Ding L. ; Jiang Z. ; Hu J. S. ; Wan L. J. Sci. China Chem. 2020, 63, 665.
doi: 10.1007/s11426-020-9835-8 |
18 |
Jiang W. J. ; Hu W. L. ; Zhang Q. H. ; Zhao T. T. ; Luo H. ; Zhang X. ; Gu L. ; Hu J. S. ; Wan L. J. Chem. Commun. 2018, 54, 1307.
doi: 10.1039/C7CC08149A |
19 |
Zhang Y. ; Jiang W. J. ; Guo L. ; Zhang X. ; Hu J. S. ; Wei Z. ; Wan L. J. ACS Appl. Mat. Interfaces 2015, 7, 11508.
doi: 10.1021/acsami.5b02467 |
20 |
Xu X. L. ; Xia Z. X. ; Zhang X. M. ; Sun R. L. ; Sun X. J. ; Li H. Q. ; Wu C. C. ; Wang J. H. ; Wang S. L. ; Sun G. Q. Appl. Catal. B 2019, 259, 118042.
doi: 10.1016/j.apcatb.2019.118042 |
21 |
Banham D. ; Ye S. Y. ACS Energy Lett. 2017, 2, 629.
doi: 10.1021/acsenergylett.6b00644 |
22 |
Reshetenko T. ; Serov A. ; Artyushkova K. ; Matanovic I. ; Sarah S. ; Atanassov P. J. Power Sources 2016, 324, 556.
doi: 10.1016/j.jpowsour.2016.05.090 |
23 |
Feng Y. J. ; Gago A. ; Timperman L. ; Alonso-Vante N. Electrochim. Acta 2011, 56, 1009.
doi: 10.1016/j.electacta.2010.09.085 |
24 |
Jasinski R. Nature 1964, 201, 1212.
doi: 10.1038/2011212a0 |
25 |
Proietti E. ; Jaouen F. ; Lefèvre M. ; Larouche N. ; Tian J. ; Herranz J. ; Dodelet J. P. Nat. Commun. 2011, 2, 416.
doi: 10.1038/ncomms1427 |
26 |
Li J. Z. ; Chen M. J. ; Cullen D. A. ; Hwang S. ; Wang M. ; Li B. Y. ; Liu K. X. ; Karakalos S. ; Lucero M. ; Zhang H. G. ; et al Nat. Catal. 2018, 1, 935.
doi: 10.1038/s41929-018-0164-8 |
27 |
He Y. H. ; Hwang S. ; Cullen D. A. ; Uddin M. A. ; Langhorst L. ; Li B. Y. ; Karakalos S. ; Kropf A. J. ; Wegener E. C. ; Sokolowski J. ; et al Energy Environ. Sci. 2019, 12, 250.
doi: 10.1039/C8EE02694G |
28 |
Fu X. G. ; Li N. ; Ren B. H. ; Jiang G. P. ; Liu Y. R. ; Hassan F. M. ; Su D. ; Zhu J. B. ; Yang L. ; Bai Z. Y. ; et al Adv. Energy Mater. 2019, 9, 1803737.
doi: 10.1002/aenm.201803737 |
29 |
Chung H. T. ; Cullen D. A. ; Higgins D. ; Sneed B. T. ; Holby E. F. ; More K. L. ; Zelenay P. Science 2017, 357, 479.
doi: 10.1126/science.aan2255 |
30 |
Yang L. ; Cheng D. J. ; Xu H. X. ; Zeng X. F. ; Wan X. ; Shui J. J. ; Xiang Z. H. ; Cao D. P. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 6626.
doi: 10.1073/pnas.1800771115 |
31 |
Wang Y. C. ; Lai Y. J. ; Song L. ; Zhou Z. Y. ; Liu J. G. ; Wang Q. ; Yang X. D. ; Chen C. ; Shi W. ; Zheng Y. P. ; et al Angew. Chem. Int. Ed. 2015, 54, 9907.
doi: 10.1002/anie.201503159 |
32 |
Zhang C. ; Wang Y. C. ; An B. ; Huang R. Y. ; Wang C. ; Zhou Z. Y. ; Lin W. B. Adv. Mater. 2017, 29, 1604556.
doi: 10.1002/adma.201604556 |
33 |
Wang X. X. ; Cullen D. A. ; Pan Y. ; Hwang S. ; Wang M. Y. ; Feng Z. X. ; Wang J. Y. ; Engelhard M. H. ; Zhang H. G. ; He Y. H. ; et al Adv. Mater. 2018, 30, 1706758.
doi: 10.1002/adma.201706758 |
34 |
Tian J. ; Morozan A. ; Sougrati M. T. ; Lefèvre M. ; Chenitz R. ; Dodelet J. P. ; Jones D. ; Jaouen F. Angew. Chem. Int. Ed. 2013, 52, 6867.
doi: 10.1002/anie.201303025 |
35 |
Wu G. ; More K. L. ; Johnston C. M. ; Zelenay P. Science 2011, 332, 443.
doi: 10.1126/science.1200832 |
36 |
Yuan S. W. ; Shui J. L. ; Grabstanowicz L. ; Chen C. ; Commet S. ; Reprogle B. ; Xu T. ; Yu L. P. ; Liu D. J. Angew. Chem. Int. Ed. 2013, 52, 8349.
doi: 10.1002/anie.201302924 |
37 |
Sa Y. J. ; Seo D. J. ; Woo J. ; Lim J. T. ; Cheon J. Y. ; Yang S. Y. ; Lee J. M. ; Kang D. ; Shin T. J. ; Shin H. S. ; et al J. Am. Chem. Soc. 2016, 138, 15046.
doi: 10.1021/jacs.6b09470 |
38 |
Deng Y. J. ; Chi B. ; Li J. ; Wang G. H. ; Zheng L. ; Shi X. D. ; Cui Z. M. ; Du L. ; Liao S. J. ; Zang K. T. ; et al Adv. Energy Mater. 2019, 9, 1802856.
doi: 10.1002/aenm.201802856 |
39 |
Wan X. ; Liu X. F. ; Li Y. C. ; Yu R. H. ; Zheng L. R. ; Yan W. S. ; Wang H. ; Xu M. ; Shui J. L. Nat. Catal. 2019, 2, 259.
doi: 10.1038/s41929-019-0237-3 |
40 |
Shui J. L. ; Chen C. ; Grabstanowicz L. ; Zhao D. ; Liu D. J. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 10629.
doi: 10.1073/pnas.1507159112 |
41 |
Wang J. ; Huang Z. Q. ; Liu W. ; Chang C. R. ; Tang H. L. ; Li Z. J. ; Chen W. X. ; Jia C. J. ; Yao T. ; Wei S. Q. ; et al J. Am. Chem. Soc. 2017, 139, 17281.
doi: 10.1021/jacs.7b10385 |
42 |
Deng Y. J. ; Chi B. ; Tian X. L. ; Cui Z. M. ; Liu E. ; Jia Q. Y. ; Fan W. J. ; Wang G. H. ; Dang D. ; Li M. S. ; et al J. Mater. Chem. A 2019, 7, 5020.
doi: 10.1039/C8TA11785C |
43 |
Strickland K. ; Miner E. ; Jia Q. Y. ; Tylus U. ; Ramaswamy N. ; Liang W. T. ; Sougrati M. T. ; Jaouen F. ; Mukerjee S. Nat. Commun. 2015, 6, 7343.
doi: 10.1038/ncomms8343 |
44 |
Fu X. G. ; Zamani P. ; Choi J. Y. ; Hassan F. M. ; Jiang G. P. ; Higgins D. C. ; Zhang Y. N. ; Hoque M. A. ; Chen Z. W. Adv. Mater. 2017, 29, 1604456.
doi: 10.1002/adma.201604456 |
45 |
Zamani P. ; Higgins D. C. ; Hassan F. M. ; Fu X. G. ; Choi J. Y. ; Hoque M. A. ; Jiang G. P. ; Chen Z. W. Nano Energy 2016, 26, 267.
doi: 10.1016/j.nanoen.2016.05.035 |
46 |
Mamtani K. ; Jain D. ; Zemlyanov D. ; Celik G. ; Luthman J. ; Renkes G. ; Co A. C. ; Ozkan U. S. ACS Catal. 2016, 6, 7249.
doi: 10.1021/acscatal.6b01786 |
47 |
Jiang W. J. ; Gu L. ; Li L. ; Zhang Y. ; Zhang X. ; Zhang L. J. ; Wang J. Q. ; Hu J. S. ; Wei Z. D. ; Wan L. J. J. Am. Chem. Soc. 2016, 138, 3570.
doi: 10.1021/jacs.6b00757 |
48 |
Litster S. ; McLean G. J. Power Sources 2004, 130, 61.
doi: 10.1016/j.jpowsour.2003.12.055 |
49 |
Owejan J. P. ; Owejan J. E. ; Gu W. B. J. Electrochem. Soc. 2013, 160, F824.
doi: 10.1149/2.072308jes |
50 |
Stariha S. ; Artyushkova K. ; Workman M. J. ; Serov A. ; McKinney S. ; Halevi B. ; Atanassov P. J. Power Sources 2016, 326, 43.
doi: 10.1016/j.jpowsour.2016.06.098 |
51 |
Banham D. ; Ye S. Y. ; Pei K. ; Ozaki J. i. ; Kishimoto T. ; Imashiro Y. J. Power Sources 2015, 285, 334.
doi: 10.1016/j.jpowsour.2015.03.047 |
52 |
Shao Y. Y. ; Dodelet J. P. ; Wu G. ; Zelenay P. Adv. Mater. 2019, 31, 1807615.
doi: 10.1002/adma.201807615 |
53 |
Thompson S. T. ; Papageorgopoulos D. Nat. Catal. 2019, 2, 558.
doi: 10.1038/s41929-019-0291-x |
54 |
Gasteiger H. A. ; Marković N. M. Science 2009, 324, 48.
doi: 10.1126/science.1172083 |
55 |
Martinez U. ; Komini Babu S. ; Holby E. F. ; Chung H. T. ; Yin X. ; Zelenay P. Adv. Mater. 2019, 31, 1806545.
doi: 10.1002/adma.201806545 |
56 |
Li J. K. ; Ghoshal S. ; Liang W. T. ; Sougrati M. T. ; Jaouen F. ; Halevi B. ; McKinney S. ; McCool G. ; Ma C. R. ; Yuan X. X. ; et al Energy Environ. Sci. 2016, 9, 2418.
doi: 10.1039/C6EE01160H |
57 |
Workman M. J. ; Serov A. ; Tsui L. k. ; Atanassov P. ; Artyushkova K. ACS Energy Lett. 2017, 2, 1489.
doi: 10.1021/acsenergylett.7b00391 |
58 | Yang X. D. ; Chen C. ; Zhou Z. Y. ; Sun S. G. Acta Phys. -Chim. Sin. 2019, 35, 472. |
杨晓冬; 陈驰; 周志有; 孙世刚; 物理化学学报, 2019, 35, 472.
doi: 10.3866/PKU.WHXB201806131 |
|
59 |
Li Z. ; Wei L. ; Jiang W. J. ; Hu Z. ; Luo H. ; Zhao W. ; Xu T. ; Wu W. ; Wu M. ; Hu J. S. Appl. Catal., B 2019, 251, 240.
doi: 10.1016/j.apcatb.2019.03.046 |
60 |
Xiao M. L. ; Chen Y. T. ; Zhu J. B. ; Zhang H. ; Zhao X. ; Gao L. Q. ; Wang X. ; Zhao J. ; Ge J. J. ; Jiang Z. ; et al J. Am. Chem. Soc. 2019, 141
doi: 10.1021/jacs.9b08362 |
61 |
Kramm U. I. ; Herranz J. ; Larouche N. ; Arruda T. M. ; Lefèvre M. ; Jaouen F. ; Bogdanoff P. ; Fiechter S. ; Abs-Wurmbach I. ; Mukerjee S. ; et al Phys. Chem. Chem. Phys. 2012, 14, 11673.
doi: 10.1039/C2CP41957B |
62 |
Kramm U. I. ; Lefèvre M. ; Larouche N. ; Schmeisser D. ; Dodelet J. P. J. Am. Chem. Soc. 2014, 136, 978.
doi: 10.1021/ja410076f |
63 |
Jaouen F. ; Lefèvre M. ; Dodelet J. P. ; Cai M. J. Phys. Chem. B 2006, 110, 5553.
doi: 10.1021/jp057135h |
64 |
Lefèvre M. ; Proietti E. ; Jaouen F. ; Dodelet J. P. Science 2009, 324, 71.
doi: 10.1126/science.1170051 |
65 |
Zhao L. ; Zhang Y. ; Huang L. B. ; Liu X. Z. ; Zhang Q. H. ; He C. ; Wu Z. Y. ; Zhang L. J. ; Wu J. P. ; Yang W. L. ; et al Nat. Commun. 2019, 10, 1278.
doi: 10.1038/s41467-019-09290-y |
66 |
Qu Y. T. ; Wang L. G. ; Li Z. J. ; Li P. ; Zhang Q. H. ; Lin Y. ; Zhou F. Y. ; Wang H. J. ; Yang Z. K. ; Hu Y. D. ; et al Adv. Mater. 2019, 31, 1904496.
doi: 10.1002/adma.201904496 |
67 |
Zion N. ; Cullen D. A. ; Zelenay P. ; Elbaz L. Angew. Chem. Int. Ed. 2020, 59, 2483.
doi: 10.1002/anie.201913521 |
68 |
Zhang Y. ; Ma Y. L. ; Chen Y. Y. ; Zhao L. ; Huang L. B. ; Luo H. ; Jiang W. J. ; Zhang X. ; Niu S. ; Gao D. J. ; et al ACS Appl. Mat. Interfaces 2017, 9, 36857.
doi: 10.1021/acsami.7b11748 |
69 |
Lee S. H. ; Kim J. ; Chung D. Y. ; Yoo J. M. ; Lee H. S. ; Kim M. J. ; Mun B. S. ; Kwon S. G. ; Sung Y. E. ; Hyeon T. J. Am. Chem. Soc. 2019, 141, 2035.
doi: 10.1021/jacs.8b11129 |
70 |
Gupta S. ; Tryk D. ; Bae I. ; Aldred W. ; Yeager E. J. Appl. Electrochem. 1989, 19, 19.
doi: 10.1007/BF01039385 |
71 |
Rojas-Carbonell S. ; Artyushkova K. ; Serov A. ; Santoro C. ; Matanovic I. ; Atanassov P. ACS Catal. 2018, 8, 3041.
doi: 10.1021/acscatal.7b03991 |
72 |
Li Z. ; Sun H. ; Wei L. ; Jiang W. J. ; Wu M. ; Hu J. S. ACS Appl. Mat. Interfaces 2017, 9, 5272.
doi: 10.1021/acsami.6b15154 |
73 |
Amiinu I. S. ; Liu X. ; Pu Z. ; Li W. ; Li Q. ; Zhang J. ; Tang H. ; Zhang H. ; Mu S. Adv. Funct. Mater. 2018, 28, 1704638.
doi: 10.1002/adfm.201704638 |
74 |
Luo H. ; Jiang W. J. ; Niu S. ; Zhang X. ; Zhang Y. ; Yuan L. P. ; He C. ; Hu J. S. Small 2020, 16, 2001171.
doi: 10.1002/smll.202001171 |
75 |
He Y. H. ; Guo H. ; Hwang S. ; Yang X. X. ; He Z. Z. ; Braaten J. ; Karakalos S. ; Shan W. T. ; Wang M. Y. ; Zhou H. ; et al Adv. Mater. 2020, 32, 2003577.
doi: 10.1002/adma.202003577 |
76 |
Banham D. ; Choi J. Y. ; Kishimoto T. ; Ye S. Y. Adv. Mater. 2019, 31, 1804846.
doi: 10.1002/adma.201804846 |
77 |
Stariha S. ; Artyushkova K. ; Serov A. ; Atanassov P. Int. J. Hydrogen Energy 2015, 40, 14676.
doi: 10.1016/j.ijhydene.2015.05.185 |
78 |
Yin X. ; Lin L. ; Chung H. T. ; Babu S. K. ; Martinez U. ; Purdy G. M. ; Zelenay P. ECS Trans. 2017, 77, 1273.
doi: 10.1149/07711.1273ecst |
79 |
Malko D. ; Lopes T. ; Ticianelli E. A. ; Kucernak A. J. Power Sources 2016, 323, 189.
doi: 10.1016/j.jpowsour.2016.05.035 |
80 |
Banham D. ; Kishimoto T. ; Sato T. ; Kobayashi Y. ; Narizuka K. ; Ozaki J. i. ; Zhou Y. J. ; Marquez E. ; Bai K. ; Ye S. Y. J. Power Sources 2017, 344, 39.
doi: 10.1016/j.jpowsour.2017.01.086 |
81 |
Banham D. ; Kishimoto T. ; Zhou Y. J. ; Sato T. ; Bai K. ; Ozaki J. i. ; Imashiro Y. ; Ye S. Y. Sci. Adv. 2018, 4, eaar7180.
doi: 10.1126/sciadv.aar7180 |
82 |
Komini Babu S. ; Chung H. T. ; Zelenay P. ; Litster S. ACS Appl. Mat. Interfaces 2016, 8, 32764.
doi: 10.1021/acsami.6b08844 |
83 |
Uddin A. ; Dunsmore L. ; Zhang H. G. ; Hu L. M. ; Wu G. ; Litster S. ACS Appl. Mat. Interfaces 2020, 12, 2216.
doi: 10.1021/acsami.9b13945 |
84 |
Liu J. J. ; Talarposhti M. R. ; Asset T. ; Sabarirajan D. C. ; Parkinson D. Y. ; Atanassov P. ; Zenyuk I. V. ACS Appl. Energy Mater. 2019, 2, 3542.
doi: 10.1021/acsaem.9b00292 |
85 |
Osmieri L. ; Wang G. X. ; Cetinbas F. C. ; Khandavalli S. ; Park J. ; Medina S. ; Mauger S. A. ; Ulsh M. ; Pylypenko S. ; Myers D. J. ; et al Nano Energy 2020, 75, 104943.
doi: 10.1016/j.nanoen.2020.104943 |
86 |
Osmieri L. ; Mauger S. ; Ulsh M. ; Neyerlin K. C. ; Bender G. J. Power Sources 2020, 452, 227829.
doi: 10.1016/j.jpowsour.2020.227829 |
87 |
He Y. H. ; Liu S. W. ; Priest C. ; Shi Q. R. ; Wu G. Chem. Soc. Rev. 2020, 49, 3484.
doi: 10.1039/C9CS00903E |
88 |
Chenitz R. ; Kramm U. I. ; Lefèvre M. ; Glibin V. ; Zhang G. X. ; Sun S. H. ; Dodelet J. P. Energy Environ. Sci. 2018, 11, 365.
doi: 10.1039/C7EE02302B |
89 |
Zhang H. G. ; Hwang S. ; Wang M. Y. ; Feng Z. X. ; Karakalos S. ; Luo L. L. ; Qiao Z. ; Xie X. H. ; Wang C. M. ; Su D. ; et al J. Am. Chem. Soc. 2017, 139, 14143.
doi: 10.1021/jacs.7b06514 |
90 |
Zitolo A. ; Goellner V. ; Armel V. ; Sougrati M. T. ; Mineva T. ; Stievano L. ; Fonda E. ; Jaouen F. Nat. Mater. 2015, 14, 937.
doi: 10.1038/nmat4367 |
91 |
Makharia R. ; Mathias M. F. ; Baker D. R. J. Electrochem. Soc. 2005, 152, 189.
doi: 10.1149/1.1888367 |
92 |
Choi C. H. ; Baldizzone C. ; Polymeros G. ; Pizzutilo E. ; Kasian O. ; Schuppert A. K. ; Ranjbar Sahraie N. ; Sougrati M. T. ; Mayrhofer K. J. J. ; Jaouen F. ACS Catal. 2016, 6, 3136.
doi: 10.1021/acscatal.6b00643 |
93 |
Liu G. ; Li X. G. ; Popov B. ECS Trans. 2009, 25, 1251.
doi: 10.1149/1.3210680 |
94 |
Herranz J. ; Jaouen F. ; Lefèvre M. ; Kramm U. I. ; Proietti E. ; Dodelet J. P. ; Bogdanoff P. ; Fiechter S. ; Abs-Wurmbach I. ; Bertrand P. ; et al J. Phys. Chem. C 2011, 115, 16087.
doi: 10.1021/jp2042526 |
95 |
Strmcnik D. ; Escudero-Escribano M. ; Kodama K. ; Stamenkovic V. R. ; Cuesta A. ; Marković N. M. Nat. Chem. 2010, 2, 880.
doi: 10.1038/nchem.771 |
96 |
Goellner V. ; Baldizzone C. ; Schuppert A. ; Sougrati M. T. ; Mayrhofer K. ; Jaouen F. Phys. Chem. Chem. Phys. 2014, 16, 18454.
doi: 10.1039/C4CP02882A |
97 |
Meyers J. P. ; Darling R. M. J. Electrochem. Soc. 2006, 153, A1432.
doi: 10.1149/1.2203811 |
98 |
Wang Y. C. ; Zhu P. F. ; Yang H. ; Huang L. ; Wu Q. H. ; Rauf M. ; Zhang J. Y. ; Dong J. ; Wang K. ; Zhou Z. Y. ; et al ChemElectroChem 2018, 5, 1914.
doi: 10.1002/celc.201700939 |
99 |
Choi C. H. ; Baldizzone C. ; Grote J. P. ; Schuppert A. K. ; Jaouen F. ; Mayrhofer K. J. J. Angew. Chem. Int. Ed. 2015, 54, 12753.
doi: 10.1002/anie.201504903 |
100 |
Schulenburg H. ; Stankov S. ; Schünemann V. ; Radnik J. ; Dorbandt I. ; Fiechter S. ; Bogdanoff P. ; Tributsch H. J. Phys. Chem. B 2003, 107, 9034.
doi: 10.1021/jp030349j |
101 |
Choi C. H. ; Lim H. K. ; Chung M. W. ; Chon G. ; Ranjbar Sahraie N. ; Altin A. ; Sougrati M. T. ; Stievano L. ; Oh H. S. ; Park E. S. ; et al Energy Environ. Sci. 2018, 11, 3176.
doi: 10.1039/C8EE01855C |
102 |
Wu G. ; More K. L. ; Xu P. ; Wang H. ; Ferrandon M. ; Kropf A. J. ; Myers D. J. ; Ma S. G. ; Johnston C. M. ; Zelenay P. Chem. Commun. 2013, 49, 3291.
doi: 10.1039/C3CC39121C |
103 |
Xia D. S. ; Yang X. ; Xie L. ; Wei Y. P. ; Jiang W. L. ; Dou M. ; Li X. N. ; Li J. ; Gan L. ; Kang F. Y. Adv. Funct. Mater. 2019, 29, 1906174.
doi: 10.1002/adfm.201906174 |
104 |
Zhang Z. P. ; Sun J. T. ; Wang F. ; Dai L. M. Angew. Chem. Int. Ed. 2018, 57, 9038.
doi: 10.1002/anie.201804958 |
105 |
Wei H. W. ; Su X. G. ; Liu J. G. ; Tian J. ; Wang Z. W. ; Sun K. ; Rui Z. Y. ; Yang W. W. ; Zou Z. G. Electrochem. Commun. 2018, 88, 19.
doi: 10.1016/j.elecom.2018.01.011 |
106 |
Zhang G. X. ; Chenitz R. ; Lefèvre M. ; Sun S. H. ; Dodelet J. P. Nano Energy 2016, 29, 111.
doi: 10.1016/j.nanoen.2016.02.038 |
107 |
Choi J. Y. ; Yang L. J. ; Kishimoto T. ; Fu X. G. ; Ye S. Y. ; Chen Z. W. ; Banham D. Energy Environ. Sci. 2017, 10, 296.
doi: 10.1039/C6EE03005J |
108 |
Mittermeier T. ; Weiß A. ; Hasché F. ; Hübner G. ; Gasteiger H. A. J. Electrochem. Soc. 2016, 164, F127.
doi: 10.1149/2.1061702jes |
109 |
Yang L. J. ; Larouche N. ; Chenitz R. ; Zhang G. ; Lefèvre M. ; Dodelet J. P. Electrochim. Acta 2015, 159, 184.
doi: 10.1016/j.electacta.2015.01.201 |
[1] | 徐涵煜, 宋雪旦, 张青, 于畅, 邱介山. 理论研究Cu@C2N催化剂表面上水分子对电催化CO2还原反应机理的影响[J]. 物理化学学报, 2024, 40(1): 2303040 - . |
[2] | 段欣漩, Sendeku Marshet Getaye, 张道明, 周道金, 徐立军, 高学庆, 陈爱兵, 邝允, 孙晓明. 钨掺杂镍铁水滑石高效电催化析氧反应[J]. 物理化学学报, 2024, 40(1): 2303055 - . |
[3] | 王宁, 李一, 崔乾, 孙晓玥, 胡悦, 罗运军, 杜然. 金属气凝胶:可控制备与应用展望[J]. 物理化学学报, 2023, 39(9): 2212014 -0 . |
[4] | 夏伟锋, 季成宇, 王锐, 裘式纶, 方千荣. 基于四硫富瓦烯的无金属共价有机框架材料用于高效电催化析氧反应[J]. 物理化学学报, 2023, 39(9): 2212057 -0 . |
[5] | 于彦会, 饶鹏, 封苏阳, 陈民, 邓培林, 李静, 苗政培, 康振烨, 沈义俊, 田新龙. 钴原子团簇用于高效氧还原反应[J]. 物理化学学报, 2023, 39(8): 2210039 -0 . |
[6] | 兰畅, 楚宇逸, 王烁, 刘长鹏, 葛君杰, 邢巍. 质子交换膜燃料电池阴极非贵金属M-Nx/C型氧还原催化剂研究进展[J]. 物理化学学报, 2023, 39(8): 2210036 -0 . |
[7] | 杨帅, 徐瑜歆, 郝子坤, 秦胜建, 张润鹏, 韩钰, 杜利伟, 朱紫洢, 杜安宁, 陈欣, 吴昊, 乔冰冰, 李坚, 王艺, 孙昺晨, 闫融融, 赵晋津. 高效医学传感钙钛矿材料研究进展[J]. 物理化学学报, 2023, 39(5): 2211025 -0 . |
[8] | 荣佑文, 桑佳琪, 车丽, 高敦峰, 汪国雄. 二氧化碳电催化还原中的电解质效应[J]. 物理化学学报, 2023, 39(5): 2212027 -0 . |
[9] | 许义飞, 杨瀚文, 常晓侠, 徐冰君. 电催化动力学简介[J]. 物理化学学报, 2023, 39(4): 2210025 -0 . |
[10] | 王奥琦, 陈军, 张鹏飞, 唐珊, 冯兆池, 姚婷婷, 李灿. NiMo(O)物相结构与电解水析氢反应活性的关联[J]. 物理化学学报, 2023, 39(4): 2301023 -0 . |
[11] | 胡洋, 刘斌, 徐路遥, 董自强, 仵亚婷, 刘杰, 钟澄, 胡文彬. 基于微流控技术平台的Pt基三元电催化剂高通量合成和筛选[J]. 物理化学学报, 2023, 39(3): 2209004 -0 . |
[12] | 尉瑞芳, 李东峰, 尹恒, 王秀丽, 李灿. 微秒时间分辨的工况电化学紫外可见吸收光谱测量系统[J]. 物理化学学报, 2023, 39(2): 2207035 -0 . |
[13] | 韦天然, 张书胜, 刘倩, 邱园, 罗俊, 刘熙俊. 富氧空位的非晶氧化铜高选择性电催化还原CO2制乙烯[J]. 物理化学学报, 2023, 39(2): 2207026 -0 . |
[14] | 刘真, 孟祥福, 古万苗, 查珺, 闫楠, 尤青, 夏楠, 王辉, 伍志鲲. 组合掺杂引入新型、多种镉配位方式增强金纳米团簇的电催化性能[J]. 物理化学学报, 2023, 39(12): 2212064 - . |
[15] | 李景学, 于跃, 徐斯然, 闫文付, 木士春, 张佳楠. 电子自旋效应在电催化剂中的作用[J]. 物理化学学报, 2023, 39(12): 2302049 - . |
|