物理化学学报 >> 2022, Vol. 38 >> Issue (2): 2101009.doi: 10.3866/PKU.WHXB202101009

所属专题: 石墨烯的功能与应用

综述 上一篇    下一篇

石墨烯基二氧化碳电化学还原催化剂的研究进展

杜亚东1, 孟祥桐1,3,*(), 汪珍1, 赵鑫1, 邱介山1,2,*()   

  1. 1 北京化工大学化学工程学院,有机无机复合材料国家重点实验室,化工资源有效利用国家重点实验室,北京 100029
    2 大连理工大学化工学院,辽宁省能源材料化工重点实验室,精细化工国家重点实验室,辽宁 大连 116024
    3 中国科学院山西煤炭化学研究所,中国科学院炭材料重点实验室,太原 030001
  • 收稿日期:2021-01-05 录用日期:2021-02-18 发布日期:2021-02-26
  • 通讯作者: 孟祥桐,邱介山 E-mail:mengxt@mail.buct.edu.cn;qiujs@mail.buct.edu.cn
  • 作者简介:孟祥桐,2018年于大连理工大学化工学院获博士学位;获首届京博博士论文奖铜奖。现为北京化工大学化学工程学院副教授。主要从事薄膜太阳能电池和电催化关键碳基材料的设计、构筑及性能研究
    邱介山,国家杰出青年基金获得者、教育部长江学者特聘教授、2018–2020年入选全球高被引科学家名单。现任北京化工大学化学工程学院院长。主要从事能源化工、煤化工和多相催化研究
  • 基金资助:
    中央高校基本科研业务费专项资金(buctrc201929);中央高校基本科研业务费专项资金(buctrc202029);国家自然科学基金(52002014);国家自然科学基金(U2003216);中国博士后科学基金(2019M660419);中国科学院炭材料重点实验室开放课题(KLCMKFJJ2003)

Graphene-Based Catalysts for CO2 Electroreduction

Yadong Du1, Xiangtong Meng1,3,*(), Zhen Wang1, Xin Zhao1, Jieshan Qiu1,2,*()   

  1. 1 College of Chemical Engineering, State Key Laboratory of Organic-Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    2 Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024, Liaoning Province, China
    3 CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
  • Received:2021-01-05 Accepted:2021-02-18 Published:2021-02-26
  • Contact: Xiangtong Meng,Jieshan Qiu E-mail:mengxt@mail.buct.edu.cn;qiujs@mail.buct.edu.cn
  • About author:Email: qiujs@mail.buct.edu.cn (J.Q.)
    Email: mengxt@mail.buct.edu.cn (X.M.)
  • Supported by:
    the Fundamental Research Funds for the Central Universities, China(buctrc201929);the Fundamental Research Funds for the Central Universities, China(buctrc202029);the National Science Foundation of China(52002014);the National Science Foundation of China(U2003216);the China Postdoctoral Science Foundation(2019M660419);the CAS Key Laboratory of Carbon Material(KLCMKFJJ2003)

摘要:

利用电催化技术将CO2转化为小分子燃料或高值化学品是实现原子经济、构建人工碳循环的绿色能源技术之一。电催化还原CO2 (ECR)的反应条件温和、产物多样(C1、C2和C2+),有极大的发展潜力。然而,ECR技术面临一些需要解决的挑战性问题,包括电极过电势高、C2及C2+产物选择性低、伴随析氢反应等。解决这些问题的关键在于创制低成本、高性能电催化剂。近年来,石墨烯基电催化剂的研究成为ECR领域的热点之一,原因包括:1)在电化学环境中稳定性好;2)表面原子、电子结构可调,进而实现材料催化活性的调控;3)维度可调,易暴露较大的比表面积和形成层次孔结构;4)耦合石墨烯的高导电性与特定材料的高活性,可协同提升ECR催化性能。本文评述了石墨烯基材料在ECR中的研究进展,详述了石墨烯基电催化剂的构筑方法,探讨并梳理了石墨烯的点/线缺陷、表面官能团、掺杂原子构型、金属单原子种类、材料表界面性质等与ECR性能之间的本征构效关系。最后展望了石墨烯基催化剂在ECR领域中的挑战和未来发展。

关键词: 电催化, 二氧化碳还原, 石墨烯, 缺陷, 改性

Abstract:

With the excessive exploitation and utilization of conventional fossil fuels such as coal, petroleum, and natural gas, the concentration of carbon dioxide (CO2) in the atmosphere has increased significantly, leading to serious greenhouse effect. The electrocatalytic conversion of CO2 to liquid fuels and value-added chemicals is one of ideal strategies, considering the atomic economy and artificial carbon circle. Moreover, this process can be driven by renewable energy (solar, wind, tidal power, etc.), thus achieving efficient clean-energy utilization. Electrocatalytic CO2 reduction (ECR) can be carried out under ambient conditions, yielding diverse products such as C1 (carbon monoxide, methane, methanol, formic acid/formate), C2 (ethane, ethanol, ethylene, acetic acid), and C2+ (propyl alcohol, acetone, etc.). However, it faces some challenging problems such as high overpotential on electrodes, the poor selectivity of C2 and C2+ products, the severely competitive hydrogen evolution reaction and the stability in the practice. The rational design and construction of highly active electrocatalysts with low cost, high selectivity, and robust stability are key to these issues. Recently, graphene-based materials have attracted significant attention owing to the following attributes: (1) robust stability in electrochemical environments; (2) tailorable atomic and electronic structures, leading to tuned catalytic activity; (3) adjustable dimensions and hierarchical porous structure, large surface area, and number of active sites; and (4) an excellent conductivity coupled with active, well-defined materials, synergistically enhancing the electrocatalytic activity in the ECR. In this review, recent progress in graphene-based electrocatalysts for ECR is summarized. First, ECR fundamentals, such as reaction routes, products, electrolyzers (e.g., H-cell electrolyzers, flow-cell electrolyzers, and membrane electrode assembly cells), electrolytes (e.g., inorganic electrolytes, organic electrolytes, and solid-state electrolytes), and evaluation parameters of ECR performance (e.g., faradaic efficiency, onset potential, overpotential, current density, Tafel slope, and stability) are briefly introduced. The methods for making graphene-based catalysts for ECR are outlined and discussed in detail, including in situ or post-treatment doping, surface functionalization, microwave-assisted synthesis, chemical vapor deposition, and static self-assembly. The relationships between the graphene structures, including the point/line defects, the surface functional groups (e.g., -COOH, -OH, C-O-C, C=O, C≡O), heteroatom-doping configurations (e.g., pyridinic N, graphitic N, and pyrrolic N, and oxidized pyridinic N), metal single-atom species (e.g., Fe, Zn, Ni, Cu, Co, Sn, Mo, In, Bi), surface/interface properties, and catalytic performance are highlighted, shedding light on the design principles for efficient yet stable carbon-based catalysts for ECR. Finally, the opportunities and perspectives of graphene-based catalysts for ECR are outlined.

Key words: Electrocatalysis, Carbon dioxide reduction, Graphene, Defect, Modification