物理化学学报 >> 2023, Vol. 39 >> Issue (3): 2210014.doi: 10.3866/PKU.WHXB202210014
吕浩亮1, 王雪杰2, 杨宇1, 刘涛2,*(), 张留洋2,*()
收稿日期:
2022-09-06
录用日期:
2022-10-20
发布日期:
2022-10-25
通讯作者:
刘涛,张留洋
E-mail:liutao54@cug.edu.cn;zhangliuyang@cug.edu.cn
基金资助:
Haoliang Lv1, Xuejie Wang2, Yu Yang1, Tao Liu2,*(), Liuyang Zhang2,*()
Received:
2022-09-06
Accepted:
2022-10-20
Published:
2022-10-25
Contact:
Tao Liu, Liuyang Zhang
E-mail:liutao54@cug.edu.cn;zhangliuyang@cug.edu.cn
Supported by:
摘要:
MOF衍生金属硒化物由于其有序的碳骨架结构和高导电性,被认为是钠离子电池极具前景的负极材料。它们具有快速的电子/离子输运通道,有利于钠离子的嵌入和脱出。然而,循环过程中的大量体积膨胀会导致结构坍塌。为了解决这个问题,通过表面改性在MOF衍生金属硒化物表面引入了一个二维的还原氧化石墨烯网络,既可以缓解体积变化,又能加速电子转移。实验证实这种策略是有效的,在1 A·g−1下500次循环后,包覆了还原氧化石墨烯的复合材料电极容量保持率提高到了95.2%。相比之下,不含还原氧化石墨烯的容量保留率仅为74.2%。此外,由于还原氧化石墨烯网络和MOF衍生In2Se3协同作用,在0.1 A·g−1下显示出了468 mAh·g−1的优越容量。而在相同的电流密度下,未包覆还原氧化石墨烯的只产生393 mAh·g−1的比容量。采用循环伏安法(CV)研究了In2Se3@C/rGO电极的电化学过程,结果表明其具有良好的电化学反应活性。此外,还通过原位X射线衍射探索了In2Se3的转换-合金化双重储钠机制,揭示了其高比容量产生的来源。本研究有望为还原氧化石墨烯优化MOF衍生物作为钠离子电池负极材料提供参考。
吕浩亮, 王雪杰, 杨宇, 刘涛, 张留洋. 还原氧化石墨烯包覆MOF衍生In2Se3用于钠离子电池负极[J]. 物理化学学报, 2023, 39(3), 2210014. doi: 10.3866/PKU.WHXB202210014
Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin. 2023, 39(3), 2210014. doi: 10.3866/PKU.WHXB202210014
Fig 3
(a) The initial 4 CV cycles. (b) CV curves at various scan rates. (c) The relationship between log (scan rate, mV·s−1) and log (peak current, mA). (d) Capacitive contributions to total capacity at 0.5 mV·s−1. (e) Capacitive contributions to total capacity at various scan rates. (f) GCD curves of the initial 4 cycles."
Fig 5
Electrochemical properties of a half-cell. (a) Cyclic performance at 0.2 A·g−1, (b) rate capability at diverse current density, and (c) cycling performance of In2Se3@C/rGO and In2Se3@C electrode at 1 A·g−1. (d) Comparison of rate performance with other reported metal selenides. (e) Nyquist plots at various cycles of In2Se3@C/rGO."
1 |
Liu, T.; Zhang, L.; Cheng, B.; Hu, X.; Yu, J. Cell Rep. Phys. Sci. 2020, 1, 100215.
doi: 10.1016/j.xcrp.2020.100215 |
2 |
Xie, J.; Lu, Y. Nat. Commun. 2020, 11, 2499.
doi: 10.1038/s41467-020-16259-9 |
3 |
Liu, T.; Qu, Y.; Liu, J.; Zhang, L.; Cheng, B.; Yu, J. Small 2021, 17, 2103673.
doi: 10.1002/smll.202103673 |
4 |
Deng, J.; Luo, W.; Chou, S.; Liu, H.; Dou, S. Adv. Energy Mater. 2017, 8, 1701428.
doi: 10.1002/aenm.201701428 |
5 | Chen, Y.; Dong, H.; Li, Y.; Liu, J. Acta Phys. -Chim. Sin. 2021, 37, 2007075. |
陈瑶, 董浩洋, 李园园, 刘金平 物理化学学报, 2021, 37, 2007075.
doi: 10.3866/PKU.WHXB202007075 |
|
6 |
Zhu, L.; Yang, X.; Xiang, Y.; Kong, P.; Wu, X. Rare Met. 2021, 40, 1383.
doi: 10.1007/s12598-020-01555-6 |
7 | Xu, G.; Wang, Q.; Su, Y.; Liu, M.; Li, Q.; Zhang, Y. Acta Phys. -Chim. Sin. 2022, 38, 2009073. |
许国光, 王琪, 苏毅, 刘美男, 李清文, 张跃钢 物理化学学报, 2022, 38, 2009073.
doi: 10.3866/PKU.WHXB202009073 |
|
8 | Wang, S.; Yang, G.; Nasir, M. S.; Wang, X.; Wang, J.; Yan, W. Acta Phys. -Chim. Sin. 2021, 37, 2001003. |
王思岚, 杨国锐, Nasir, M. S.,王筱珺, 王嘉楠, 延卫 物理化学学报, 2021, 37, 2001003.
doi: 10.3866/PKU.WHXB202001003 |
|
9 |
Cao, X.; Sun, Y.; Sun, Y.; Xie, D.; Li, H.; Liu, M. Appl. Clay Sci. 2021, 213, 106265.
doi: 10.1016/j.clay.2021.106265 |
10 |
Li, X.; Qi, S.; Zhang, W.; Feng, Y.; Ma, J. Rare Met. 2020, 39, 1239.
doi: 10.1007/s12598-020-01492-4 |
11 |
Zou, G.; Hou, H.; Ge, P.; Huang, Z.; Zhao, G.; Yin, D.; Ji, X. Small 2018, 14, 1702648.
doi: 10.1002/smll.201702648 |
12 |
Ge, P.; Hou, H.; Li, S.; Huang, L.; Ji, X. ACS Appl. Mater. Interfaces 2018, 10, 14716.
doi: 10.1021/acsami.8b01888 |
13 |
Wang, L.; Lin, C.; Liang, T.; Wang, N.; Feng, J.; Yan, W. Mater. Today Chem. 2022, 24, 100894.
doi: 10.1016/j.mtchem.2022.100849 |
14 |
Xiao, B.; Rojo, T.; Li, X. ChemSusChem 2019, 12, 133.
doi: 10.1002/cssc.201801879 |
15 |
Xu, M.; Xia, Q.; Yue, J.; Zhu, X.; Guo, Q.; Zhu, J.; Xia, H. Adv. Funct. Mater. 2018, 296, 1807377.
doi: 10.1002/adfm.201807377 |
16 | Wang, J.; Wu, N.; Liu, T.; Cao, S.; Yu, J. Acta Phys. -Chim. Sin. 2020, 36, 1907072. |
王玖, 吴南石, 刘涛, 曹少文, 余家国 物理化学学报, 2020, 36, 1907072.
doi: 10.3866/PKU.WHXB201907072 |
|
17 |
Liu, Y.; Yang, C.; Zhang, Q.; Liu, M. Energy Storage Mater. 2019, 22, 66.
doi: 10.1016/j.ensm.2019.01.001 |
18 |
Liu, T.; Liu, J.; Zhang, L.; Cheng, B.; Yu, J. J. Mater. Sci. Technol. 2020, 47, 113.
doi: 10.1016/j.jmst.2019.12.027 |
19 |
Yu, L.; Shao, L.; Wang, S.; Guan, J.; Shi, X.; Tarasenko, N.; Sun, Z. Mater. Today Phys. 2022, 22, 100593.
doi: 10.1016/j.mtphys.2021.100593 |
20 |
Zhang, L.; Shi, D.; Liu, T.; Jaroniec, M.; Yu, J. Mater. Today 2019, 25, 35.
doi: 10.1016/j.mattod.2018.11.002 |
21 |
Xie, X.; Ma, X.; Yin, Z.; Tong, H.; Jiang, H.; Ding, Z.; Zhou, L. Chem. Eng. J. 2022, 446, 137366.
doi: 10.1016/j.cej.2022.137366 |
22 |
Sun, Z.; Gu, Z.; Shi, W.; Sun, Z.; Gan, S.; Xu, L.; Liang, H.; Ma, Y.; Qu, D.; Zhong, L.; et al J. Mater. Chem. A 2022, 10, 2113.
doi: 10.1039/d1ta10439j |
23 |
Huang, F.; Wang, L.; Qin, D.; Xu, Z.; Jin, M.; Chen, Y.; Zeng, X.; Dai, Z. ACS Appl. Mater. Interfaces 2022, 14, 1222.
doi: 10.1021/acsami.1c21934 |
24 |
Zhong, W.; Ma, Q.; Tang, W.; Wu, Y.; Gao, W.; Yang, Q.; Yang, J.; Xu, M. Inorg. Chem. Front. 2020, 7, 1003.
doi: 10.1039/c9qi01435g |
25 |
Xue, Y.; Guo, X.; Wu, M.; Chen, J.; Duan, M.; Shi, J.; Zhang, J.; Cao, F.; Liu, Y.; Kong, Q. Nano Res. 2021, 14, 3598.
doi: 10.1007/s12274-021-3640-4 |
26 |
Zhang, S.; Wang, Z.; Hu, X.; Zhu, R.; Liu, X.; Wang, H. J. Alloys Compd. 2021, 863, 158329.
doi: 10.1016/j.jallcom.2020.158329 |
27 |
Ye, B.; Cao, X.; Zhao, Q.; Wang, J. J. Phys. Chem. C 2020, 124, 21242.
doi: 10.1021/acs.jpcc.0c05125 |
28 |
Lu, Z.; Dang, Y.; Dai, C.; Zhang, Y.; Zou, P.; Du, H.; Zhang, Y.; Sun, M.; Rao, H.; Wang, Y. J. Hazard. Mater. 2021, 403, 123979.
doi: 10.1016/j.jhazmat.2020.123979 |
29 |
Yang, X.; Wang, S.; Yu, D. Y. W.; Rogach, A. L. Nano Energy 2019, 58, 392.
doi: 10.1016/j.nanoen.2019.01.064 |
30 |
Xiao, S.; Li, X.; Zhang, W.; Xiang, Y.; Li, T.; Niu, X.; Chen, J.; Yan, Q. ACS Nano 2021, 15, 13307.
doi: 10.1021/acsnano.1c03056 |
31 | Liu, H.; Zhou, F.; Shi, X.; Shi, Q.; Wu, Z. Acta Phys. -Chim. Sin. 2022, 38, 2204017. |
刘汉卿, 周锋, 师晓宇, 史全, 吴忠帅 物理化学学报, 2022, 38, 2204017.
doi: 10.3866/PKU.WHXB202204017 |
|
32 | Zhang, M.; Chen, B.; Wu, M. Acta Phys. -Chim. Sin. 2022, 38, 2101001. |
张梦迪, 陈蓓, 吴明铂 物理化学学报, 2022, 38, 2101001.
doi: 10.3866/PKU.WHXB202101001 |
|
33 |
Zhang, L.; Cai, P.; Wei, Z.; Liu, T.; Yu, J.; Al-Ghamdi, A. A.; Wageh, S. J. Colloid Interface Sci. 2021, 588, 637.
doi: 10.1016/j.jcis.2020.11.056 |
34 |
Men, S.; Zheng, H.; Ma, D.; Huang, X.; Kang, X. J. Energy Chem. 2021, 54, 124.
doi: 10.1016/j.jechem.2020.05.046 |
35 |
Wan, Y.; Song, K.; Chen, W.; Qin, C.; Zhang, X.; Zhang, J.; Dai, H.; Hu, Z.; Yan, P.; Liu, C.; et al Angew. Chem. Int. Ed. 2021, 60, 11481.
doi: 10.1002/anie.202102368 |
36 |
Zhang, J.; Wang, D.-W.; Lv, W.; Zhang, S.; Liang, Q.; Zheng, D.; Kang, F.; Yang, Q.-H. Energy Environ. Sci. 2017, 101, 370.
doi: 10.1039/c6ee03367a |
37 |
Ramakrishnan, K.; Nithya, C.; Kundoly Purushothaman, B.; Kumar, N.; Gopukumar, S. ACS Sustainable Chem. Eng. 2017, 5, 5090.
doi: 10.1021/acssuschemeng.7b00469 |
38 |
Wang, L.; Zhu, B.; Cheng, B.; Zhang, J.; Zhang, L.; Yu, J. Chin. J. Catal. 2021, 42, 1648.
doi: 10.1016/s1872-2067(21)63805-6 |
39 |
Hu, L.; Yang, H.; Wang, S.; Gao, J.; Hou, H.; Yang, W. J. Mater. Chem. C 2021, 9, 5343.
doi: 10.1039/d1tc00973g |
40 |
Qian, Z.; Wang, X.; Liu, T.; Zhang, L.; Yu, J. J. Energy Storage 2022, 51, 104522.
doi: 10.1016/j.est.2022.104522 |
41 |
Yu, H.; Wang, C.; Meng, F.; Xiao, J.; Liang, J.; Kim, H.; Bae, S.; Zou, D.; Kim, E.; Kim, N.; et al Carbon 2021, 183, 578.
doi: 10.1016/j.carbon.2021.07.031 |
42 |
Tang, S.; Xia, Y.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. Chin. J. Catal. 2021, 42, 743.
doi: 10.1016/s1872-2067(20)63695-6 |
43 |
Wang, Y.; Wang, Y.; Wang, Y.; Feng, X.; Chen, W.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2019, 11, 19218.
doi: 10.1021/acsami.9b05134 |
44 |
Wang, X.; Zhu, B.; Liu, T.; Zhang, L.; Yu, J. Small Methods 2021, 6, 2101269.
doi: 10.1002/smtd.202101269 |
45 |
Kim, N.; Shim, J.; Jae, W.; Song, J.; Kim, J. J. Alloys Compd. 2019, 786, 346.
doi: 10.1016/j.jallcom.2019.01.370 |
46 |
Yuan, Y.; Wang, Y.; Zhuang, G.; Li, Q.; Yang, F.; Wang, X.; Han, X. J. Mater. Chem. A 2021, 9, 24909.
doi: 10.1039/d1ta08075j |
47 |
Ma, Y.; Zhang, L.; Yan, Z.; Cheng, B.; Yu, J.; Liu, T. Adv. Energy Mater. 2022, 12, 2103820.
doi: 10.1002/aenm.202103820 |
48 |
Peng, Q.; Hu, X.; Zeng, T.; Shang, B.; Mao, M.; Jiao, X.; Xi, G. Chem. Eng. J. 2020, 385, 123857.
doi: 10.1016/j.cej.2019.123857 |
49 |
Fu, L.; Kang, C.; Xiong, W.; Tian, P.; Cao, S.; Wan, S.; Chen, H.; Zhou, C.; Liu, Q. J. Colloid Interface Sci. 2021, 595, 59.
doi: 10.1016/j.jcis.2021.03.127 |
50 |
Zhang, Y.; Wu, Y.; Zhong, W.; Xiao, F.; Kashif Aslam, M.; Zhang, X.; Xu, M. ChemSusChem 2021, 14, 1336.
doi: 10.1002/cssc.202002552 |
51 |
Kandula, S.; Bae, J.; Cho, J.; Son, J. G. Compos. Pt. B-Eng. 2021, 220, 108995.
doi: 10.1016/j.compositesb.2021.108995 |
52 |
Xu, Q.; Xue, H.; Guo, S. Electrochim. Acta 2018, 292, 1.
doi: 10.1016/j.electacta.2018.09.135 |
53 |
Jin, R.; Li, X. F.; Sun, Y.; Shan, H.; Fan, L.; Li, D.; Sun, X. ACS Appl. Mater. Interfaces 2018, 10, 14641.
doi: 10.1021/acsami.8b00444 |
54 |
Zhang, G.; Liu, K.; Liu, S.; Song, H.; Zhou, J. J. Alloys Compd. 2018, 731, 714.
doi: 10.1016/j.jallcom.2017.10.094 |
55 |
Yang, S.; Park, S.; Park, G.; Kim, J.; Kang, Y. Chem. Eng. J. 2021, 417, 127963.
doi: 10.1016/j.cej.2020.127963 |
56 |
Kong, H.; Lv, C.; Wu, Y.; Yan, C.; Chen, G. J. Energy Chem. 2021, 55, 169.
doi: 10.1016/j.jechem.2020.06.066 |
57 |
Wu, C.; Jiang, Y.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Mater. 2016, 28, 7276.
doi: 10.1002/adma.201600964 |
58 |
Lv, C.; Liu, H.; Li, D.; Chen, S.; Zhang, H.; She, X.; Guo, X.; Yang, D. Carbon 2019, 14, 106.
doi: 10.1016/j.carbon.2018.10.091 |
59 |
Lu, S.; Wu, H.; Hou, J.; Liu, L.; Li, J.; Harris, C. J.; Lao, C.; Guo, Y.; Xi, K.; Ding, S.; et al Nano Res. 2020, 13, 2289.
doi: 10.1007/s12274-020-2848-z |
60 |
Ma, C.; Qiu, L.; Bao, J.; Zhou, Y. Chem. Res. Chin. Univ. 2021, 37, 318.
doi: 10.1007/s40242-021-1030-9 |
61 |
Jia, M.; Jin, Y.; Zhao, C.; Zhao, P.; Jia, M. J. Alloys Compd. 2020, 831, 154749.
doi: 10.1016/j.jallcom.2020.154749 |
62 |
Wang, P.; Huang, J.; Zhang, J.; Wang, L.; Sun, P.; Yang, Y.; Yao, Z. J. Mater. Chem. A 2021, 9, 7248.
doi: 10.1039/d1ta00226k |
63 |
Tao, H.; Li, J.; Li, J.; Hou, Z.; Yang, X.; Fan, L. J. Energy Chem. 2022, 66, 356.
doi: 10.1016/j.jechem.2021.08.026 |
[1] | 王中辽, 汪静, 张金锋, 代凯. 光激发电荷在光催化氧化还原反应中的全利用[J]. 物理化学学报, 2023, 39(6): 2209037 - . |
[2] | 卢俊文, 张书南, 周浩志, 黄超杰, 夏林, 刘晓放, 罗虎, 王慧. 负载Ir单原子和团簇的α-MoC催化剂用于高效催化CO2加氢制CO[J]. 物理化学学报, 2023, 39(11): 2302021 - . |
[3] | 曹美芳, 陈博, 阮涛, 欧阳新平, 邱学青. Pt/NbPWO双功能催化剂的制备及氢解碱木质素制备芳香单体[J]. 物理化学学报, 2022, 38(10): 2204037 - . |
[4] | 凌云云, 夏云生. 金纳米复合材料:制备、性质及其癌症诊疗应用[J]. 物理化学学报, 2020, 36(9): 1912006 - . |
[5] | 吕翰林, 胡兵, 刘国亮, 洪昕林, 庄林. ZnO逆修饰小尺寸Cu/SiO2催化剂及其在CO2加氢制甲醇中的应用[J]. 物理化学学报, 2020, 36(11): 1911008 - . |
[6] | 王倩倩, 刘大军, 何兴权. 基于金属有机框架衍生的Fe-N-C纳米复合材料作为高效的氧还原催化剂[J]. 物理化学学报, 2019, 35(7): 740 -748 . |
[7] | 彭鹏,刘洪涛,武斌,汤庆鑫,刘云圻. 氮掺杂石墨烯的p型场效应及其精细调控[J]. 物理化学学报, 2019, 35(11): 1282 -1290 . |
[8] | 赵亚松,张丽娟,齐健,金泉,林凯峰,王丹. 石墨二炔及其电子转移增强特性[J]. 物理化学学报, 2018, 34(9): 1048 -1060 . |
[9] | 李重杲,卢天,高恒,张庆,李敏杰,任伟,陆文聪. 苯并噻二唑衍生物作为铆接基团提高染料敏化太阳能电池效率[J]. 物理化学学报, 2017, 33(9): 1789 -1795 . |
[10] | 莫周胜,秦玉才,张晓彤,段林海,宋丽娟. 环己烯对噻吩在CuY分子筛上吸附的影响机制[J]. 物理化学学报, 2017, 33(6): 1236 -1241 . |
[11] | 曹朋飞,胡杨,张有为,彭静,翟茂林. 无定型钼硫化物/还原氧化石墨烯的辐射合成及其电催化析氢性能[J]. 物理化学学报, 2017, 33(12): 2542 -2549 . |
[12] | 陈晓宇,王经东,于安池. 金纳米颗粒在不同包裹介质中的超快等离子体动力学[J]. 物理化学学报, 2017, 33(11): 2184 -2190 . |
[13] | 曾向东,赵晓昱,韦会鸽,王彦飞,唐娜,沙作良. 聚苯胺-还原氧化石墨烯复合材料的比电容及超级电容性能[J]. 物理化学学报, 2017, 33(10): 2035 -2041 . |
[14] | 唐伟,王兢. 金属氧化物异质结气体传感器气敏增强机理[J]. 物理化学学报, 2016, 32(5): 1087 -1104 . |
[15] | 胡丽芳,何杰,刘媛,赵芸蕾,陈凯. TiO2-HNbMoO6复合材料的结构特征及其光催化性能[J]. 物理化学学报, 2016, 32(3): 737 -744 . |
|