物理化学学报 >> 2024, Vol. 40 >> Issue (1): 2303055.doi: 10.3866/PKU.WHXB202303055

所属专题: 能源与环境催化

论文 上一篇    下一篇

钨掺杂镍铁水滑石高效电催化析氧反应

段欣漩1, Sendeku Marshet Getaye2, 张道明3, 周道金1, 徐立军4, 高学庆5, 陈爱兵5, 邝允2,*(), 孙晓明1,*()   

  1. 1 北京化工大学, 化工资源有效利用国家重点实验室, 北京软物质科学与工程高精尖创新中心, 北京 100029
    2 清华大学深圳研究院, 海洋氢能研发中心, 广东 深圳 518071
    3 中核战略规划研究总院, 北京 100048
    4 新疆工程学院, 新疆煤矿机电工程技术研究中心, 乌鲁木齐 830023
    5 河北科技大学化学与制药工程学院, 石家庄 050018
  • 收稿日期:2023-03-30 录用日期:2023-05-25 发布日期:2023-08-21
  • 通讯作者: 邝允,孙晓明 E-mail:kuangyun@mail.buct.edu.cn;sunxm@mail.buct.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFA1502200);国家自然科学基金项目(21935001);国家自然科学基金项目(22075013);国家自然科学基金项目(22179029);北京市自然科学重点基金项目(Z210016);河北省科技计划项目(21344601D);中央高校基本科研业务费专项资金资助

Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts

Xinxuan Duan1, Marshet Getaye Sendeku2, Daoming Zhang3, Daojin Zhou1, Lijun Xu4, Xueqing Gao5, Aibing Chen5, Yun Kuang2,*(), Xiaoming Sun1,*()   

  1. 1 State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    2 Ocean Hydrogen Energy R & D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518071, Guangdong Province, China
    3 China Institute of Nuclear Industry Strategy, Beijing 100048, China
    4 Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Urumchi 830023, China
    5 College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
  • Received:2023-03-30 Accepted:2023-05-25 Published:2023-08-21
  • Contact: Yun Kuang, Xiaoming Sun E-mail:kuangyun@mail.buct.edu.cn;sunxm@mail.buct.edu.cn
  • Supported by:
    the National Key R & D Program of China(2021YFA1502200);the National Natural Science Foundation of China(21935001);the National Natural Science Foundation of China(22075013);the National Natural Science Foundation of China(22179029);the Key Beijing Natural Science Foundation(Z210016);the S & T Program of Hebei(21344601D);the Fundamental Research Funds for the Central Universities

摘要:

电解水对制备可持续和清洁的氢气能源至关重要。电解水的阳极析氧反应设计复杂的4-电子转移过程,所需能耗较高,是电解水的速控步骤。催化剂对于析氧反应的进行具有重要作用。镍铁水滑石是最具潜力的碱性非贵金属析氧反应(OER)催化剂,但是由于水滑石导电性差、活性位点暴露不充分、对反应中间体吸附较弱等问题,催化活性还需要进一步提高。如何提升催化活性已经被科学家们广泛关注,比如:制造缺陷、掺杂、将水滑石剥离为单层结构和组装为阵列结构等。在本论文中,通过简单的“一锅法”醇解合成了一系列不同量W掺杂NiFe-LDH的样品。XRD结果表明合成的NiFeW-LDH的衍射峰与完美NiFe-LDH标准卡片相同,没有其他的衍射峰,表明W没有单独成相,被成功掺杂进入NiFe-LDH。扫描电镜表明NiFeW-LDH为纳米片(尺寸约为~500 nm)组成的3d立体花状结构,且材料中Ni、Fe和W均匀分布。XPS表明材料中W的价态为6+,与未掺杂的NiFe-LDH相比,Fe向高价态移动,表面吸附的OH增多。在密度泛函理论(DFT)计算中,结果同样表明W6+掺杂有利于H2O和O*中间体的吸附,提高了Fe位点的活性。在1 mol∙L−1 KOH中,NiFeW-LDH达到10 mA∙cm−2所需过电位是199和237 mV,这比大多数的NiFe基粉末催化剂的性能好。综上,实验和计算表明W掺杂调控催化剂中Fe位点电子结构,优化对反应中间体的吸附,使催化剂具有更高活性。

关键词: 析氧反应, 水滑石, 钨掺杂, 电子相互作用, 电催化

Abstract:

Electrochemical water splitting proves critical to sustainable and clean hydrogen fuel production. However, the anodic water oxidation reaction—the major half-reaction in water splitting—has turned into a bottleneck due to the high energy barrier of the complex and sluggish four-electron transfer process. Nickel-iron layered double hydroxides (NiFe-LDHs) are regarded as promising non-noble metal electrocatalysts for oxygen evolution reaction (OER) catalysis in alkaline conditions. However, the electrocatalytic activity of NiFe-LDH requires improvement because of poor conductivity, a small number of exposed active sites, and weak adsorption of intermediates. As such, tremendous effort has been made to enhance the activity of NiFe-LDH, including introducing defects, doping, exfoliation to obtain single-layer structures, and constructing arrayed structures. In this study, researchers controllably doped NiFe-LDH with tungsten using a simple one-step alcohothermal method to afford nickel-iron-tungsten layered double hydroxides (NiFeW-LDHs). X-ray powder diffraction analysis was used to investigate the structure of NiFeW-LDH. The analysis revealed the presence of the primary diffraction peak corresponding to the perfectly hexagonal-phased NiFe-LDH, with no additional diffraction peaks observed, thereby ruling out the formation of tungsten-based nanoparticles. Furthermore, scanning electron microscopy (SEM) showed that the NiFeW-LDH nanosheets were approximately 500 nm in size and had a flower-like structure that consisted of interconnected nanosheets with smooth surfaces. Additionally, it was observed that NiFeW-LDH had a uniform distribution of Ni, Fe, and W throughout the nanosheets. X-ray photoelectron spectra (XPS) revealed the surface electronic structure of the NiFeW-LDH catalyst. It was determined that the oxidation state of W in NiFeW-LDH was +6 and that the XPS signal of Fe in NiFeW-LDH shifted to a higher oxidation state compared to NiFe-LDH. These results suggest electron redistribution between Fe and W. Simultaneously, the peak area of surface-adsorbed OH increased significantly after W doping, suggesting enhanced OH adsorption on the surface of NiFeW-LDH. Furthermore, density functional theory (DFT) calculations indicated that W(Ⅵ) facilitates the adsorption of H2O and O*-intermediates and enhances the activity of Fe sites, which aligns with experimental results. The novel NiFeW-LDH catalyst displayed a low overpotential of 199 and 237 mV at 10 and 100 mA∙cm−2 in 1 mol∙L−1 KOH, outperforming most NiFe-based colloid catalysts. Furthermore, experimental characterizations and DFT+U calculations suggest that W doping plays an important role through strong electronic interactions with Fe and facilitating the adsorption of important O-containing intermediates.

Key words: Oxygen evolution reaction, Layered double hydroxide, Tungsten doping, Electronic interaction, Electrocatalysis