物理化学学报 >> 2017, Vol. 33 >> Issue (12): 2438-2445.doi: 10.3866/PKU.WHXB201706121

论文 上一篇    下一篇

航空煤油替代燃料模型构建方法及HEF航空煤油替代燃料模型

郑东1,2,钟北京2,*(),姚通3   

  1. 1 西南交通大学机械学院,成都610031
    2 清华大学航天航空学院,北京100084
    3 清华大学热能工程系燃烧能源中心,北京100084
  • 收稿日期:2017-04-24 发布日期:2017-09-05
  • 通讯作者: 钟北京 E-mail:zhongbj@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(91441113);中央高校基本科研业务费专项资金项目(2682017CX035)

Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene

Dong ZHENG1,2,Bei-Jing ZHONG2,*(),Tong YAO3   

  1. 1 School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
    2 School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
    3 Center for Combustion Energy, Department of Thermal Engineering, Tsinghua University, Beijing 100084, P. R. China
  • Received:2017-04-24 Published:2017-09-05
  • Contact: Bei-Jing ZHONG E-mail:zhongbj@tsinghua.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(91441113);Fundamental Research Funds for the Central Universities(2682017CX035)

摘要:

本文在完善燃烧化学特性参数,发展更准确的混合物特性参数计算方法的基础上,提出一套完整的、精确的航煤替代燃料模型构建方法。并采用定容燃烧弹实验系统首次测量了初始温度420和460 K、压力0.1 MPa,实际HEF航煤以及代表性组分十氢萘的层流火焰传播速度,为本文发展和验证替代燃料模型提供充分的实验数据。依据该方法提出了摩尔分数为65%正十二烷、10%正十四烷、25%十氢萘三组分HEF航煤替代燃料模型。充分的的实验和计算结果验证表明,替代燃料模型与实际HEF航煤在物理特性和燃烧化学特性方面有很高的相似性。本文提出的HEF航煤替代燃料模型和实验测量的层流火焰传播速度,为后续化学反应机理的发展与验证奠定了基础。

关键词: 航空煤油, 替代燃料, 高能量密度燃料, 层流火焰传播速度, 反应机理

Abstract:

The methodology for formulating aviation kerosene surrogate fuels was developed based on enriching combustion chemical property parameters, and presenting accurate computational method for mixture fuel property parameters. Moreover, under the conditions of initial pressure of 0.1 MPa, initial temperatures of 420 K and 460 K, the laminar flame speeds of the real HEF kerosene were measured using the constant-volume combustion bomb experiment. Depending on the methodology, the HEF kerosene surrogate fuel model, consisting of 65% n-dodecane/10% n-tetradecane/25% decalin (mole fraction), was presented. Sufficiently validated results indicated that in both physical and combustion chemical properties, the surrogate fuel models have high similarity with the real HEF kerosene. The present surrogate fuel model and experimental data provide a foundation for the development and validation of the chemical mechanism.

Key words: Aviation kerosene, Surrogate fuel, High energy density fuel, Laminar flame speed, Reaction mechanism