物理化学学报 >> 2016, Vol. 32 >> Issue (6): 1307-1313.doi: 10.3866/PKU.WHXB201604083

通讯 上一篇    下一篇

碘化铅作为空穴传输层在P3HT:PC61BM聚合物太阳能电池中的增强效果

胥国成1,邓先云1,李军丽2,张睿3,谢云鹏1,屠国力2,夏江滨3,*(),卢兴1,*()   

  1. 1 华中科技大学材料科学与工程学院,材料成型与模具国家重点实验室,武汉430074
    2 武汉光电国家实验室,武汉430074
    3 武汉大学化学与分子科学学院,武汉430072
  • 收稿日期:2016-02-19 发布日期:2016-06-03
  • 通讯作者: 夏江滨,卢兴 E-mail:jbxia@whu.edu.cn;lux@hust.edu.cn
  • 基金资助:
    国家自然科学基金(51472095)

Lead Iodide as a New Type of Hole Transport Layer for the High Performance of P3HT:PC61BM-Based Solar Cells

Guo-Cheng XU1,Xian-Yun DENG1,Jun-Li LI2,Rui ZHANG3,Yun-Peng XIE1,Guo-Li TU2,Jiang-Bin XIA3,*(),Xing LU1,*()   

  1. 1 State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
    2 Wuhan National Laboratory for Optoelectronics, Wuhan 430074, P. R. China
    3 College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China)
  • Received:2016-02-19 Published:2016-06-03
  • Contact: Jiang-Bin XIA,Xing LU E-mail:jbxia@whu.edu.cn;lux@hust.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(51472095)

摘要:

开发了一类新型阳极界面缓冲材料PbI2,制备了结构为ITO/PbI2/P3HT:PC61BM/Al(氧化铟锡导电玻璃/碘化铅/聚三已基噻吩:富勒烯衍生物/铝)的器件,制备工艺包括旋涂和蒸镀,考察了PbI2在聚合物太阳能电池原型器件ITO/P3HT:PC61BM/Al中的效果。不同碘化铅浓度,退火温度,退火时间,对PbI2薄膜的质量都会有影响。很显然,高质量的PbI2薄膜将会带来好的光电转化效率。PbI2薄膜的透光性,结晶性,以及表面形貌可以用来描述所成薄膜的质量好坏。对能带来最好性能的碘化铅薄膜进行了紫外-可见光谱,X射线粉末衍射(XRD),原子力显微镜(AFM),扫描电子显微镜(SEM)等表征。实验发现,太阳能电池器件的效率对PbI2浓度比较敏感,最优化的条件为,旋涂浓度为3 mg·mL-1,100 ℃退火30 min,其电池的开路电压(Voc)达到0.45 V,短路电流密度(Jsc)为7.9 mA·cm-2,填充因子(FF)为0.46,与没有界面缓冲材料的器件相比,光电转换效率(PCE)由0.85%提高到1.64%。

关键词: 聚合物太阳能电池, 阳极界面缓冲层, 碘化铅, 浓度, 光电转化效率

Abstract:

We develop a novel hole extracting buffer layer material, namely PbI2. The structure of the device we fabricate is ITO/PbI2/P3HT:PC61BM/Al (indium tin oxide/lead iodide/poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester/aluminum cathode). The preparation method involves spin-coating and thermal evaporation. We study the effectiveness of using PbI2 in the prototype ITO/P3HT:PC61BM/Al polymer solar cell devices. The concentration, annealing temperature, and annealing time all have an influence on the quality of the PbI2 films. Obviously, higher-quality PbI2 films will lead to better power conversion efficiency. The transmittance, crystallization, and morphology properties of the PbI2 films can be used to describe the quality of the films. We characterize the PbI2 film affording the best performance by UV-Vis spectrophotometry, X-ray powder diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Our results reveal that the performance of the solar cell device is sensitive to the concentration of PbI2, and the best conditions are a concentration of 3 mg·mL-1, annealing temperature of 100 ℃, and annealing time of 30 min. The open circuit voltage (Voc) is 0.45 V, the short circuit current density (Jsc) is 7.9 mA·cm-2, and the fill factor (FF) is 0.46. Compared with the devices without any buffer layer (0.85%), the power conversion efficiency (PCE) using PbI2 as the buffer layer can reach 1.64%.

Key words: Polymer solar cell, Anode buffer layer, Lead iodide, Concentration, Power conversion efficiency