物理化学学报 >> 2020, Vol. 36 >> Issue (11): 1912030.doi: 10.3866/PKU.WHXB201912030
刘昆, 刘瑶, 朱海峰, 董晓丽, 王永刚, 王丛笑(), 夏永姚()
收稿日期:
2019-12-10
录用日期:
2020-01-07
发布日期:
2020-01-13
通讯作者:
王丛笑,夏永姚
E-mail:cxwang@fudan.edu.cn;yyxia@fudan.edu.cn
基金资助:
Kun Liu, Yao Liu, Haifeng Zhu, Xiaoli Dong, Yonggang Wang, Congxiao Wang(), Yongyao Xia()
Received:
2019-12-10
Accepted:
2020-01-07
Published:
2020-01-13
Contact:
Congxiao Wang,Yongyao Xia
E-mail:cxwang@fudan.edu.cn;yyxia@fudan.edu.cn
Supported by:
摘要:
在本文中,我们首次报道了一种新型的硅酸盐负极材料NaTiSi2O6,由溶胶-凝胶法和固相烧结法合成而得。这种材料属于单斜晶系,空间群为C2/c。通过葡萄糖的高温裂解和碳化,NaTiSi2O6/C复合物被成功制备出来,其表面积为132 m2·g-1。在0.1 A·g-1的电流密度下其首圈放电和充电的比容量分别为542.9 mAh·g-1和266.6 mAh·g-1,首圈库伦效率为49.1%。在经过100圈循环后,其充电比容量为224.1 mAh·g-1,容量保持率为84.1%。原位X射线衍射测试表明,其充放电机理为嵌入反应。这使得NaTiSi2O6成为硅酸盐负极材料家族中新的一员。
刘昆, 刘瑶, 朱海峰, 董晓丽, 王永刚, 王丛笑, 夏永姚. NaTiSi2O6/C复合材料用于锂离子电池负极材料[J]. 物理化学学报, 2020, 36(11), 1912030. doi: 10.3866/PKU.WHXB201912030
Kun Liu, Yao Liu, Haifeng Zhu, Xiaoli Dong, Yonggang Wang, Congxiao Wang, Yongyao Xia. NaTiSi2O6/C Composite as a Novel Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica 2020, 36(11), 1912030. doi: 10.3866/PKU.WHXB201912030
Table 1
Refined crystal parameters of the as-prepared NaTiSi2O6."
Atom | Wyckoff site | S.O.F. | x/a | y/b | z/c |
Na1 | 4e | 0.94 | 0 | 0.3030(5) | 1/4 |
Ti1 | 4e | 0.92 | 0 | 0.90204(28) | 1/4 |
Si1 | 8f | 0.932 | 0.29289(25) | 0.0892(4) | 0.2427(5) |
O1 | 8f | 0.999 | 0.1187(4) | 0.0807(6) | 0.1497(9) |
O2 | 8f | 1.041 | 0.3597(5) | 0.2548(6) | 0.3099(10) |
O3 | 8f | 1.043 | 0.3530(6) | 0.0075(4) | 0.0198(14) |
Fig 1
(a) The X-ray diffraction (XRD) plot of precursor Na2TiSi4O11; (b) Rietveld Refinement result of NaTiSi2O6 prepared by sintering Na2TiSi4O11, Ti and TiO2; (c) Rietveld refinement result of NaTiSi2O6 prepared by sol-gel method; (d) crystal structure for monoclinic NaTiSi2O6 viewing along b axis, showing TiO6 octahedra in dark yellow and SiO4 tetrahedra in bluish green."
Fig 2
(a) The scanning electron microscopy (SEM) image for NTSO without carbon prepared by solid sintering; (b, c) SEM image of different magnifying scale for NTSO/C prepared by sol-gel method; (d, e) Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) image for NTSO/C; (f) SEM image of NTSO/C where energy dispersive X-ray spectroscopy (EDS) mappings were analysed; (g–k) EDS mappings showing element distribution of Na, Ti, Si, O and C."
Fig 5
(a) The galvanostatic charging and discharging (GCD) curve of pure NTSO and NTSO/C from 1st cycle to 100th cycle at 0.2 A·g?1; (b) Cycling performance of pure NTSO and NTSO/C at 0.2 A·g?1; (c) Cycling performance of NTSO/C at 0.1 and 0.5 A·g?1. For cycling test at 0.5 A·g?1, first two cycles were activated under 0.05 A·g?1; (d) Rate performance of NTSO/C."
Table 2
List of ever-reported titanosilicate anode materials for lithium ion batteries."
Anode Material | Mass Loading/(mg·cm?2) | Current Density/(A·g?1) | Specific Capacity/(mAh·g?1) | Reference |
Li2TiSiO5 | ~3 | 0.02 | 308 | |
Na2Ti2O3SiO4 | 1–6 | 0.02 | 750–40 | |
Na2TiOSi4O10 | / | 0.1 | 364 | |
Na2TiOSi4O10 | 0.9–1.6 | C/10 | 67.6 | |
Na2TiSiO5 | ~1 | 0.5 | ~200 | |
NaTiSi2O6 | ~2 | 0.05 | 230 | This Work |
1 |
Guo Z. ; Zhu J. ; Feng J. ; Du S. RSC Adv. 2015, 5, 69514.
doi: 10.1039/c5ra13289d |
2 |
Hu Y. S. ; Demir-Cakan R. ; Titirici M. M. ; Mueller J. O. ; Schloegl R. ; Antonietti M. ; Maier J. Angew. Chem. Int. Ed. 2008, 47, 1645.
doi: 10.1002/anie.200704287 |
3 |
Jia H. ; Gao P. ; Yang J. ; Wang J. ; Nuli Y. ; Yang Z. Adv. Energy Mater. 2011, 1, 1036.
doi: 10.1002/aenm.201100485 |
4 |
Reddy M. V. ; Yu T. ; Sow C. H. ; Shen Z. X. ; Lim C. T. ; Rao G. V. S. ; Chowdari B. V. R. Adv. Funct. Mater. 2007, 17, 2792.
doi: 10.1002/adfm.200601186 |
5 |
Zhu X. ; Zhu Y. ; Murali S. ; Stollers M. D. ; Ruoff R. S. ACS Nano 2011, 5, 3333.
doi: 10.1021/nn200493r |
6 |
Lin Y. M. ; Abel P. R. ; Heller A. ; Mullins C. B. J. Phys. Chem. Lett. 2011, 2, 2885.
doi: 10.1021/jz201363j |
7 |
Xu X. ; Cao R. ; Jeong S. ; Cho J. Nano Lett. 2012, 12, 4988.
doi: 10.1021/nl302618s |
8 |
Zhang W. M. ; Wu X. L. ; Hu J. S. ; Guo Y. G. ; Wan L. J. Adv. Funct. Mater. 2008, 18, 3941.
doi: 10.1002/adfm.200801386 |
9 |
Zhou G. ; Wang D. W. ; Li F. ; Zhang L. ; Li N. ; Wu Z. S. ; Wen L. ; Lu G. Q. ; Cheng H. M. Chem. Mater. 2010, 22, 5306.
doi: 10.1021/cm101532x |
10 |
Kang E. ; Jung Y. S. ; Cavanagh A. S. ; Kim G. H. ; George S. M. ; Dillon A. C. ; Kim J. K. ; Lee J. Adv. Funct. Mater. 2011, 21, 2430.
doi: 10.1002/adfm.201002576 |
11 |
Yu Y. ; Chen C. H. ; Shui J. L. ; Xie S. Angew. Chem. Int. Ed. 2005, 44, 7085.
doi: 10.1002/anie.200501905 |
12 |
Sun Y. ; Hu X. ; Luo W. ; Huang Y. J. Phys. Chem. C 2012, 116, 20794.
doi: 10.1021/jp3070147 |
13 |
Sun Y. ; Hu X. ; Luo W. ; Huang Y. J. Mater. Chem. 2012, 22, 13826.
doi: 10.1039/c2jm31159c |
14 |
Aravindan V. ; Kumar P. S. ; Sundaramurthy J. ; Ling W. C. ; Ramakrishna S. ; Madhavi S. J. Power Sources 2013, 227, 284.
doi: 10.1016/j.jpowsour.2012.11.050 |
15 |
Mai Y. J. ; Shi S. J. ; Zhang D. ; Lu Y. ; Gu C. D. ; Tu J. P. J. Power Sources 2012, 204, 155.
doi: 10.1016/j.jpowsour.2011.12.038 |
16 |
Liu H. ; Wang G. ; Liu J. ; Qiao S. ; Ahn H. J. Mater. Chem. 2011, 21, 3046.
doi: 10.1039/c0jm03132a |
17 |
Poizot P. ; Laruelle S. ; Grugeon S. ; Dupont L. ; Tarascon J. M. Nature 2000, 407, 496.
doi: 10.1038/35035045 |
18 |
Ren Y. ; Liu Z. ; Pourpoint F. ; Armstrong A. R. ; Grey C. P. ; Bruce P. G. Angew. Chem. Int. Ed. 2012, 51, 2164.
doi: 10.1002/anie.201108300 |
19 |
Cao F. F. ; Wu X. L. ; Xin S. ; Guo Y. G. ; Wan L. J. J. Phys. Chem. C 2010, 114, 10308.
doi: 10.1021/jp103218u |
20 |
Armstrong G. ; Armstrong A. R. ; Bruce P. G. ; Reale P. ; Scrosati B. Adv. Mater. 2006, 18, 2597.
doi: 10.1002/adma.200601232 |
21 |
Li J. R. ; Tang Z. L. ; Zhang Z. T. Electrochem. Solid-State Lett. 2005, 8, A316.
doi: 10.1149/1.1904465 |
22 |
van de Krol R. ; Goossens A. ; Meulenkamp E. A. J. Electrochem. Soc. 1999, 146, 3150.
doi: 10.1149/1.1392447 |
23 | Wang Q. W. ; Du X. F. ; Chen X. Z. ; Xu Y. L. Acta Phys. -Chim. Sin. 2015, 31, 1437. |
汪倩雯; 杜显锋; 陈夕子; 徐友龙. 物理化学学报, 2015, 31, 1437.
doi: 10.3866/PKU.WHXB201506162 |
|
24 |
Liu Y. ; Liu J. ; Hou M. ; Fan L. ; Wang Y. ; Xia Y. J. Mater. Chem. A 2017, 5, 10902.
doi: 10.1039/c7ta03173d |
25 |
Wang Y. Q. ; Guo L. ; Guo Y. G. ; Li H. ; He X. Q. ; Tsukimoto S. ; Ikuhara Y. ; Wan L. J. J. Am. Chem. Soc. 2012, 134, 7874.
doi: 10.1021/ja301266w |
26 |
Shen L. ; Zhang X. ; Uchaker E. ; Yuan C. ; Cao G. Adv. Energy Mater. 2012, 2, 691.
doi: 10.1002/aenm.201100720 |
27 |
Zhao L. ; Hu Y. S. ; Li H. ; Wang Z. ; Chen L. Adv. Mater. 2011, 23, 1385.
doi: 10.1002/adma.201003294 |
28 |
Rahman M. M. ; Wang J. Z. ; Hassan M. F. ; Wexler D. ; Liu H. K. Adv. Energy Mater. 2011, 1, 212.
doi: 10.1002/aenm.201000051 |
29 |
Colin J. F. ; Godbole V. ; Novak P. Electrochem. Commun. 2010, 12, 804.
doi: 10.1016/j.elecom.2010.03.038 |
30 |
Cheng L. ; Yan J. ; Zhu G. N. ; Luo J. Y. ; Wang C. X. ; Xia Y. Y. J. Mater. Chem. 2010, 20, 595.
doi: 10.1039/b914604k |
31 |
Belharouak I. ; Sun Y. K. ; Lu W. ; Amine K. J. Electrochem. Soc. 2007, 154, A1083.
doi: 10.1149/1.2783770 |
32 |
Zhu G. N. ; Chen L. ; Wang Y. G. ; Wang C. X. ; Che R. C. ; Xia Y. Y. Adv. Funct. Mater. 2013, 23, 640.
doi: 10.1002/adfm.201201741 |
33 |
Chiba K. ; Kijima N. ; Takahashi Y. ; Idemoto Y. ; Akimoto J. Solid State Ionics 2008, 178, 1725.
doi: 10.1016/j.ssi.2007.11.004 |
34 |
Perez-Flores J. C. ; Kuhn A. ; Garcia-Alvarado F. J. Power Sources 2011, 196, 1378.
doi: 10.1016/j.jpowsour.2010.08.106 |
35 |
Kataoka K. ; Awaka J. ; Kijima N. ; Hayakawa H. ; Ohshima K. I. ; Akimoto J. Chem. Mater. 2011, 23, 2344.
doi: 10.1021/cm103678e |
36 |
Zhu G. N. ; Wang Y. G. ; Xia Y. Y. Energy Environ. Sci. 2012, 5, 6652.
doi: 10.1039/c2ee03410g |
37 |
Xiao F. S. ; Han Y. ; Yu Y. ; Meng X. J. ; Yang M. ; Wu S. J. Am. Chem. Soc. 2002, 124, 888.
doi: 10.1021/ja0170044 |
38 |
Kuznicki S. M. ; Bell V. A. ; Nair S. ; Hillhouse H. W. ; Jacubinas R. M. ; Braunbarth C. M. ; Toby B. H. ; Tsapatsis M. Nature 2001, 412, 720.
doi: 10.1038/35089052 |
39 |
Anderson M. W. ; Terasaki O. ; Ohsuna T. ; Philippou A. ; Mackay S. P. ; Ferreira A. ; Rocha J. ; Lidin S. Nature 1994, 367, 347.
doi: 10.1038/367347a0 |
40 |
Sinha A. K. ; Seelan S. ; Okumura M. ; Akita T. ; Tsubota S. ; Haruta M. J. Phys. Chem. B 2005, 109, 3956.
doi: 10.1021/jp0465229 |
41 |
Sinha A. K. ; Seelan S. ; Tsubota S. ; Haruta M. Angew. Chem. Int. Ed. 2004, 43, 1546.
doi: 10.1002/anie.200352900 |
42 |
Anderson M. W. ; Terasaki O. ; Ohsuna T. ; Malley P. J. O. ; Philippou A. ; Mackay S. P. ; Ferreira A. ; Rocha J. ; Lidin S. Philos. Mag. B 1995, 71, 813.
doi: 10.1080/01418639508243589 |
43 |
Masquelier C. ; Croguennec L. Chem. Rev. 2013, 113, 6552.
doi: 10.1021/cr3001862 |
44 |
Liu J. ; Pang W. K. ; Zhou T. ; Chen L. ; Wang Y. ; Peterson V. K. ; Yang Z. ; Guo Z. ; Xia Y. Energy Environ. Sci. 2017, 10, 1456.
doi: 10.1039/c7ee00763a |
45 |
Milne N. A. ; Griffith C. S. ; Hanna J. V. ; Skyllas-Kazacos M. ; Luca V. Chem. Mater. 2006, 18, 3192.
doi: 10.1021/cm0523337 |
46 | Liu M. P. ; Hu Y. X. ; Du H. B. Chin. J. Inorg. Chem. 2015, 31, 2425. |
刘美玭; 胡宇翔; 杜红宾. 无机化学学报, 2015, 31, 2425.
doi: 10.11862/cjic.2015.315 |
|
47 |
Chaupatnaik A. ; Srinivasan M. ; Barpanda P. ACS Appl. Energy Mater. 2019, 2, 2350.
doi: 10.1021/acsaem.8b01906 |
48 |
He D. ; Wu T. ; Wang B. ; Yang Y. ; Zhao S. ; Wang J. ; Yu H. Chem. Commun. 2019, 55, 2234.
doi: 10.1039/c9cc00043g |
49 |
Isobe M. ; Ninomiya E. ; Vasil'ev A. N. ; Ueda Y. J. Phys. Soc. Jpn. 2002, 71, 1423.
doi: 10.1143/jpsj.71.1423 |
50 | Larson, A. C.; Von Dreele, R. B. GSAS; Los Alamos National Laboratory Report LAUR: Los Alamos, NM, USA, 1994; pp. 86–748. |
51 |
Toby B. H. J. Appl. Crystallogr. 2001, 34, 210.
doi: 10.1107/s0021889801002242 |
52 |
Weppner W. ; Huggins R. A. J. Electrochem. Soc. 1977, 124, 1569.
doi: 10.1149/1.2133112 |
53 |
Yu P. ; Popov B. N. ; Ritter J. A. ; White R. E. J. Electrochem. Soc. 1999, 146, 8.
doi: 10.1149/1.1391556 |
54 |
Ding N. ; Xu J. ; Yao Y. X. ; Wegner G. ; Fang X. ; Chen C. H. ; Lieberwirth I. Solid State Ionics 2009, 180, 222.
doi: 10.1016/j.ssi.2008.12.015 |
55 |
Rui X. H. ; Ding N. ; Liu J. ; Li C. ; Chen C. H. Electrochim. Acta 2010, 55, 2384.
doi: 10.1016/j.electacta.2009.11.096 |
56 |
Wang J. ; Zhang G. ; Liu Z. ; Li H. ; Liu Y. ; Wang Z. ; Li X. ; Shih K. ; Mai L. Nano Energy 2018, 44, 272.
doi: 10.1016/j.nanoen.2017.11.079 |
57 |
Prosini P. P. ; Lisi M. ; Zane D. ; Pasquali M. Solid State Ionics 2002, 148, 45.
doi: 10.1016/S0167-2738(02)00134-0 |
58 |
Song H. J. ; Kim J. C. ; Lee C. W. ; Park S. ; Dar M. A. ; Hong S. H. ; Kim D. W. Electrochim. Acta 2015, 170, 25.
doi: 10.1016/j.electacta.2015.04.113 |
[1] | 鲁航语, 侯瑞林, 褚世勇, 周豪慎, 郭少华. 高比能锂离子电池层状富锂正极材料改性策略研究进展[J]. 物理化学学报, 2023, 39(7): 2211057 -0 . |
[2] | 汪茹, 刘志康, 严超, 伽龙, 黄云辉. 高安全锂离子电池复合集流体的界面强化[J]. 物理化学学报, 2023, 39(2): 2203043 -0 . |
[3] | 朱思颖, 李辉阳, 胡忠利, 张桥保, 赵金保, 张力. 锂离子电池氧化亚硅负极结构优化和界面改性研究进展[J]. 物理化学学报, 2022, 38(6): 2103052 - . |
[4] | 杨越, 朱加伟, 王鹏彦, 刘海咪, 曾炜豪, 陈磊, 陈志祥, 木士春. 镶嵌于NH2-MIL-125 (Ti)衍生氮掺多孔碳中的花状超细纳米TiO2作为高活性和稳定性的锂离子电池负极材料[J]. 物理化学学报, 2022, 38(6): 2106002 - . |
[5] | 莫英, 肖逵逵, 吴剑芳, 刘辉, 胡爱平, 高鹏, 刘继磊. 锂离子电池隔膜的功能化改性及表征技术[J]. 物理化学学报, 2022, 38(6): 2107030 - . |
[6] | 吴锋, 李晴, 陈来, 王紫润, 陈刚, 包丽颖, 卢赟, 陈实, 苏岳锋. 高镍正极材料中钴元素的替代方案及其合成工艺优化[J]. 物理化学学报, 2022, 38(5): 2007017 - . |
[7] | 刘学伟, 牛莹, 曹瑞雄, 陈晓红, 商红岩, 宋怀河. 石墨烯包覆天然球形石墨作为锂离子电池的负极材料,是否需要乙炔黑导电剂?[J]. 物理化学学报, 2022, 38(2): 2012062 - . |
[8] | 李莹, 来雪琦, 曲津朋, 赖勤志, 伊廷锋. 钠离子电池用高性能锑基负极材料的调控策略研究进展[J]. 物理化学学报, 2022, 38(11): 2204049 - . |
[9] | 丁晓博, 黄倩晖, 熊训辉. 锂离子电池快充石墨负极研究与应用[J]. 物理化学学报, 2022, 38(11): 2204057 - . |
[10] | 苏岳锋, 张其雨, 陈来, 包丽颖, 卢赟, 陈实, 吴锋. ZrO2包覆高镍LiNi0.8Co0.1Mn0.1O2正极材料提高其循环稳定性的作用机理[J]. 物理化学学报, 2021, 37(3): 2005062 - . |
[11] | 王思岚, 杨国锐, SalmanNasir Muhammad, 王筱珺, 王嘉楠, 延卫. 磷基钠离子电池负极材料研究进展[J]. 物理化学学报, 2021, 37(12): 2001003 - . |
[12] | 张思东, 刘园, 祁慕尧, 曹安民. 表面限域掺杂提升高比能正极材料稳定性[J]. 物理化学学报, 2021, 37(11): 2011007 - . |
[13] | 叶耀坤, 胡宗祥, 刘佳华, 林伟成, 陈涛文, 郑家新, 潘锋. 锂离子电池正极材料中的极化子现象理论计算研究进展[J]. 物理化学学报, 2021, 37(11): 2011003 - . |
[14] | 安惠芳, 姜莉, 李峰, 吴平, 朱晓舒, 魏少华, 周益明. 基于水凝胶衍生的硅/碳纳米管/石墨烯纳米复合材料及储锂性能[J]. 物理化学学报, 2020, 36(7): 1905034 - . |
[15] | 卢晓霞,董升阳,陈志杰,吴朗源,张校刚. 碳包覆Ti2Nb2O9纳米片的制备及其储钠性能[J]. 物理化学学报, 2020, 36(5): 1906024 - . |
|