物理化学学报 >> 2021, Vol. 37 >> Issue (6): 2011022.doi: 10.3866/PKU.WHXB202011022

所属专题: 先进光催化剂设计与制备

论文 上一篇    下一篇

石墨烯量子点修饰的BiOI/PAN柔性纤维的制备及其增强的光催化活性

赫荣安, 陈容, 罗金花, 张世英, 许第发()   

  • 收稿日期:2020-11-06 录用日期:2020-11-26 发布日期:2020-12-02
  • 通讯作者: 许第发 E-mail:xudifa@sina.com
  • 基金资助:
    国家自然科学基金(52073034);国家自然科学基金(21871030);湖南省自然科学基金(2018JJ2457);湖南省自然科学基金(2017JJ3340);湖南省教育厅科学研究项目(18A370)

Fabrication of Graphene Quantum Dots Modified BiOI/PAN Flexible Fiber with Enhanced Photocatalytic Activity

Rongan He, Rong Chen, Jinhua Luo, Shiying Zhang, Difa Xu()   

  • Received:2020-11-06 Accepted:2020-11-26 Published:2020-12-02
  • Contact: Difa Xu E-mail:xudifa@sina.com
  • About author:Difa Xu, Email: xudifa@sina.com; Tel.: +86-13687382717
  • Supported by:
    the Natural Science Foundation of China(52073034);the Natural Science Foundation of China(21871030);the Natural Science Foundation of Hunan Province of China(2018JJ2457);the Natural Science Foundation of Hunan Province of China(2017JJ3340);the Scientific Research Fund of Hunan Provincial Education Department of China(18A370)

摘要:

在环境治理中,光催化氧化是去除有机污染物的一种很有前途的技术。与吸附、生物降解和化学氧化等方法相比,光催化氧化可以通过环境友好的方式,完全、方便、廉价地消除有机污染物。光催化氧化中,又以可见光光催化氧化更具优势,这是因为可见光在太阳光中的能量比例较高。碘氧化铋(BiOI)是一种很有前途的可见光光催化剂,不仅具有较窄的带隙,而且具有较低的价带(VB),其产生的光生空穴能氧化分解多种有机污染物。然而,BiOI粉末回收困难、比表面积低、载流子复合快等缺点限制了其实际应用。同时,光催化剂的柔性和分级结构有利于这些材料的操作、回收和性能改进,也是非常可取的特性。为此,本文以静电纺丝制备的聚丙烯腈(PAN)纳米纤维为基底,通过原位反应的方法,制备了具有分级结构的柔性BiOI/PAN复合纤维。在BiOI/PAN纤维中,BiOI薄片围绕PAN纤维、垂直均匀地排列在其表面,形成独特的分级结构。在制备的过程中,PAN纤维中掺入的Bi(Ⅲ)会先形成的BiOI晶核,并成为BiOI纳米片生长的种子。这对分级结构的形成至关重要。紫外-可见漫反射光谱和光致发光发射分析显示,这种分级结构可以改善BiOI/PAN光纤的光吸收,促进光生载流子的形成。因此,BiOI/PAN纤维比BiOI粉末具有更高的光催化活性。进一步,用预先制备的石墨烯量子点(GQDs)对BiOI/PAN纤维进行修饰,可制备出GQDs修饰的BiOI/PAN纤维复合材料(GQD-BiOI/PAN)。所制备GQD-BiOI/PAN的形貌与BiOI/PAN纤维几乎是一样的。通过制备方法、光致发光发射、反应自由基测试和X射线光电子能谱(XPS)的综合分析,证实了GQDs与BiOI之间会形成梯型(S型)异质结。这种S型异质结不仅能有效地抑制光生空穴的复合,而且能保留GQDs的最低未占据分子轨道(LUMO)上还原能力更强的电子,以及BiOI的VB上氧化能力更强的空穴,用于光催化降解苯酚。在纤维分级结构和S型异质结的共同作用下,GQD-BiOI/PAN在可见光光催化氧化苯酚中,其性能明显优于BiOI粉末和BiOI/PAN纳米纤维。此外,由于粘结紧密,GQD-BIOI/PAN可以进行裁剪和徒手操作,回收利用非常方便。在循环性能测试中,没有明显的样品损失和光催化活性的降低的现象。本文的工作为制备柔性光催化剂提供了一条新的途径,并对光催化剂的增强提供了新的视野。

关键词: 分级, 光催化氧化, 苯酚, S型异质结, 可见光

Abstract:

In environment remediation, photocatalytic oxidation is a promising technique for removing organic pollutants. Compared to adsorption, biodegradation, and chemical oxidation, photocatalytic oxidation can eliminate organic pollutants completely, conveniently, and cheaply in an environmentally friendly manner. Visible-light-driven photocatalytic oxidation is particularly advisable because of the high proportion of visible light energy in solar energy. Bismuth oxyiodide (BiOI) is a promising visible-light-driven photocatalyst for the oxidization of pollutants, not only because of its narrow band gap, but also for its relatively low valence band (VB), which is adequate for photogenerated holes to oxidize a variety of organic compounds. However, the shortcomings of BiOI powder, such the difficulty of recycling it, its low surface area, and fast carrier recombination, limit its practical applications. Meanwhile, the flexibility and hierarchical structure of photocatalysts are particularly advisable because these properties are beneficial for the convenient operation, recycling, and performance improvement of these materials. Herein, based on an electro-spun polyacrylonitrile (PAN) nanofiber substrate, a hierarchical BiOI/PAN fiber was prepared through an in situ reaction. In the as-prepared BiOI/PAN fibers, BiOI flakes were aligned vertically and uniformly around the PAN fibers. BiOI nuclei generated from pre-introduced Bi(Ⅲ) in the PAN fiber act as seeds for the growth of BiOI nanoplates, which is crucial for the formation of a hierarchical structure. Such a hierarchical structure can improve both the light absorption and carrier generation of the BiOI/PAN fibers, as demonstrated by UV-Vis diffuse reflectance spectra and photoluminescence emission. Therefore, the BiOI/PAN fibers exhibited higher photocatalytic activity than BiOI powder. When the BiOI/PAN fibers were decorated with pre-prepared graphene quantum dots (GQDs), a GQD-modified BiOI/PAN fibrous composite (GQD-BiOI/PAN) was fabricated. The morphology of the obtained GQD-BiOI/PAN fibers was nearly the same as that of the BiOI/PAN fibers. A step-scheme (S-scheme) heterojunction was formed between the GQDs and BiOI, which was confirmed by the fabrication method, photoluminescence emission, reactive radical tests, and XPS analysis. This kind of S-scheme heterojunction can not only effectively suppress the recombination of photogenerated holes, but can also reserve the more reductive electrons on the lowest unoccupied molecular orbital of GQDs and the more oxidative holes on the VB of BiOI, for the photocatalytic degradation of phenol. Because of the fibrous hierarchical structure and S-scheme heterojunction, GQD-BiOI/PAN outperformed BiOI nanoparticles and BiOI/PAN nanofibers in the photocatalytic oxidation of phenol under visible light. In addition, because of tight bonding, GQD-BiOI/PAN can be tailored and operated by hand, which is convenient for recycling. During recycling, no obvious loss of sample or decrease in photocatalytic activity was observed. This work provides a new pathway for the fabrication of flexible photocatalysts and a new insight into the enhancement of photocatalysts.

Key words: Hierarchical, Photocatalytic oxidization, Phenol, S-scheme heterojunction, Visible light