This is a brief review of some recent progress in the development and application of firstprinciples electronic structure approaches for molecules in solution. In particular, it accounts for the background, theoretical features, and representative applications of a recently developed, truly accurate continuum solvation model which is known as Surface and Volume Polarization for Electrostatics (SVPE) or Fully Polarizable Continuum Model (FPCM) in literature. The FPCM-based first-principles electronic structure approaches have been widely employed to study a variety of chemical and biochemical problems and serve as an integrated part of various computational protocols for rational drug design. Some perspective of the future of the FPCM-based first-principles electronic structure approaches is also given.
为了研究不同结构的表面活性剂分子在水溶液中的胶束化焓-熵补偿现象, 采用自由能微扰(FEP)法计算了系列烷基芳基磺酸盐的溶剂化自由能, 并根据胶团化过程的质量作用模型讨论了相关热力学性质. 结果表明: 自由能微扰法得到的溶剂化自由能大小与用传统热力学表面张力法测定的吉布斯自由能相近, 能够用于比较不同结构的烷基芳基磺酸盐间胶束化能力; 烷基芳基磺酸盐在水溶液中的胶束化过程是自发进行的, 且存在焓-熵补偿现象, 补偿温度范围均在(302±2) K; 随着分子结构中芳环向长烷基链中间位置移动, 胶束化能力和胶束的稳定性均下降; 而随着芳环上短烷基链或长烷基链碳数的增加, 形成胶束的能力与稳定性均提高.
采用共振拉曼光谱技术和密度泛函理论方法研究了6-N,N-二甲基腺嘌呤(DMA)的A带和B带电子激发和Franck-Condon 区域结构动力学. πH→πL*跃迁是A带吸收的主体, 其振子强度约占整个A带吸收的79%.由弥散轨道参与的n→Ryd 和πH→Ryd 跃迁在B带跃迁中扮演重要角色, 其振子强度约占B带吸收的62%,而在A带吸收中占主导的πH→πL*跃迁的振子强度在B带吸收中仅占33%. 嘌呤环变形伸缩+C8H/N9H面内弯曲振动ν23和五元环变形伸缩+C8H弯曲振动ν13的基频、泛频和合频占据了A带共振拉曼光谱强度的绝大部分, 说明1πHπL*激发态结构动力学主要沿嘌呤环的变形伸缩振动, N9H/C8H/C2H弯曲振动等反应坐标展开, 而ν10, ν29, ν21, ν26和ν40的基频、泛频和合频占据了B带共振拉曼光谱强度的主体部分, 它们决定了B带激发态的结构动力学. A带共振拉曼光谱中ν26和ν12被认为与1nπ*/1ππ*势能面锥型交叉有关. B带共振拉曼光谱中ν21的激活与1ππ*/1πσN9H*势能面锥型交叉相关.
通过溶液法合成了一个新颖的组氨酸12-硅钨杂多酸盐((HisH2)2SiW12O40·6H2O)单晶超分子化合物. 利用元素分析、热重-差热分析和X射线单晶衍射测试分别对其组成、热稳定性和结构进行了表征. 实验结果表明:该超分子化合物的组成为C12H34N6O50SiW12. 空气中, 在135 °C以下稳定. 它属于单斜晶系(空间群为C2/c), 晶胞参数为a=2.44005(18) nm, b=1.29788(10) nm, c=1.86898(14) nm, β=124.0380(10)°, V=4.9048(6) nm3,Z=4 和Dc=4.465 g·cm-3. 基于F2的最终统计: 拟合优度(GOF)=1.268, R1=0.0344 和wR2=0.0851 (I>2σ(I)). 该单晶超分子化合物的基本结构单元由一个[SiW12O40]4-多阴离子和两个质子化的[H2His]2+有机阳离子以及结晶水组成. 他们之间通过氢键的作用组装成三维网络结构. 在紫外光照射下, 样品具有光致变色性质. 通过对变色样品电子自旋共振谱的分析, 我们提出了一个可能的光致变色机理.
采用密度泛函理论在B3LYP/6-31G*水平上对二氢卟吩e6(简称e6)及设计的6个e6赖氨酸酰胺进行几何优化, 对优化构型用B3LYP/6-31G**法进行单点计算, 并用含时密度泛函理论LSDA/6-31G**方法计算电子吸收光谱. 结果表明, 赖氨酸的ε-NH2与e6连接的酰胺更稳定, 其中, 15位的乙酰胺Yε最稳定. 形成赖氨酸酰胺改善了e6 的水溶性, 有利于药物吸收. 各e6 赖氨酸酰胺的前线轨道集中于二氢卟吩环, 由于连接酰胺基侧链的二氢卟吩环平面性有所下降, 前线轨道能隙略为升高, 最大电子吸收波长相对于e6 蓝移16-39 nm, 但仍处于光动力治疗窗口“600-900 nm”. 酰胺链的构象对吸收波长影响较大, Yε三个较稳定构象中, 酰胺链垂直于二氢卟吩环的Yε1和Yε2的二氢卟吩环平面性较好, 最大吸收波长比酰胺链与二氢卟吩环近似平面的Yε红移53、50nm, 三者平均值较e6红移18 nm.
利用相对论密度泛函理论在广义梯度近似下研究TbSin (n=2-13)团簇的结构、稳定性、电子和磁学性质. 对团簇的平均结合能、离解能、电荷转移、最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)的能级差、Mulliken 电荷分析和磁学性质进行了计算和讨论. TbSin团簇并没有像实验推测的那样在n=10形成嵌入式的结构. 我们推断电子亲和势的急剧变化不仅与嵌入式的结构有关, 而且与电子的固有稳定性相关.Mulliken 电荷分析表明电荷总是从Tb 原子转向Si 原子. 团簇的磁矩主要局域在Tb 原子的周围, 并且主要由f电子贡献, f 电子表现出局域性并且不参与化学成键. 以TbSi10为例的分波态密度分析表明Tb与Si 原子间存在很强的sp轨道杂化.
分别采用基于密度泛函理论(DFT)的局域密度近似(LDA)和广义梯度近似(GGA)方法对钛铁矿型六方相ZnTiO3的电子结构进行了第一性原理计算, 并在局域密度近似下计算了六方相ZnTiO3的光学性质, 并将计算结果与实验数据进行了对比. 结果表明, 在局域密度近似下计算得到的结构参数更接近实验数据. 理论预测六方相ZnTiO3属于直接带隙半导体材料, 其禁带宽度(布里渊区Z 点)为3.11 eV. 电子态密度和Mulliken 电荷布居分析表明Zn―O键是典型的离子键而Ti―O键是类似于钙钛矿型ATiO3 (A=Sr, Pb, Ba)的Ti―O共价键. 在50 eV的能量范围内研究了ZnTiO3的介电函数、吸收光谱和折射率等光学性质, 并基于电子能带结构和态密度对光学性质进行了解释.
基于12T 团簇模型, 利用密度泛函理论(DFT)研究了ZSM-5 分子筛的水解脱铝机理以及镧改性提高ZSM-5分子筛水热稳定性的机理. 对未改性分子筛水解脱铝机理的研究表明, 首先是第一个水分子吸附在分子筛表面的酸性位上, 对分子筛的Al—O键起弱化作用, 使Al—O键伸长; 接着第二个水分子吸附到分子筛表面,分别与第一个水分子和分子筛骨架形成氢键, 进一步弱化与其最邻近的Al—O键, 并引致该键断裂. 同样, 其它的三个Al—O键也被削弱并逐一断裂, 从而发生分子筛水解脱铝现象. 引入的镧物种与分子筛骨架的四个O原子成键, 将铝包埋, 增加了分子筛孔壁厚度, 增大了水分子攻击铝的空间位阻, 抑制了水分子对Al—O键的弱化, 从而延缓Al—O键的断裂, 提高分子筛的水热稳定性. 计算的水分子吸附能和水解能进一步证实镧的引入提高了ZSM-5分子筛的水热稳定性.
为研究铀酰离子在高岭土不同基面上的吸附, 对含有0.01 mol·L-1碳酸铀酰液相和9×9×3个高岭土单胞的粘土固相的模拟盒子进行了分子动力学模拟. 从模拟的截图中直观地观察到了铀酰离子的吸附位点, 由径向分布函数得到了铀酰离子与水中氧原子的配位情况. 利用原子密度剖面图讨论铀酰离子在两个基面上的吸附倾向, 并从原子密度剖面图和均方位移等角度证实了铀酰离子在硅氧面上形成了外界配合物. 从理论上证明了表面配合模型对于吸附位点所做简化的合理性.
采用耗散颗粒动力学方法在介观层次上模拟了非离子表面活性剂Triton X-100 在油/水界面上的分布行为, 并把用于油/水二元体系界面张力的计算方法拓展到含表面活性剂的三元体系. 利用该方法可以得到与实验数值吻合的界面张力数据. 另外, 模拟结果直观展示了表面活性剂界面张力与界面密度的关系, 为表面活性剂复配增效理论提供了依据. 该模拟方法给出的微观信息可以为驱油体系配方筛选和表面活性剂有效应用提供指导.
将定量构效关系引入到自乳化系统中, 采用HF/6-31G*方法优化分子结构, 在此基础上计算出组分的量子化学参数, 考察组分含量、立体效应、疏水效应、静电效应对自乳化体系的微乳区域面积和粒径的影响, 通过多元线性回归建立了分子结构参数和组分比例与体系的微乳区域面积/粒径间的定量函数模型, 并对模型外的组分组成的测试集进行了预测. 研究结果表明: 乳化剂与助乳化剂的用量比是影响自乳化体系相行为的主要因素, 油相和助乳化剂含量增大, 粒径增加, 乳化剂含量增大, 粒径减小; 而组分间的相互作用力对系统性质影响较小. 除以肉豆蔻酸异丙酯(IPM)为油相建立的模型外, 其余模型均具有较好的预测效果, 利用这些规律可为自乳化系统的组分筛选提供理论指导, 提高实验效率.
以聚偏氟乙烯-六氟丙烯P(VdF-HFP)聚合物为基体, 制备了含离子液体1-甲基-3-乙基咪唑六氟磷酸盐(EMIPF6)、用于锂离子电池的离子液体复合聚合物电解质[P(VdF-HFP)/LiPF6/EMIPF6/EC(碳酸乙烯酯)-PC(碳酸丙烯酯)]. 采用热重分析法以及燃烧实验测试了复合聚合物电解质的热稳定性. 离子电导率测试表明, 离子液体的存在显著改善了复合聚合物电解质的离子传输; 循环伏安测试表明, 添加剂EC和PC的加入提高了复合电解质的阴极稳定性, 制得的离子液体复合聚合物电解质在0.3-4.3 V 电压范围内稳定存在. Li4Ti5O12 和LiCoO2为电极材料、P(VdF-HFP)/LiPF6/EMIPF6/EC-PC 为电解质的半电池表现出优良的循环性能, 0.1C充放电倍率下, Li/LiCoO2和Li/Li4Ti5O12半电池的可逆容量分别为130和144 mAh·g-1. 但EC、PC在一定程度上降低了离子液体复合聚合物电解质的热稳定性.
采用脉冲微波辅助化学还原法制备了质子交换膜燃料电池(PEMFC)用Pt/C 催化剂. 通过透射电镜(TEM)和X射线衍射(XRD)等分析技术对催化剂的微观结构和形貌进行了表征, 并利用循环伏安(CV)、线性扫描(LSV)和恒电位测量等方法评价了催化剂催化氧还原性能. 在此基础上制备了膜电极(MEA)并组装成单电池, 考察了制备的Pt/C 催化剂作为阴极催化剂材料的电催化性能. 结果表明, 脉冲微波辅助化学还原法是一种制备PEMFC催化剂的有效方法, 溶液pH值和微波功率对Pt 颗粒直径和分散有重要影响. TEM和XRD结果显示, 当溶液pH值为10 且微波功率为2 kW时, Pt 纳米粒子较均匀地分散在碳载体上, 粒径分布在1.3-2.4 nm之间, 平均粒径为1.8 nm. CV、LSV和恒电位测试结果表明, 该催化剂电化学比表面积(ESA)为55.6 m2·g-1, 具有良好的催化氧还原反应活性和稳定性. 单电池测试结果表明, 在溶液pH值为10条件下, 微波功率为2 kW时制备的催化剂作阴极催化剂时, 单电池最高功率密度为2.26 W·cm-2·mg-1, 高于微波功率为1 kW时的最高功率密度(2.15 W·cm-2·mg-1)和Johnson Matthey催化剂的最高功率密度(1.89 W·cm-2·mg-1).
采用800 ℃高温煅烧聚邻甲基苯胺(POT)的方法制备了含氮的新型无定形碳(CxN) 载体, 其氮含量约为8.5%(w). 氮元素的存在使载体具有极性, 显著提高载体的化学活性, 有利于钯纳米粒子在载体表面的沉积和分散, 使CxN负载钯纳米粒子催化剂(Pd/CxN)具有较大的电化学活性表面积, 在碱性介质中对甲醇氧化具有很高的催化活性和稳定性, 表明CxN在直接甲醇燃料电池研究中是一类很有潜力的催化剂载体.
采用固相法合成了纯六方相的TiS2粉体. X射线衍射(XRD)、扫描电子显微镜(SEM)结果表明该材料具有特征层状结构, 其颗粒大小在10-20 μm之间. 作为锂离子电池负极材料, TiS2在3.00 V(vs. Li+/Li)以下有3个明显的放电平台, 首次可逆容量达668 mAh·g-1, 在第一个放电电压范围(3.00-1.40 V)内具有优异的循环可逆性. 深度放电时由于Li2S的生成和材料颗粒严重破碎, 在低于0.50 V时材料的循环性能不佳. 通过减小材料颗粒度和提高导电剂含量, TiS2的电化学性能得到显著改善.
以感应熔炼和不同的热处理工艺制备了La4MgNi19合金, 用X射线衍射(XRD)和电化学测试系统研究了该合金的相结构和电化学性能. 结构分析表明: 当热处理工艺为900 °C+水淬时, 合金主要由CaCu5结构的LaNi5相和少量未知相组成; 当热处理工艺为900 °C退火时, 合金主要由Pr5Co19、Ce5Co9结构的(La, Mg)5Ni19相及少量CaCu5结构的LaNi5相组成. 淬火和退火后合金的电化学循环稳定性(S100)分别为49.7%及76.0%, 合金电极的电化学性能和相结构密切相关. 退火热处理有利于生成Pr5Co19、Ce5Co9型相. 在La-Mg-Ni 系储氢合金中, La4MgNi19合金电化学循环稳定性不及La3MgNi14合金.
利用傅里叶变换红外(FTIR)光谱分析了3-巯丙基三乙氧基硅烷分别在酸性和碱性的醇-水溶液中水解后以及在紫铜表面成膜后的结构特征. 利用极化曲线、电化学阻抗谱(EIS)和盐水浸泡实验测试了硅烷膜的耐腐蚀性能. 结果表明: 3-巯丙基三乙氧基硅烷在酸性溶液中能够发生一定程度的水解并生成Si―OH结构, 且当该溶液在自然状态下晾干后, 其水解程度进一步增大. 在碱性溶液中该硅烷只发生少量的水解, 溶液中含有较多SiOCH2CH3结构, 且在溶液自然晾干后水解程度也没有明显增大. 由酸性硅烷溶液制得的薄膜中硅烷分子以Si―O―Si 键相互交联的程度比由碱性硅烷溶液制得的薄膜高. 硅烷膜降低了紫铜电极的腐蚀电流密度, 其保护效率分别为90.3%(酸性)和79.2%(碱性). 在3.5% (w) NaCl溶液中浸泡24 h后, 由酸性溶液制得的薄膜表现出更高的阻抗值, 而由碱性溶液制得的薄膜则基本失去了对基底的保护能力.
以对甲苯磺酸钠为掺杂剂, 三氯化铁为氧化剂, 用化学氧化聚合法在AZ31 镁合金表面制备聚吡咯(PPy)膜. 采用傅里叶变换红外(FTIR)光谱分析了镁合金表面聚吡咯膜结构, 通过电化学极化曲线、电化学阻抗谱(EIS)研究了其耐蚀性能, 通过扫描电子显微镜(SEM)、X射线能量散射谱(EDS)分析了表面形貌和成分. 和镁合金裸样相比, 聚吡咯膜对镁合金腐蚀有一定的抑制作用. 硅烷预处理改善了镁合金/聚吡咯体系的耐腐蚀性能, 使腐蚀电位较镁合金裸样正移了110 mV, 电流密度减小了约2个数量级.
采用失重法、交流阻抗(EIS)及傅里叶变换红外光谱(FT-IR)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等表面分析测试方法首次研究了硫脲基咪唑啉衍生物(TAI)作为抑制CO2腐蚀的气液双相缓蚀剂的缓蚀行为. 结果表明, 该硫脲基咪唑啉缓蚀剂能有效地抑制Q235 钢在气液双相中的CO2腐蚀. AFM测试结果表明该缓蚀剂能显著地降低碳钢表面的腐蚀破坏, 并且由于碳钢表面形成的缓蚀剂吸附膜的疏水作用,可在AFM探头和碳钢表面之间检测到更大的粘附力, 而探针与试样表面之间的长程静电斥力在气相中增加,在液相中由于表面电荷的屏蔽效应而减小. XPS和FT-IR 光谱测试表明液相中和气相中在碳钢表面形成吸附膜的缓蚀剂成分分别是硫脲基咪唑啉衍生物和其酸水解产物——酰胺. 以上结果也进一步证实了咪唑啉衍生物在酸性溶液中的水解机理.
应用丝束电极(WBE)的电位/电流扫描技术, 研究了含Cl-的模拟碳化混凝土孔隙液中, Q345B碳钢局部腐蚀在空间和时间上的发生和发展特征, 同时比较了四乙烯五胺(TEPA)和亚硝酸钠缓蚀剂对局部腐蚀抑制能力的差异. 结果表明NO-2离子能快速渗透腐蚀产物层, 并抑制锈层下的碳钢活性溶解, 而乙烯胺由于在锈蚀层内的扩散速率低, 初期反而会促进锈层下的局部腐蚀, 随着烯胺分子扩散并吸附于锈蚀层/金属界面处, 碳钢活性溶解才受到抑制. 电化学阻抗谱(EIS)可反映局部腐蚀的萌发, 但难以表征缓蚀剂在碳钢表面的不均匀吸附特征. 基于丝束电极表面电位/电流分布所提出的局部腐蚀因子(LF), 可定量表征腐蚀的不均匀特征以及缓蚀剂对局部腐蚀的修复能力.
通过阳极氧化的方法制备TiO2纳米管薄膜, 在MoO3存在的条件下对该薄膜进行热处理得到TiO2-MoO3复合纳米管阵列薄膜. 利用X射线衍射(XRD), 扫描电子显微镜(SEM), X射线光电子能谱(XPS), 电化学阻抗谱(EIS), Mott-Schottky 及光电化学方法对得到的薄膜进行了表征. XRD结果表明, TiO2-MoO3复合纳米管薄膜中的TiO2主要为锐钛矿晶型. SEM实验证实了薄膜纳米管结构的存在, 样品中的MoO3均匀地分散在TiO2纳米管表面. 利用XPS方法分析了TiO2-MoO3复合纳米管薄膜元素的组成, 结果表明, MoO3在TiO2表面形成TiO2-MoO3复合纳米管薄膜. 研究了热处理温度以及热处理时间对样品的光电化学性能的影响, 相对于单纯TiO2纳米管薄膜, 适量引入MoO3提高了样品在可见光区的光电响应能力, 样品的平带电位负移. 在450 °C热处理60 min制得的TiO2-MoO3复合半导体纳米管阵列薄膜光电响应活性最高.
提出一种以亚甲基二膦酸(MDPA, H4L)为主配位剂的无氰镀铜体系. 采用pH 电位滴定法分别测定MDPA的四级解离常数和MDPA-Cu(II)的稳定常数, 并比较MDPA-Cu(II)和羟基乙叉二膦酸(HEDPA)-Cu(II)的循环伏安曲线和阴极极化曲线. 结果表明: MDPA各级解离常数为, pK1=1.86, pK2=2.65, pK3=6.81, pK4=9.04;MDPA与Cu2+形成分级配合物的稳定常数为, pKML=10.65, pKML2 = 5.59, pKML3 = 2.50; 随着pH升高, 形成的配合物依次为, Cu(H3L)2、[Cu(H3L)(H2L)]-和[Cu(H2L)2]2-; 当pH在7-10 时, MDPA较HEDPA更易与Cu2+配位. 当pH=9 时, MDPA碱性镀铜体系阴极主要发生的是[Cu(H3L)(H2L)]-和[Cu(H2L)2]2-还原生成铜的过程; 在10 °C,MDPA体系的铜配位化合物还原生成铜的电位比HEDPA体系负移, 扩散速度更快.
研究了1-丁基-3-甲基咪唑硫酸氢盐([BMIM]HSO4)离子液体对锌电积过程析氧反应的影响. 研究工作借助于动电位极化, 电化学阻抗谱, 扫描电镜和X射线衍射等测试技术. 动电位极化曲线及对应的动力学参数分析表明, [BMIM]HSO4对阳极析氧反应具有催化作用,可提高析氧反应速率常数. 电化学阻抗谱数据表明,[BMIM]HSO4能显著降低阳极析氧电荷传递电阻,在所研究的1.85-2.10 V电位范围内添加5 mg·L-1 [BMIM]HSO4, 电阻值至少降低50%. 此外, 添加剂对阳极表面二次反应具有抑制作用, 其在阳极表面的吸附,阻碍了阴离子的阳极活化位点吸附过程. 电化学测试结果与长时间(120 h)阳极极化后所得阳极表面形貌和结晶取向分析结果相一致. [BMIM]HSO4的添加能有效抑制中间产物β-PbO2的形成,促进铅银电极表面大块且疏松多孔α-PbO2的生成,加速阳极析氧的进行.
应用紫外光谱、荧光探针、zeta 电位、动态光散射和凝胶电泳等方法探讨了阳离子gemini 表面活性剂C12H25N+(CH3)2―(CH2)6―(CH3)2N+C12H25·2Br-(12-6-12)与DNA之间的相互作用. 研究结果表明, 与传统表面活性剂相比, 偶联表面活性剂特殊的分子结构使其与DNA的作用更强烈. DNA引导表面活性剂在其链周围形成类胶束结构, 开始形成类胶束时对应的表面活性剂临界聚集浓度(CAC)比纯表面活性剂临界胶束浓度(CMC)低两个数量级. CAC与DNA的浓度无关, 而与表面活性剂之间的疏水作用以及表面活性剂与DNA之间的静电吸引作用密切相关. Zeta 电位和凝胶电泳结果显示了DNA链所带负电荷逐渐被阳离子表面活性剂中和的过程. 借助原子力显微镜(AFM)成功观察到了松散的线团状DNA, 球状体随机地分散在DNA链上形成类似于串珠的结构、尺寸较大的球形复合物以及其由于吸附多余的表面活性剂重新带正电而被溶解得到的较小DNA/12-6-12聚集体. 圆二色(CD)光谱结果显示, 12-6-12可以诱导DNA的构象发生改变.
用循环伏安法(CV)和原位扫描隧道显微镜(STM)研究了烷基取代的紫精分子在Cu(100)电极上的氧化还原行为及其吸附结构对电极电势的依赖性. 对乙基紫精(DHV)和庚基紫精(DEV)在含有KCl电解质溶液中进行循环伏安曲线的测定, 两者呈现出不同的氧化还原行为. 从STM所得图像观察, 二价庚基紫精在Cl-c(2×2)-Cu(100)电极上呈现出二维有序的点阵组装结构,而二价乙基紫精却未出现任何的吸附结构. 降低电极电势至单电子转移反应发生时, 形成的自由基庚基紫精在电极表面呈现出稳定的条带状组装结构, 而自由基乙基紫精出现的条带组装结构比较密集且不能稳定存在. 继续降低电极电势, 庚基紫精的吸附结构会随之出现明显的变化,而乙基紫精不会有吸附结构改变的响应.
以SnO2为载体, 采用沉积沉淀法(DP)、共沉淀法(CP)和浸渍法(IM)制备了金负载Au/SnO2催化剂, 同时采用沉积沉淀法制备了M-Au/SnO2(M=Pd, Pt)双金属负载催化剂. 通过X射线衍射(XRD)、BET比表面积测定、透射电镜(TEM)和X射线光电子能谱(XPS)等技术对样品进行表征, 并测定其对CO的催化活性. 结果表明: 与CP法和IM 法相比, DP法制备的Au/SnO2-DP 催化剂, Au 颗粒(<5 nm)较小, 分布均匀; Au/SnO2-DP 中的Au 是以金属态Au0存在, 而Au/SnO2-CP 和Au/SnO2-IM 中, 金以Au0和Au3+的混合价态存在, 在Au/SnO2-DP和M-Au/SnO2中的Au、Pt、Pd和SnO2之间存在相互作用; Au/SnO2-DP 催化性能明显优于Au/SnO2-CP 和Au/SnO2-IM. Au与Pt 和Pd的双金属复合催化剂催化活性明显提高. 不同方法制备Au/SnO2催化活性的差别主要是由于Au颗粒大小和Au氧化态的不同而产生. 而M-Au/SnO2活性提高, 可能是由于Au与Pt 和Pd之间的相互作用.
以钨酸钠和正硅酸乙酯为前驱体直接合成高含量WO3掺杂介孔氧化硅泡沫(MCF)催化剂. 在773 K焙烧后显示出更高的热稳定性. 小角X射线散射, N2-物理吸附和透射电子显微镜结果表明钨物种嵌入后, 材料仍保持MCF特征的三维织构介孔特征. 紫外拉曼和紫外可见漫反射光谱结果表明钨物种主要以孤立的或者低聚态的氧化钨形式存在, 所以在氧化钨质量分数(w)低于20%时氧化钨物种能够高度分散在载体上. 在环戊烯选择氧化制戊二醛反应中, 反应16 h 后环戊烯的转化率达到100%, 戊二醛的产率达到83.5%. 催化剂重复利用实验表明催化剂的稳定性较好, 没有钨物种的脱落. 这种优异的催化性能归结于合适的氧化钨含量和高分散的钨物种.
运用自动电位滴定技术分别研究了纳米α-Fe2O3、γ-Al2O3、SiO2单一体系及三组分混合体系中氧化物表面的酸碱性质和对重金属离子Cu2+、Pb2+、Zn2+的吸附行为. 依据表面配位理论恒电容模式(CCM), 计算了相应的表面酸碱配位常数. 结果表明: α-Fe2O3/γ-Al2O3/SiO2三组分混合体系的表面化学反应并非是单一体系的简单叠加, 而是存在着不同矿物表面间复杂的交互作用. 三组分表面酸碱反应平衡式和相应的酸碱反应平衡常数分别为: ≡XOH2+?≡XOH+H+ (lgKa1=-4.23), ≡XOH?≡XO-+H+(lgKa2=-8.41). 根据重金属离子Cu2+、Pb2+、Zn2+在α-Fe2O3/γ-Al2O3/SiO2混合体系表面的吸附行为, 计算得到Cu2+、Pb2+、Zn2+在混合体系表面配位反应及其平衡常数如下: ≡XOH+M2+?≡XOM++H+; lgK=-2.20, -1.90, -3.20 (M=Cu, Pb, Zn).
通过改变工艺参数, 制得了粒径可控的ZnO自组装薄膜. 该薄膜在可见光区域出现了光子带隙. 以染料甲基橙的光催化降解为模型评价了ZnO自组装薄膜的光催化活性. 利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)表征了ZnO的晶体结构和微观形貌. 实验结果表明, ZnO自组装薄膜在太阳光照射下表现出良好的光催化性能, 其光催化活性随着ZnO颗粒粒径的减小而提高. ZnO自组装薄膜光催化降解甲基橙的反应符合一级反应动力学规律.
合成了一系列周边取代的Corrole(1, 2, 3, 4)及其镓配合物1-Ga(Py)、2-Ga(Py)、3-Ga(Py)、4-Ga(Py),通过核磁共振氢谱(1H NMR), 紫外-可见光谱, 电喷雾离子质谱(ESI-MS)的方法对其进行了表征. 研究了不同溶剂对这一系列自由Corrole 及镓Corrole 的紫外-可见(UV-Vis)吸收光谱, 稳态荧光和时间分辨荧光光谱, 将获得的荧光衰减动力学曲线采用单指数拟合并进行解卷积处理获得荧光的寿命值. 非(弱)极性溶剂对镓Corrole 紫外光谱的影响服从Bayliss 方程, 且镓Corrole 非辐射能量损失hc(ν1A-νF)与F(n)呈线性相关.
糖原合成酶激酶-3β(GSK-3β)是一种丝氨酸/苏氨酸蛋白激酶, 调节糖原合成酶的活性, 并在生物体内的多条信号通路中发挥作用. GSK-3β是糖尿病, 肿瘤, 急性炎症, 早老性痴呆等多种复杂疾病的药物作用靶标.Mg2+是GSK-3β激酶的保守结构金属离子, 与三磷酸腺苷(ATP)分子作用, 在激酶的磷酸化中扮演重要的角色,本文阐明了两个Mg2+离子(Mg2+I , Mg2+II)在激酶磷酸化中的作用: Mg2+稳定GSK-3β与ATP的构象. 缺乏Mg2+离子, GSK-3β结构的柔性增强, 同时ATP的构象发生改变, 相对Mg2+II离子而言, Mg2+I离子在磷酸化反应中的作用更突出, 但Mg2+II离子也是必不可少的, 如果没有Mg2+II离子, Lys183 无法独立稳定ATP的合适构象. 当两个Mg2+离子都不存在时, ATP形成分子内的氢键, 成为一种折叠的构象.
以纳米碳管(CNT)仿生构筑正渗透(FO)膜, 采用分子动力学模拟的方法考察水和盐在由CNT(6,6)、CNT(7,7)、CNT(8,8)、CNT(9,9)、CNT(10,10)、CNT(11,11)等不同尺寸纳米碳管构筑膜中, 于2.5、3.75、5.0mol·L-1等不同汲取液浓度下的传递行为. 纳秒级的模拟得到水分子在不同尺寸纳米碳管膜内的分布, 水通量的变化以及盐截留等情况. 模拟结果表明, 由CNT(8,8)构筑的正渗透膜表现出优异的通水阻盐性能.
用重铬酸钾氧化法获得了表面羧基化的碳纳米管(MWCNT-COOH), 进一步通过酰胺化反应合成了2-氨基吡啶修饰的碳纳米管(MWCNT-AP). 利用傅里叶变换红外(FT-IR)光谱、核磁共振氢谱(1H NMR)、X射线光电子能谱(XPS)等对合成的碳纳米管进行了表征. 透射电镜(TEM)结果表明MWCNT-COOH在乙醇等极性溶剂中易于簇集, 而MWCNT-AP 溶液具有良好的分散性和稳定性. 辣根过氧化酶(HRP)可通过物理作用吸附于MWCNT-AP 和MWCNT-COOH表面, 负载量分别为187.5 和153.0 μg·mg-1. HRP被吸附后, 其Soret 带明显红移, 说明HRP 与MWCNT-AP 或MWCNT-COOH 的结合位点位于血红素辅基的附近. 圆二色谱结果表明MWCNT-AP 对HRP的二级结构也有一定影响. 酶动力学实验结果表明MWCNT-AP 能有效地吸附HRP及其底物3,3',5,5'-四甲基联苯胺(TMB), 并使HRP的酶催化反应最大速率(Vmax)显著提高.
通过浸渍3-氨丙基甲基二乙氧基硅烷(ADMS)对α-Al2O3中空纤维载体进行有机功能化改性, 使载体表面带正电, 利用NaA分子筛晶种负电性与功能化载体之间的静电吸附机理进行预涂晶种, 采用微波加热-二次生长法于载体表面合成了NaA分子筛膜. 采用X射线衍射(XRD)、zeta 电位、扫描电子显微镜(SEM)等分析手段和气体渗透实验对NaA分子筛膜进行了表征. 考察了未改性NaA分子筛膜与改性NaA分子筛膜的形貌、结构和气体渗透性能差异. XRD结果表明载体表面只有NaA分子筛生成; zeta 电位分析表明NaA分子筛晶种及分子筛前驱体与有机功能化载体电位相反, 存在静电吸附作用; SEM结果显示改性NaA分子筛膜表面颗粒相互联结呈孪生态, 膜厚约5 μm, 膜层致密、均匀、平整; 在不同温度下对H2、O2、N2和C3H8进行气体渗透测试,35 °C条件下改性NaA分子筛膜对H2的渗透率仅为3.6×10-7 mol·m-2·s-1·Pa-1, 较未改性NaA分子筛膜的渗透率(4.0×10-7 mol·m-2·s-1·Pa-1)低, 而改性NaA分子筛膜的H2/C3H8理想分离系数则高达11.25, 远大于未改性NaA分子筛膜的H2/C3H8理想分离系数(5.06).
以嵌段共聚物F127 (PEO106PPO70PEO106, MW=12600)为模板剂, 异丙醇铝和钛酸四丁酯为金属源, 低分子量的酚醛树脂为碳源, 通过溶胶-凝胶三元共组装法合成了具有双孔径分布的C-Al2O3-TiO2纳米复合材料.用X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)及N2吸附-脱附对该复合材料进行结构表征. 结果显示, 当铝钛原子的摩尔比为1:10 时, 对应的纳米复合材料具有较好的有序介孔结构, 其双孔径分别为3.9和6.5 nm, 比表面积可达259 m2·g-1, 孔容0.37 cm3·g-1. 以三元乙丙橡胶(EPDM)为粘结剂, 与介孔纳米复合材料混合制备涂层. 通过调节复合材料中铝钛摩尔比和涂层厚度, 红外发射率在0.450-0.617之间可调.
选用不同发射波长的合金型CdSeS量子点(QDs), 研究溶液状态下量子点和金纳米颗粒(AuNPs)相互作用及离子强度、pH值、距离等诸多因素对相互作用的影响, 在此基础上对相互作用的机理进行了分析. 在溶液状态下, 金纳米颗粒可以高效地淬灭量子点, Stern-Volmer 淬灭常数Ksv值在108 L·mol-1数量级. 这种淬灭效应与距离、光谱之间叠合程度等密切相关, 受溶液极性、离子强度、pH值的影响较小. 金纳米颗粒与量子点相互作用的机理较为复杂, 以能量转移为主. 研究结果对设计更高效的生物传感器及更全面认识金纳米颗粒与量子点相互作用的机理具有重要意义.
通过酚醛树脂的裂解和碳化所形成的热解炭与金属钠在氩气保护气氛中加热, 得到一种无定形碳在常压和较低温度下进行石墨化的方法, 并研究了热解炭在金属钠熔体中的相变. 对所得样品用X射线粉末衍射(XRD)、光散射拉曼光谱、透射电子显微镜(TEM)以及Brunauer-Emmett-Teller (BET)法氮气吸附进行表征与分析. 结果表明: 热解炭在金属钠熔体中于800 °C加热24 h, 发生明显的石墨化; 于900 °C加热24 h, 所得样品的石墨化度为40%, 石墨化碳的平均厚度约为40 nm, 孔结构由微孔转变为介孔. 探讨了金属钠在无定形碳中的渗透扩散导致其相变的原因.