绿色化学
专刊投稿截止日期:2017-12-30
专刊客座编辑: 韩布兴院士 中国科学院化学研究所,北京 100190 研究兴趣:绿色溶剂体系化学热力学;绿色溶剂中催化反应与材料合成;CO2、生物质、芳香化合物催化转化利用
专刊介绍 绿色化学是21世纪的重要主题之一,是化学学科发展的必然趋势。在解决经济、资源、环境三者矛盾的过程中,绿色化学的作用和地位日益重要。绿色化学的发展将带来化学及相关学科的重大发展和生产方式的变革。二十多年来,绿色化学发展很快,但目前仍处于起步阶段。发展绿色化学是人类赋予化学工作者的一项长期而艰巨任务。 绿色化学涉及许多重要的物理化学问题。此专刊旨在反映近期我国在物理化学与绿色化学交叉领域取得的最新研究成果。
投稿 请于截止日期前,在物理化学学报网站(http://www.whxb.pku.edu.cn/journalx_wlhx/authorLogOn.action)在线投稿。文章接受后即予以出版,并在此专刊网页集中列出。文章类型可以是通讯、展望、专论、综述、论文中的任一种,可以用中文或英文撰写。 所投稿件不能已经出版或准备在其他地方出版。所有稿件都需经过严格的同行评议,不向作者收取费用。更详细信息请见物理化学学报的征稿简则。
催化剂的酸性和氧化还原性在催化生物质平台分子转化过程中起着非常重要的作用,杂多酸具有较强的酸性以及优良的氧化还原性,因而杂多酸在生物质催化转化领域备受关注。本文利用溶胶-凝胶法和硅烷化方法将杂多酸催化剂封装在二氧化硅载体内部,随后以傅立叶红外光谱、X-射线衍射仪、热重分析仪、透射电子显微镜、扫描电镜等手段对合成的材料进行了表征。红外光谱表明杂多酸在催化剂中保持了其完整结构,X-射线衍射表明杂多酸高度分散在二氧化硅载体上,电镜表征显示催化剂呈球形纳米颗粒形貌。基于以上表征结果,我们将包覆的杂多酸催化剂应用于甘油氧化,在以过氧化氢为氧化剂,温和反应条件下,合成的材料对甘油氧化具有良好的催化活性,其中对甲酸的选择性大约为70%,对乙醇酸的选择性大约为27%。硅烷化过程对于催化剂循环起着重要的作用,单纯二氧化硅的比表面积为287 m2·g-1,二氧化硅包覆杂多酸经过硅烷化后,其比表面积降为245 m2·g-1,而且孔径也有所降低。单纯二氧化硅与水的接触角为0°,而二氧化硅包覆的杂多酸在硅烷化之后的催化剂具有很强的疏水性,与水的接触角为137°。根据这些催化剂表征数据说明硅烷化过程不仅可以显著提高催化剂的疏水性,而且同时限制了载体孔径,阻止杂多酸流失到反应体系中,与传统的浸渍法将杂多酸负载在二氧化硅载体上得到的催化剂相比,催化剂的循环利用性显著提高。反应后的催化剂结构与新鲜催化剂相比,并没有发生明显变化。催化剂经过一次循环后,表面暴露了更多的活性中心,活性稍有提高。催化剂在反应体系中加入强质子酸可以显著提高反应的催化性能,揭示了Bronsted酸在甘油氧化过程中对甘油分子的活化起着重要的作用。
提出了一种针对大孔树脂阴离子功能化的新策略并合成了一系列阴离子功能化大孔树脂[IRA-900][An],在20 ℃和101.3 kPa的吸附条件下实现了对SO2的超高吸附容量(> 10 mmol·g-1)。和常规唑基阴离子功能化大孔树脂相比,聚咪唑基硼酸阴离子功能化的大孔树脂[IRA-900][B(Im)4]在低压条件下仍然展现了卓越的SO2捕集能力。吸附实验发现,[IRA-900][B(Im)4]在10.13 kPa和20 ℃的低压环境中能够保持10.62 mmol·g-1的超高SO2吸附量。通过红外谱学研究以及密度泛函理论(DFT)计算来进行吸附机理探究,发现聚唑基硼酸阴离子[B(Im)4]具有独特的正四面体构型,从而打破了阴离子上N负位点之间的电子流动和共轭效应。在[IRA-900][B(Im)4]捕集SO2过程中,阴离子连续和SO2分子发生化学相互作用时,吸附焓变无明显下降。因此,一个[B(Im)4]阴离子能够提供四个有效的作用位点和SO2发生化学吸附作用,从而在低压条件下,[IRA-900][B(Im)4]仍然实现了超高的SO2捕集能力。此外,我们对阴离子功能化大孔树脂[IRA-900][B(Im)4]在低压条件下对SO2吸附的循环稳定性做了探究。结果发现,在20 ℃和10.13 kPa的吸附环境中以及70 ℃的脱附条件下,[IRA-900][B(Im)4]展现了良好的循环稳定性,具有极大的工业应用价值。最后,这种阴离子功能化的策略以及多位点捕集方法对实现烟气环境中SO2的高效捕集开拓了新的思路。
近些年来,将CO2转化为高附加值化学品受到广泛关注。其中,CO2、炔丙醇和亲核试剂的三组分反应可用于制备用途广泛的羰基化合物,该方法具有步骤经济性、原子经济性等优点。由于CO2分子具有热力学稳定性和动力学惰性,多数CO2参与的化学反应在热力学上不支持。然而,CO2、炔丙醇和双亲核试剂三组分反应是热力学有利的CO2转化反应,实现了邻二醇或氨基醇和CO2到环状碳酸酯以及2-噁唑啉酮的高效转化。本综述旨在于总结并讨论近年来CO2、炔丙醇和亲核试剂三组分反应制备多种羰基化学物的主要进展。
近年来,低共熔溶剂(DESs)引起了人们的广泛关注,在诸多领域得到应用。DESs一般由氢键供体(HBDs)和氢键受体(HBAs)通过氢键作用形成,其热稳定性研究对于其高温应用具有重要意义。本文利用热重分析法(TG)对40种DESs的热稳定性进行了系统研究,并得到了所研究DESs的开始分解温度(Tonset)。值得注意的是,DESs受热后的变化情况与离子液体不同,呈现出分阶段失重的现象。通常形成DESs的氢键在升温后首先被破坏,从而导致DESs分解成组成其的HBDs和HBAs。然后热稳定性较差(或者沸点较低)的HBDs首先分解(或挥发),而HBAs则在更高温度下分解(或挥发)。例如常见的HBA氯化胆碱(ChCl)在250 ℃附近开始分解。氢键强度对DESs受热后的表现起着重要的作用,DESs中的氢键会阻碍分子“逃脱”,使得Tonset向高温方向移动。此外,我们考察了阴离子、氢键供体、摩尔比对DESs热稳定性的影响,发现HBDs自身的挥发或分解对DESs的热稳定性起着决定性作用。由于用Tonset值会高估DESs的热稳定性,长期热稳定性的考察对其工业应用具有重要价值。本研究能帮助人们理解DESs的热分解行为,为制备具有适当热稳定性的DESs提供依据。
二氧化碳是碳资源利用的最终形式,也是一种绿色的碳一资源。通过催化化学的方法将二氧化碳转化为高附加值精细化学品是二氧化碳循环利用的有效途径。酰胺类化合物是一类重要的化工原料和溶剂,广泛应用于医药、农药、日用化学品及石油化工等众多领域且需求量巨大。因此,以二氧化碳为羰源,通过高效催化体系的建立实现二氧化碳与胺反应合成甲酰胺具有重要意义。本文分别从催化体系、还原剂和反应机理等角度综述了这一领域近年来的主要研究成果。其中,催化体系可分为贵金属催化剂如Ir、Pd、Pt、Ru、Rh,非贵金属催化剂如Ni、Mo、Cu、Fe、Co、Zn、Al,有机分子催化剂和无催化剂体系,常用的还原剂为H2,硅烷和硼烷。在此基础上,对不同催化体系的典型反应机理进行了讨论。
本文利用分子动力学模拟研究了外电场对咪唑类离子液体1-乙基-3-甲基咪唑六氟磷酸盐(EMIMPF6)从0到4000 cm−1范围内振动谱的影响。研究结果表明,在没有外电场时利用分子动力学模拟计算得到的从400到4000 cm−1的振动带可以重现实验测得的谱。当外电场从0到9 V·nm−1变化时,在50.0和199.8 cm−1处的振动带强度持续增强然后趋于饱和,而从400到4000 cm−1的振动带强度明显减弱并最终消失。此外,在外电场从0变到2 V·nm−1时,50.0 cm−1的振动带红移了16.7 cm−1,然后当外电场变化到3 V·nm−1及更大时,该振动带红移增大到33.3 cm−1。在外电场从0变到3 V·nm−1时,3396.6 cm−1的振动带红移大约16.7 cm−1,然后当外电场增大到4 V·nm−1甚至更大时,该振动带红移33.3 cm−1,但是从0到4000 cm−1的其他振动带的位置几乎没有变化。基于对模拟结果和先前报道文献的进一步分析,对于50.0 cm−1的振动带,增加的外电场增强了阳离子和阴离子之间的极性使阳离子和阴离子间的偶极矩增大,因此该振动带的强度不断增大然后达到饱和。对于199.8 cm−1的振动带增加的外电场增强了乙基链的扭转,使该振动带的强度增大并达到饱和。对于从400到4000 cm−1的其他振动带,增加的外电场使EMIMPF6中的阳离子和阴离子的取向更一致,并且可以推测这种更一致的取向可能会削弱振动带的强度甚至使它们消失。50.0 cm−1处振动带的红移可能是由于外电场破坏了EMIMPF6内部的静电场分布进而减弱了阳离子和阴离子间的相互作用。3396.6 cm−1处振动带的红移可归功于外电场减弱了氮原子与阳离子咪唑环上酸性氢原子间形成的氢键的拉伸振动。对于其他的振动带,由于官能团固有的拉伸、弯曲、转动振动不受外电场的影响,外电场没有改变振动带的位置。
通过添加少量silicalite-1做为活性晶种在较宽的SiO2/Al2O3比范围内制备得到了小晶粒ZSM-5沸石,对所得样品进行X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),N2吸附-脱附,氨程序升温脱附(NH3-TPD)以及吡啶吸附红外(Py-IR)表征。研究结果表明活性晶种能有效导向生成ZSM-5沸石,避免杂晶形成并可减小所得沸石的晶粒尺寸;所得ZSM-5在低硅铝比(SiO2/Al2O3 ratio = 30)时呈纳米颗粒聚集体形貌,具有多级孔道结构性质;在较高硅铝比时(SiO2/Al2O3 ratio = 60–120)呈小晶粒形貌,颗粒尺寸大约200 nm。值得注意的是由胶态晶种引入的少量TPAOH不完全堵塞沸石的微孔孔道,因此所得所有沸石均无需提前焙烧除去模板剂即可进行离子交换得到具有酸性的H型ZSM-5沸石,所得酸性H型ZSM-5沸石具有和常规方法得到的相同SiO2/Al2O3比的ZSM-5相似的酸类型、强度和酸量,在催化甲醇转化制备烯烃时呈现出相似的甲醇转化率和烯烃选择性。与常规ZSM-5制备方法比较,该方法能够大大减少模板剂的使用量,避免了样品离子交换前的焙烧,方法绿色清洁、成本低廉,具有很好的潜在的工业应用前景。
由于氨基酸基的独特性质,我们以甘氨酸作为阴离子,醚基咪唑基团作为阳离子合成了一种新型离子液体1-甲氧乙基-3-甲基咪唑甘氨酸[MOEMIM][Gly],并经过核磁共振氢谱、核磁共振碳谱和差示扫描量热进行表征。由于离子液体和水之间形成氢键导致传统的方法不能去除水的影响,所以在实验测定中,选用标准加入法在温度范围为298.15–338.15 K,每隔5 K测定离子液体[MOEMIM][Gly]的密度和表面张力。利用密度数据,计算得到离子液体[MOEMIM][Gly]的摩尔体积,并且摩尔体积随着温度的升高而增加,同时得到了热膨胀系数。根据离子液体[MOEMIM][Gly]的摩尔表面Gibbs自由能,改进了传统的Eötvös经验方程,使得方程具有更明确的物理意义,即截距C0代表摩尔表面焓,它是一个与温度无关的常数,斜率则为摩尔表面熵,这表明改进的Eötvös方程不仅是一个经验方程,而且还是严格的热力学方程。另外,结合摩尔表面Gibbs自由能和改进的Eötvös方程,估算了离子液体的[MOEMIM][Gly]的表面张力,并与实验值进行比较,发现两者很好的一致。
在298.15 K下,利用等温环境溶解反应热量计,测定了离子液体[Cnmim][H2PO4] (n= 3, 4, 5, 6) (1-烷基-3-甲基咪唑磷酸盐)在水中不同浓度的摩尔溶解热(ΔsolHm),根据Pitzer电解质溶液理论计算得到了标准摩尔溶解焓(ΔsolHm0)和Pitzer焓参数:βMX(0)L, βMX(1)L,和CϕL,并计算了表观相对摩尔焓。通过推导讨论,得到了离子液体[Cnmim][H2PO4](n= 3, 4, 5, 6)同系物每摩尔亚甲基对标准摩尔溶解焓的贡献。
电催化还原二氧化碳制备乙烯是备受关注的热点问题,高效催化剂的制备是决定乙烯产率的关键因素。本文在1-辛基-3-甲基咪唑氯的水溶液(OmimCl : H2O = 1 : 5,体积比)中通过电剥离石墨棒制备了1-辛基-3-甲基咪唑功能化石墨片(ILGS),在水溶液中负载氧化亚铜后得到氧化亚铜/1-辛基-3-甲基咪唑功能化石墨片复合材料(Cu2O/ILGS),通过透射电镜、X射线光电子能谱、拉曼光谱和X射线衍射对其组成和结构进行了系统研究,发现ILGS由多层石墨烯组成,表面富含缺陷。这些缺陷被1-辛基-3-甲基咪唑通过共价键修饰,形成类似鸟巢状的微结构,平均直径5 nm的Cu2O纳米颗粒在石墨片表面均匀分散。在0.1 mol∙L−1碳酸氢钾水溶液中,研究了Cu2O/ILGS在不同电压下催化CO2电还原的性能。结果表明,Cu2O是主要活性中心并在CO2还原过程中被逐渐还原成铜,导致产物的法拉第效率随着反应时间而变,在−1.3 V (vs RHE)电压下,乙烯的法拉第效率最高达到14.8%,其性能归因于Cu2O/ILGS复合材料中的鸟巢状微结构对Cu2O纳米颗粒的稳定作用。
嵌段共聚物的自组装行为和其组装形成的胶束聚集体的形貌因在生物医学、药物传输和催化等方面的潜在应用而引起了科学家们的极大兴趣。本工作报道了利用二氧化碳膨胀液体(CXLs)对嵌段共聚物聚苯乙烯-聚4-乙烯基吡啶(PS-b-P4VP)的自组装聚集体(SAA)进行组装结构调控的初步探索。研究发现利用CXLs的抗溶剂效应可以成功调节共聚物PS-b-P4VP的自组装行为。研究结果表明,CXLs的压力及共聚物的组成是影响SAA结构的主要外部因素,CXLs的抗溶剂效应及其对共聚物溶剂化构型的影响是控制SAA形貌转变的主要内在因素。不同组成的共聚物,在CXLs中其SAA的结构形貌均表现出了对压力的显著响应特性。共聚物PS168-b-P4VP420的自组装聚集体的结构由常压(0.1 MPa)下以球形胶束为主转变为高压下(6.35 MPa)以互联棒状胶束结构为主,而PS790-b-P4VP263的SAA结构则由常压下的小型囊泡过渡到6.35 MPa下的大复合囊泡(LCVs)。但是对于PS153-b-P4VP1530,随着压力的调节,其SAA的结构由常压(0.1 MPa)下的大复合胶束(LCMs)转变为6.35 MPa下的大复合囊泡(LCVs)。特别是,我们发现在本工作考察的实验条件下,在常规溶剂甲苯中控制SAA结构的主要因素是共聚物的组成;而在CXLs条件下,PS壳链与溶剂CXLs间的接触面积随压力调节而发生的改变,可能是控制SAA形貌转变的主要因素。此外,随着CXLs压力升高而引起的PS与P4VP嵌段间双亲性差别的减小,会引起P4VP核-PS壳的界面间的表面张力发生改变,这也是触发SAA形貌转变的诱因之一。本工作充分显示了CXLs方法有助于可控调节自组装聚集体(SAA)的形貌和组装行为,为研发复合纳米材料开辟了一条崭新的绿色途径。
通过可再生能源得到的氢气将二氧化碳转化为高附加值的燃料和化学品,对于缓解全球变暖、改善生态环境和解决化石资源日益枯竭的难题具有重要的意义。通过加氢反应合成碳氢化合物,尤其是C2+烃类和含氧化合物愈来愈引起大家的研究兴趣。设计制备兼具二氧化碳活化和碳-碳键耦合的多功能催化剂仍然是一较大的挑战。本文总结了二氧化碳加氢合成长链烷烃、低碳烯烃、高级醇的最新研究进展,探讨了二氧化碳加氢所涉及的相关反应的热力学和动力学、反应机理和反应路径,并对现阶段报道的多相催化剂进行了归纳和分析,最后指出未来在二氧化碳加氢的多相催化过程中所面临的问题和发展方向。
低共熔溶剂(DESs)因具有合成容易、价格低廉、环境友好、挥发性低、溶解能力强、可生物降解、结构可设计等特点,被认为是一种绿色溶剂。近年来,研究者通过深入研究低共熔溶剂的性质,结合低共熔溶剂的特点,将其替代传统的有机溶剂,在混合物分离过程中开展了大量的研究工作,包括:酸性气体(如CO2、CO2和H2S)吸收、生物活性物质萃取、燃料油品中含硫和含氮化合物的脱除、油酚混合物分离、芳烃和脂肪烃混合物的分离、醇水混合物分离、生物柴油合成过程中甘油的脱除等。本文分析了低共熔溶剂的结构、性质和特点,综述了低共熔溶剂在分离领域的最新研究成果,探讨了低共熔溶剂在混合物分离应用中存在的问题,展望了低共熔溶剂的发展趋势。
噻唑硫酮因具有独特的生物活性,使其在医学和杂环化学等领域有着广泛的应用,从而引起了科研工作者的研究兴趣。本文以离子液体1-丁基-2, 3-二甲基咪唑鎓醋酸盐(BmmimOAc)为催化剂,2-芳氨基乙醇和二硫化碳为起始原料,一步缩合合成3-芳基-2-噻唑硫酮。以2-苯氨基乙醇和二硫化碳的反应为模型,考察了一系列离子液体的催化活性。发现只有阴离子为醋酸根的离子液体才具有催化活性,这可能是由醋酸根的碱性所导致的。在这些阴离子为醋酸根的离子液体中,BmmimOAc的催化活性最高。以其为催化剂,系统考察了反应时间、反应温度、催化剂用量以及二硫化碳和2-苯氨基乙醇摩尔比对该反应的影响。得到最优的反应条件:反应时间6 h、反应温度130 ℃、10%的BmmimOAc用量以及5 : 1的二硫化碳和2-苯氨基乙醇摩尔比。在该反应条件下,目标产物3-苯基-2-噻唑硫酮的收率达到了97%。以不同的2-芳氨基乙醇为原料,考察了该反应的普适性。结果表明无论是具有给电子基团、吸电子基团或较大空间位阻的2-芳氨基乙醇均可顺利地与二硫化碳反应生成相应的3-芳基-2-噻唑硫酮,且分离收率高达83%–95%。核磁共振波谱和质谱分析表明反应过程中BmmimOAc的醋酸根阴离子可以自发地与二硫化碳反应生成硫代醋酸根阴离子,因此离子液体1-丁基-2, 3-二甲基咪唑鎓硫代醋酸盐(BmmimCOS)可能是2-芳氨基乙醇和二硫化碳反应的催化剂。通过核磁共振波谱研究了BmmimCOS与反应底物2-苯氨基乙醇和二硫化碳之间的相互作用,发现BmmimCOS与2-苯氨基乙醇之间存在氢键相互作用。在反应过程中硫代醋酸根阴离子通过氢键作用活化2-苯氨基乙醇,从而促进反应高效进行。基于表征结果,提出了一个可能的反应机理。首先,BmmimOAc自发地与二硫化碳反应生成BmmimCOS。然后,BmmimCOS中的硫代醋酸根阴离子通过氢键作用活化2-苯氨基乙醇。随后,活化的2-苯氨基乙醇与二硫化碳反应生成中间体。最后,中间体分子内环化生成目标产物3-苯基-2-噻唑硫酮。