Acta Phys. -Chim. Sin. ›› 2013, Vol. 29 ›› Issue (07): 1421-1432.doi: 10.3866/PKU.WHXB201304222
• THEORETICAL AND COMPUTATIONAL CHEMISTRY • Previous Articles Next Articles
XIE Hu-Jun1, MOU Wang-Shu1, LIN Fu-Rong1, XU Jie-Hui1, LEI Qun-Fang2
Received:
2013-02-21
Revised:
2013-04-22
Published:
2013-06-14
Supported by:
The project was supported by the National Natural Science Foundation of China (21203166, 21073164), Natural Science Foundation of Zhejiang Province, China (Y4100620, LY12B04003), and Student Innovation Foundation of Zhejiang Province, China (2012R408007).
XIE Hu-Jun, MOU Wang-Shu, LIN Fu-Rong, XU Jie-Hui, LEI Qun-Fang, FANG Wen-Jun. Radical Scavenging Activity of Myricetin[J]. Acta Phys. -Chim. Sin. 2013, 29(07), 1421-1432. doi: 10.3866/PKU.WHXB201304222
(1) Kuhnau, J. World Rev. Nutr. Diet. 1976, 24, 117. (2) Miean, K. H.; Mohamed, S. J. Agric. Food Chem. 2001, 49,3106. doi: 10.1021/jf000892m (3) Li, M. J.; Zhang, L. M.; Liu,W. X.; Lu,W. C. Chin. J. Chem. Phys. 2011, 24, 173. (4) Rüfer, C. E.; Kulling, S. E. J. Agric. Food Chem. 2006, 54,2926. doi: 10.1021/jf053112o (5) Amat, A.; Clementi, C.; De Angelis, F.; Sgamellotti, A.;Fantaccia, S. J. Phys. Chem. A 2009, 113, 15118. doi: 10.1021/jp9052538 (6) Horvath, C. R.; Martos, P. A.; Saxena, P. K. J. Chromatogr. A2005, 1062, 199. doi: 10.1016/j.chroma.2004.11.030 (7) Nenadis, N.; Sigalas, M. P. J. Phys. Chem. A 2008, 112, 12196.doi: 10.1021/jp8058905 (8) Rashid, U.; Anwar, F.; Moser, B. R.; Knothe, G. Bioresour. Technol. 2008, 99, 8175. doi: 10.1016/j.biortech.2008.03.066 (9) Gunesekaran, R.; Ubeda, A.; Alcaraz, M. J.; Jayaprakasam, R.;Nair, A. G. R. Pharmazie 1993, 48, 230. (10) Mehrdad, M.; Zebardast, M.; Abedi, G.; Koupaei, M. N.;Rasouli, H.; Talebi, M. J. Aoac. Int. 2009, 92, 1035. (11) Burda, S.; Oleszek,W. J. Agric. Food. Chem. 2001, 49, 2774.doi: 10.1021/jf001413m (12) Mira, L.; Fernandez, M. T.; Santos, M.; Rocha, R.; Florencio,M. H.; Jennings, K. R. Free Radic. Res. 2002, 36, 1199.doi: 10.1080/1071576021000016463 (13) Ko, C. H.; Shen, S. C.; Lee, T. J.; Chen, Y. C. Mol. Cancer Ther.2005, 4, 281. (14) Morales, P.; Haza, A. I. J. Appl. Toxicol. 2012, 32, 986.doi: 10.1002/jat.v32.12 (15) Rasulev, B. F.; Abdullaev, N. D.; Syrov, V. N. Leszczynski, J.QSAR Comb. Sci. 2005, 24, 1056. (16) DeToma, A. S.; Choi, J. S.; Braymer, J. J.; Lim, M. H.ChemBioChem 2011, 12, 1198. doi: 10.1002/cbic.v12.8 (17) Delgado, M. E.; Haza, A. I.; Garcia, A.; Morales, P. Toxicolin. In Vitro 2009, 23, 1292. doi: 10.1016/j.tiv.2009.07.022 (18) Oyama, Y.; Fuchs, P. A.; Katayama, N.; Noda, K. Brain Res.1994, 635, 125. doi: 10.1016/0006-8993(94)91431-1 (19) Gordon, M. H.; Roedig-Penmanm, A. Chem. Phys. Lipids 1998,97, 79. doi: 10.1016/S0009-3084(98)00098-X (20) Lalas, S.; Tsaknis, J. J. Am. Oil. Chem. Soc. 2002, 79, 677.doi: 10.1007/s11746-002-0542-2 (21) Shahidi, F.;Wanasundara, U. Dev. Food Sci. 1995, 37A, 469. (22) Robak, J.; Gryglewski, R. J. Biochem. Pharmacol. 1988, 37,837. doi: 10.1016/0006-2952(88)90169-4 (23) Angelone, T.; Pasqua, T.; Di Majo, D.; Quintieri, A. M.; Filice,E.; Amodio, N.; Tota, B.; Giammanco, M.; Cerra, M. C. Nutr. Metab. Cardiovas. 2011, 21, 362. doi: 10.1016/j.numecd.2009.10.011 (24) Wang, Z. H.; Kang, K. A.; Zhang, R.; Piao, M. J.; Jo, S. H.;Kim, J. S.; Kang, S. S.; Lee, J. S.; Park, D. H.; Hyun, J.W.Environ. Toxicol. Phar. 2010, 29, 12. doi: 10.1016/j.etap.2009.08.007 (25) Moser, B. R. Eur. J. Lipid Sci. Technol. 2008, 110, 1167.doi: 10.1002/ejlt.v110:12 (26) Justino, G. C.; Vieira, A. J. S. C. J. Mol. Model. 2010, 16, 863.doi: 10.1007/s00894-009-0583-1 (27) Mendoza-Wilson, A. M.; Sotelo-Mundo, R. R.; Balandran-Quintana, R. R.; Glossman-Mitnik, D.; Santiz-Gomez, M. A.;Garcia-Orozco, K. D. J. Mol. Struct. 2010, 981, 187.doi: 10.1016/j.molstruc.2010.08.005 (28) Leon-Carmona, J. R.; Galano, A. J. Phys. Chem. B 2011, 115,4538. doi: 10.1021/jp201383y (29) Anouar, E.; Calliste, C. A.; Kosinova, P.; Di Meo, F.; Duroux, J.L.; Champavier, Y.; Marakchi, K.; Trouillas, P. J. Phys. Chem. A2009, 113, 13881. doi: 10.1021/jp906285b (30) Sadasivam, K.; Kumaresan, R. Spectrochim. Acta A 2011, 79,282. doi: 10.1016/j.saa.2011.02.042 (31) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.doi: 10.1007/s00214-007-0310-x (32) Zhao, Y.; Truhlar, D. G. Accounts Chem. Res. 2008, 41, 157.doi: 10.1021/ar700111a (33) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.doi: 10.1021/jp9716997 (34) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.2003, 24, 669. doi: 10.1002/jcc.10189 (35) Frisch, M. J.; Trucks, G..W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.01; Gaussian Inc.:Wallingford, CT, 2009. (36) Bader, R. F.W. Chem. Res. 1991, 91, 893. (37) Bader, R. F.W. J. Phys. Chem. A 1998, 102, 7314. doi: 10.1021/jp981794v (38) Biegler-Konig, F. AIM2000; University of Applied Sciences:Bielefeld, Germany. (39) Eyring, H. J. Chem. Phys. 1935, 3, 107. doi: 10.1063/1.1749604 (40) Evans, M. G.; Polanyi, M. Trans. Faraday Soc. 1935, 31, 875.doi: 10.1039/tf9353100875 (41) Wigner, E. J. Chem. Phys. 1937, 5, 720. (42) Russo, N.; Toscano, M.; Uccella, N. J. Agric. Food Chem.2000, 48, 3232. doi: 10.1021/jf990469h (43) Bors,W.; Heller,W.; Saran, M. Methods in Enzymology;Academic Press: San Diego, 1990; Vol. 186, p 343. (44) Leopoldini, M.; Rondinelli, F.; Russo, N.; Toscano, M. J. Agric. Food Chem. 2010, 58, 8862. doi: 10.1021/jf101693k (45) Estvez, L.; Mosquera, R. A. J. Phys. Chem. A 2007, 111, 11100.doi: 10.1021/jp074941a (46) Xie, H. J.; Lei, Q. F.; Fang,W. J. Acta Chim. Sin. 2010, 68,1467. (47) Markovic, Z. S.; Dimitric, J. M.; Markovic, D.; Dolicanin, C.B. Theor. Chem. Acc. 2010, 127, 69. doi: 10.1007/s00214-009-0706-x (48) Sadasivam, K.; Kumaresan, R. Comput. Theor. Chem. 2011,963, 227. doi: 10.1016/j.comptc.2010.10.025 (49) Van Acker, S. A. B. E.; DeGroot, M. J.; Van den Berg, D. J.;Tromp, M. N. J. L.; Den Kelder, G. D. O.; Van der Vijgh,W. J.F.; Bast, A. Chem. Res. Toxicol. 1996, 9, 1305. doi: 10.1021/tx9600964 (50) Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Free Radic. Biol. Med. 1996, 20, 933. doi: 10.1016/0891-5849(95)02227-9 (51) Van Acker, S. A. B. E.; Van Den Berg, D. J.; Tromp, M. N. J. L.;Griffioen, D. H.; Van Bennekom,W. P.; Van Der Vijgh,W. J. F.;Bast, A. Free Radic. Biol. Med. 1996, 20, 331. doi: 10.1016/0891-5849(95)02047-0 (52) Guzman, R.; Santiago, C.; Sanchez, M. J. Mol. Struct. 2009,935, 110. doi: 10.1016/j.molstruc.2009.06.048 (53) Chiodo, S. G.; Leopoldini, M.; Russo, N.; Toscano, M. Phys. Chem. Chem. Phys. 2010, 12, 7662. doi: 10.1039/b924521a (54) Li, M. J.; Li, Y. J.; Peng, C. R.; Lu,W. C. Acta Phys. -Chim. Sin. 2010, 26, 466. [李敏杰, 李亚军, 彭淳容, 陆文聪. 物理化学学报, 2010, 26, 466.] doi: 10.3866/PKU.WHXB20100230 (55) Wright, J. S.; Johnson, E. R.; Di Labio, G. A. J. Am. Chem. Soc.2001, 123, 1173. doi: 10.1021/ja002455u (56) Trouillas, P.; Fagnere, C.; Lazzaroni, R.; Calliste, C.; Marfak,A.; Duroux, J. L. Food Chem. 2004, 88, 571. doi: 10.1016/j.foodchem.2004.02.009 (57) Aparicio, S. Int. J. Mol. Sci. 2010, 11, 2017. doi: 10.3390/ijms11052017 (58) Zhang, J. H.; Du, F. P.; Peng, B.; Lu, R. H.; Gao, H. X.; Zhou,Z. Q. J. Mol. Struct. -Theochem 2010, 955, 1. doi: 10.1016/j.theochem.2010.04.036 (59) Kosinova, P.; Di Meo, F.; Anouar, E. H.; Duroux, J. L.;Trouillas, P. Int. J. Quantum Chem. 2011, 11, 1131. (60) Zhang, H. Y.;Wang, L. F.; Sun, Y. M. Bioorg. Med. Chem. Lett.2003, 13, 909. doi: 10.1016/S0960-894X(03)00013-1 (61) Zhang, I. Y.;Wu, J. M.; Luo, Y.; Xu, X. J. Comput. Chem. 2011,32, 1824. doi: 10.1002/jcc.v32.9 (62) Wu, J. M.; Zhang, I. Y.; Xu, X. ChemPhysChem 2010, 11, 2561.doi: 10.1002/cphc.201000273 (63) Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A 2011, 115, 2811.doi: 10.1021/jp110024e (64) Dhaouadi, Z.; Nsangou, M.; Garrab, N.; Anouar, E. H.;Marakchi, K.; Lahmar, S. J. Mol. Struct. -Theochem 2009, 904,35. doi: 10.1016/j.theochem.2009.02.034 (65) Mikulski, D.; Gorniak, R.; Molski, M. Eur. J. Med. Chem. 2010,45, 1015. doi: 10.1016/j.ejmech.2009.11.044 (66) Trouillas, P.; Marsal, P.; Siri, D.; Lazzaroni, R.; Duroux, J. L.Food Chem. 2006, 97, 679. doi: 10.1016/j.foodchem.2005.05.042 (67) Leopoldini, M.; Pitarch, I. P.; Russo, N.; Toscano, M. J. Phys. Chem. A 2004, 108, 92. doi: 10.1021/jp035901j (68) Bowater, L.; Fairhurst, S. A.; Just, V. J.; Bornemann, S. FEBS Lett. 2004, 557, 45. doi: 10.1016/S0014-5793(03)01439-X (69) Lien, E. J.; Ren, S.; Bui, H. H.;Wang, R. Free Radic. Biol. Med. 1999, 26, 285. doi: 10.1016/S0891-5849(98)00190-7 (70) Tejero, I.; Gonzalez-Garcia, N.; Gonzalez-Lafont, A.; Lluch, J.M. J. Am. Chem. Soc. 2007, 129, 5846. doi: 10.1021/ja063766t |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Fengyu Gao, Hengheng Liu, Xiaolong Yao, Zaharaddeen Sani, Xiaolong Tang, Ning Luo, Honghong Yi, Shunzheng Zhao, Qingjun Yu, Yuansong Zhou. Spherical MnxCo3−xO4−ƞ Spinel with Mn-Enriched Surface as High-Efficiency Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3 [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212003-0. |
[3] | Tianjie Wang, Yaowei Wang, Yuhui Chen, Jianpeng Liu, Huibing Shi, Limin Guo, Zhiwei Zhao, Chuntai Liu, Zhangquan Peng. Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2 [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009071-. |
[4] | Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2111003-. |
[5] | Ying Li, Xueqi Lai, Jinpeng Qu, Qinzhi Lai, Tingfeng Yi. Research Progress in Regulation Strategies of High-Performance Antimony-Based Anode Materials for Sodium Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204049-. |
[6] | Peng Chen, Ying Zhou, Fan Dong. Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010010-. |
[7] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[8] | Yuanyuan HU,Congyang WANG. Bimetallic C―H Activation in Homogeneous Catalysis [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 913-922. |
[9] | Yue ZHAO,Jiatong CUI,Jichuang HU,Jiabi MA. Reactivities of VO1–4+ Toward n-CmH2m+2 (m = 3, 5, 7) as Functions of Oxygen Content and Carbon Chain Length [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 531-538. |
[10] | Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones [J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958. |
[11] | Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations [J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162. |
[12] | Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes [J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420. |
[13] | Zi-Min WANG,Mo ZHENG,Yong-Bing XIE,Xiao-Xia LI,Ming ZENG,Hong-Bin CAO,Li GUO. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field [J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1399-1410. |
[14] | Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4 [J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107. |
[15] | Shen-Hui LI,Jing LI,An-Min ZHENG,Feng DENG. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts [J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282. |
|