Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (3): 1905007.doi: 10.3866/PKU.WHXB201905007
Special Issue: Photocatalyst
• Review • Previous Articles Next Articles
Shangcong Sun1,2,Xuya Zhang1,2,Xianlong Liu1,Lun Pan1,2,Xiangwen Zhang1,2,Jijun Zou1,2,*()
Received:
2019-05-02
Accepted:
2019-06-03
Published:
2019-06-05
Contact:
Jijun Zou
E-mail:jj_zou@tju.edu.cn
Supported by:
Shangcong Sun,Xuya Zhang,Xianlong Liu,Lun Pan,Xiangwen Zhang,Jijun Zou. Design and Construction of Cocatalysts for Photocatalytic Water Splitting[J]. Acta Physico-Chimica Sinica 2020, 36(3), 1905007. doi: 10.3866/PKU.WHXB201905007
Fig 2
(a) Amount of O2 evolution for C3N4 modified with different ratios of Co3O4 QDs treated at 300 ℃, (b) amount of O2 evolution for Co3O4-C3N4 annealed at different temperatures, (c) electrochemical impedance spectroscopy (EIS) plots and d) periodic on/off photocurrent response under visible-light irradiations. Adapted from Appl. Catal. B: Environ. journal, Elsevier publisher 65. "
Fig 4
SrTiO3:La, Rh/Au/BiVO4:Mo sheet prepared by particle transfer method. (a) Illustration of the preparation of the SrTiO3:La, Rh/Au/BiVO4:Mo sheet by the particle transfer method. b–f, Top-view SEM-EDX elemental mapping images showing an SEM image (b), Bi distribution (c), Sr distribution (d), Au distribution (e), and a superimposition of the distributions (f). (g) Schematic of overall water splitting on the Ru-modified SrTiO3:La, Rh/Au/BiVO4:Mo sheet. CB, conduction band; VB, valence band. (h) Dependence of overall water splitting activity of Ru-modified SrTiO3:La, Rh/Au/BiVO4:Mo photocatalyst sheets on annealing temperature. All samples were annealed for 20 min. 'w/o' stands for the pristine sample. The error bars show the standard deviations. Adapted from Nat. Mater. journal, Nature publisher 75. "
1 |
Fu C. F. ; Wu X. J. ; Yang J. L. Adv. Mater. 2018, 30, 1802106.
doi: 10.1002/adma.201802106 |
2 |
Wu W. ; Jiang C. Z. ; Roy V. A. L. Nanoscale 2015, 7, 38.
doi: 10.1039/c4nr04244a |
3 |
Kong D. ; Zheng Y. ; Kobielusz M. ; Wang Y. ; Bai Z. ; Macyk W. ; Wang X. ; Tang J. Mater. Today 2018, 21, 897.
doi: 10.1016/j.mattod.2018.04.009 |
4 |
Zhou P. ; Yu J. G. ; Jaroniec M. Adv. Mater. 2014, 26, 4920.
doi: 10.1002/chin.201439243 |
5 |
Maeda K. J. Photochem. Photobiol. C 2011, 12, 237.
doi: 10.1016/j.jphotochemrev.2011.07.001 |
6 |
Chen X. B. ; Shen S. H. ; Guo L. J. ; Mao S. S. Chem. Rev. 2010, 110, 6503.
doi: 10.1021/cr1001645 |
7 |
Marzo L. ; Pagire S. K. ; Reiser O. ; Konig B. Angew. Chem. Int. Ed. 2018, 57, 10034.
doi: 10.1002/anie.201709766 |
8 |
Inoue Y. Energy Environ. Sci. 2009, 2, 364.
doi: 10.1039/b816677n |
9 |
Wang Z. ; Li C. ; Domen K. Chem. Soc. Rev. 2019, 48, 2109.
doi: 10.1039/c8cs00542g |
10 |
Wu L. Z. ; Chen B. ; Li Z. J. ; Tung C. H. Acc. Chem. Res. 2014, 47, 2177.
doi: 10.1021/ar500140r |
11 |
Gong C. ; Xiang S. W. ; Zhang Z. Y. ; Sun L. ; Ye C. Q. ; Lin C. J. Acta Phys. -Chim. Sin. 2019, 35, 616.
doi: 10.3866/PKU.WHXB201805082 |
弓程; 向思弯; 张泽阳; 孙岚; 叶陈清; 林昌健. 物理化学学报, 2019, 35, 616.
doi: 10.3866/PKU.WHXB201805082 |
|
12 |
Huang Z. F. ; Zou J.-J. ; Pan L. ; Wang S. B. ; Zhang X. W. ; Wang L. Appl. Catal. B: Environ. 2014, 147, 167.
doi: 10.1016/j.apcatb.2013.08.038 |
13 |
an L. ; Zou J.-J. ; Zhang X. W. ; Wang L. J. Am. Chem. Soc. 2011, 133, 10000.
doi: 10.1021/ja2035927 |
14 |
Huang Z. F. ; Song J.-J. ; Pan L. ; Wang Z. M. ; Zhang X. Q. ; Zou J.-J. ; Mi W. B. ; Zhang X. W. ; Wang L. Nano Energy 2015, 12, 646.
doi: 10.1016/j.nanoen.2015.01.043 |
15 |
Tong H. ; Ouyang S. X. ; Bi Y. P. ; Umezawa N. ; Oshikiri M. ; Ye J. H. Adv. Mater. 2012, 24, 229.
doi: 10.1002/adma.201102752 |
16 |
Low J. X. ; Jiang C. ; Cheng B. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. G. Small Methods 2017, 1, 1700080.
doi: 10.1002/smtd.201700080 |
17 |
Fan K. ; Jin Z. L. ; Yang H. ; Liu D. D. ; Hu H. Y. ; Bi Y. P. Sci. Rep. 2017, 7, 7710.
doi: 10.1038/s41598-017-08163-y |
18 |
Hisatomi T. ; Kubota J. ; Domen K. Chem. Soc. Rev. 2014, 43, 7520.
doi: 10.1039/c3cs60378d |
19 |
Wang H. L. ; Zhang L. S. ; Chen Z. G. ; Hu J. Q. ; Li S. J. ; Wang Z. H. ; Liu J. S. ; Wang X. C. Chem. Soc. Rev. 2014, 43, 5234.
doi: 10.1039/c4cs00126e |
20 |
Fujishima A. ; Honda K. Nature 1972, 238, 37.
doi: 10.1038/238037a0 |
21 |
Li X. ; Yu J. G. ; Low J. X. ; Fang Y. P. ; Xiao J. ; Chen X. B. J. Mater. Chem. A 2015, 3, 2485.
doi: 10.1039/c4ta04461d |
22 |
Moniz S. J. A. ; Shevlin S. A. ; Martin D. J. ; Guo Z. X. ; Tang J. W. Energy Environ. Sci. 2015, 8, 731.
doi: 10.1039/c4ee03271c |
23 |
Low J. X. ; Yu J. G. ; Jaroniec M. ; Wageh S. ; Al-Ghamdi A. A. Adv. Mater. 2017, 29, 1601694.
doi: 10.1002/adma.201601694 |
24 | Huang, J. H.; Shang, Q. C.; Huang, Y. Y.; Tang, F. M.; Zhang, Q.; Liu, Q. H.; Jiang, S.; Hu, F. C.; Liu, W.; Luo, Y.; et al. Angew. Chem. Int. Ed. 2016, 55, 2137. doi: 10.1002/anie.201510642 |
25 |
Gao Y. J. ; Li X. B. ; Wu H. L. ; Meng S. L. ; Fan X. B. ; Huang M. Y. ; Guo Q. ; Tung C. H. ; Wu L. Z. Adv. Funct. Mater. 2018, 28, 1801769.
doi: 10.1002/adfm.201801769 |
26 |
Martin D. J. ; Qiu K. P. ; Shevlin S. A. ; Handoko A. D. ; Chen X. W. ; Guo Z. X. ; Tang J. W. Angew. Chem. Int. Ed. 2014, 53, 9240.
doi: 10.1002/anie.201403375 |
27 |
Shi R. ; Ye H. F. ; Liang F. ; Wang Z. ; Li K. ; Weng Y. X. ; Lin Z. S. ; Fu W. F. ; Che C. M. ; Chen Y. Adv. Mater. 2017, 30, 1705941.
doi: 10.1002/adma.201705941 |
28 |
Ning X. F. ; Zhen W. L. ; Wu Y. Q. ; Lu G. X. Appl. Catal. B: Environ. 2018, 226, 373.
doi: 10.1016/j.apcatb.2017.12.067 |
29 |
Wang M. ; Zhen W. L. ; Tian B. ; Ma J. T. ; Lu G. X. Appl. Catal. B: Environ. 2018, 236, 240.
doi: 10.1016/j.apcatb.2018.05.031 |
30 |
Li Y. H. ; Xing J. ; Chen Z. J. ; Li Z. ; Tian F. ; Zheng L. R. ; Wang H. F. ; Hu P. ; Zhao H. J. ; Yang H. G. Nat. Commun. 2013, 4, 2500.
doi: 10.1038/ncomms3500 |
31 |
Chen S. S. ; Takata T. ; Domen K. Nat. Rev. Mater. 2017, 2, 17050.
doi: 10.1038/natrevmats.2017.50 |
32 |
Qi J. ; Zhang W. ; Cao R. Adv. Energy Mater. 2018, 8, 1701620.
doi: 10.1002/aenm.201701620 |
33 |
Xu X. T. ; Pan L. ; Zhang X. W. ; Wang L. ; Zou J.-J. Adv. Sci. 2019, 6, 1801505.
doi: 10.1002/advs.201801505 |
34 |
Yang J. H. ; Wang D. G. ; Han H. X. ; Li C. Acc. Chem. Res. 2013, 46, 1900.
doi: 10.1021/ar300227e |
35 |
Al Azri Z. H. N. ; Al-Oufi M. ; Chan A. ; Waterhouse G. I. N. ; Idriss H. ACS Catal. 2019, 9, 3946.
doi: 10.1021/acscatal.8b05070 |
36 |
Lu X. ; Han Y. ; Lu T. Acta Phys. -Chim. Sin. 2018, 34, 1014.
doi: 10.3866/PKU.WHXB201801171 |
卢秀利; 韩莹莹; 鲁统部. 物理化学学报, 2018, 34, 1014.
doi: 10.3866/PKU.WHXB201801171 |
|
37 |
Zhang Z. ; Yates J. T. Chem. Rev. 2012, 112, 5520.
doi: 10.1021/cr3000626 |
38 |
Zhang G. G. ; Lan Z. A. ; Wang X. C. Chem. Sci. 2017, 8, 5261.
doi: 10.1039/c7sc01747b |
39 |
Guan J. Q. ; Duan Z. Y. ; Zhang F. X. ; Kelly S. D. ; Si R. ; Dupuis M. ; Huang Q. G. ; Chen J. Q. ; Tang C. H. ; Li C. Nat. Catal. 2018, 1, 870.
doi: 10.1038/s41929-018-0158-6 |
40 |
Ran J. R. ; Zhang J. ; Yu J. G. ; Jaroniec M. ; Qiao S. Z. Chem. Soc. Rev. 2014, 43, 7787.
doi: 10.1039/c3cs60425j |
41 |
Subbaraman R. ; Tripkovic D. ; Strmcnik D. ; Chang K. C. ; Uchimura M. ; Paulikas A. P. ; Stamenkovic V. ; Markovic N. M. Science 2011, 334, 1256.
doi: 10.1126/science.1211934 |
42 |
Wang L. ; Zhu Y. H. ; Zeng Z. H. ; Lin C. ; Giroux M. ; Jiang L. ; Han Y. ; Greeley J. ; Wang C. ; Jin J. Nano Energy 2017, 31, 456.
doi: 10.1016/j.nanoen.2016.11.048 |
43 |
Tahir M. ; Pan L. ; Idrees F. ; Zhang X. W. ; Wang L. ; Zou J.-J. ; Wang Z. L. Nano Energy 2017, 37, 136.
doi: 10.1016/j.nanoen.2017.05.022 |
44 |
Mahmood N. ; Yao Y. D. ; Zhang J. W. ; Pan L. ; Zhang X. W. ; Zou J.-J. Adv. Sci. 2018, 5, 1700464.
doi: 10.1002/advs.201700464 |
45 |
Huang Z. F. ; Song J. J. ; Li K. ; Tahir M. ; Wang Y. T. ; Pan L. ; Wang L. ; Zhang X. W. ; Zou J.-J. J. Am. Chem. Soc. 2016, 138, 1359.
doi: 10.1021/jacs.5b11986 |
46 | Zhang, R. R.; Zhang, Y. C.; Pan, L.; Shen, G. Q.; Mahmood, N.; Ma, Y. H.; Shi, Y.; Jia, W. Y.; Wang, L.; Zhang, X. W.; et al. ACS Catal. 2018, 8, 3803. doi: 10.1021/acscatal.8b01046 |
47 |
Lin Z. ; Shen L. F. ; Qu X. M. ; Zhang J. M. ; Jiang Y. X. ; Sun S. G. Acta Phys. -Chim. Sin. 2019, 35, 523.
doi: 10.3866/PKU.WHXB201806191 |
林舟; 申琳璠; 翟希铭; 张俊明; 姜艳霞; 孙世刚. 物理化学学报, 2019, 35, 523.
doi: 10.3866/PKU.WHXB201806191 |
|
48 |
Luo P. ; Sun F. ; Deng J. ; Xu H. T. ; Zhang H. J. ; Wang Y. Acta Phys. -Chim. Sin. 2018, 34, 1397.
doi: 10.3866/PKU.WHXB201804022 |
罗盼; 孙芳; 邓菊; 许海涛; 张慧娟; 王煜. 物理化学学报, 2018, 34, 1397.
doi: 10.3866/PKU.WHXB201804022 |
|
49 |
Han G. Q. ; Jin Y. H. ; Burgess R. A. ; Dickenson N. E. ; Cao X. M. ; Sun Y. J. J. Am. Chem. Soc. 2017, 139, 15584.
doi: 10.1021/jacs.7b08657 |
50 |
Zhao Q. ; Sun J. ; Li S. C. ; Huang C. P. ; Yao W. F. ; Chen W. ; Zeng T. ; Wu Q. ; Xu Q. J. ACS Catal. 2018, 8, 11863.
doi: 10.1021/acscatal.8b03737 |
51 |
Zhang K. ; Ran J. R. ; Zhu B. C. ; Ju H. X. ; Yu J. G. ; Song L. ; Qiao S. Z. Small 2018, 14, 1801705.
doi: 10.1002/smll.201801705 |
52 |
Lin H. Y. ; Yang H. C. ; Wang W. L. Catal. Today 2011, 174, 106.
doi: 10.1016/j.cattod.2011.01.052 |
53 |
Liu J. N. ; Jia Q. H. ; Long J. L. ; Wang X. X. ; Gao Z. W. ; Gu Q. Appl. Catal. B: Environ. 2018, 222, 35.
doi: 10.1016/j.apcatb.2017.09.073 |
54 |
Xu Y. ; Gong Y. Y. ; Ren H. ; Liu W. B. ; Li C. ; Liu X. J. ; Niu L. Y. J. Alloys Compd. 2017, 735, 2551.
doi: 10.1016/j.jallcom.2017.11.388 |
55 |
Foo W. J. ; Zhang C. ; Ho G. W. Nanoscale 2013, 5, 759.
doi: 10.1039/c2nr33004k |
56 |
Wang X. J. ; Tian X. ; Sun Y. J. ; Zhu J. Y. ; Li F. T. ; Mu H. Y. ; Zhao J. Nanoscale 2018, 10, 12315.
doi: 10.1039/c8nr03846e |
57 |
Wang P. F. ; Zhan S. H. ; Wang H. T. ; Xia Y. G. ; Hou Q. L. ; Zhou Q. X. ; Li Y. ; Kumar R. R. Appl. Catal. B: Environ. 2018, 230, 210.
doi: 10.1016/j.apcatb.2018.02.043 |
58 |
Chen Y. B. ; Qin Z. X. Catal. Sci. Technol. 2016, 6, 8212.
doi: 10.1039/c6cy01653g |
59 | Indra, A.; Acharjya, A.; Menezes, P. W.; Merschjann, C.; Hollmann, D.; Schwarze, M.; Aktas, M.; Friedrich, A.; Lochbrunner, S.; Thomas, A.; et al. Angew. Chem. Int. Ed. 2017, 56, 1653. doi: 10.1002/anie.201611605 |
60 |
Kumar D. P. ; Choi J. ; Hong S. ; Reddy D. A. ; Lee S. ; Kim T. K. ACS Sustain. Chem. Eng. 2016, 4, 7158.
doi: 10.1021/acssuschemeng.6b02032 |
61 |
Yin L. S. ; Hai X. ; Chang K. ; Ichihara F. ; Ye J. H. Small 2018, 14, 1704153.
doi: 10.1002/smll.201704153 |
62 |
Garcia-Esparza A. T. ; Cha D. ; Ou Y. W. ; Kubota J. ; Domen K. ; Takanabe K. ChemSusChem 2013, 6, 168.
doi: 10.1002/cssc.201200780 |
63 | Nurlaela, E.; Wang, H.; Shinagawa, T.; Flanagan, S.; Ould-Chikh, S.; Qureshi, M.; Mics, Z.; Sautet, P.; Le Bahers, T.; Cánovas, E.; et al. ACS Catal. 2016, 6, 4117. doi: 10.1021/acscatal.6b00508 |
64 |
Li M. ; Bai L. ; Wu S. J. ; Wen X. D. ; Guan J. Q. ChemSusChem 2018, 11, 1722.
doi: 10.1002/cssc.201800489 |
65 |
Zhang H. Y. ; Tian W. J. ; Zhou L. ; Sun H. Q. ; Tade M. ; Wang S. B. Appl. Catal. B: Environ. 2017, 223, 2.
doi: 10.1016/j.apcatb.2017.03.028 |
66 |
Zhang G. G. ; Zang S. H. ; Wang X. C. ACS Catal. 2015, 5, 941.
doi: 10.1021/cs502002u |
67 |
Zhang L. Z. ; Yang C. ; Xi Z. L. ; Wang X. C. Appl. Catal. B: Environ. 2018, 224, 886.
doi: 10.1016/j.apcatb.2017.11.023 |
68 | Yoshinaga, T.; Saruyama, M.; Xiong, A.; Ham, Y.; Kuang, Y. B.; Niishiro, R.; Akiyama, S.; Sakamoto, M.; Hisatomi, T.; Domen, K.; et al. Nanoscale 2018, 10, UNSP10420. doi: 10.1039/c8nr00377g |
69 |
Ye C. ; Li J. X. ; Li Z. J. ; Li X. B. ; Fan X. B. ; Zhang L. P. ; Chen B. ; Tung C. H. ; Wu L. Z. ACS Catal. 2015, 5, 6973.
doi: 10.1021/acscatal.5b02185 |
70 |
Wang D. E. ; Li R. G. ; Zhu J. ; Shi J. Y. ; Han J. F. ; Zong X. ; Li C. J. Phys. Chem. C 2012, 116, 5082.
doi: 10.1021/jp210584b |
71 |
Yan H. J. ; Yang J. H. ; Ma G. J. ; Wu G. P. ; Zong X. ; Lei Z. B. ; Shi J. Y. ; Li C. J. Catal. 2009, 266, 165.
doi: 10.1016/j.jcat.2009.06.024 |
72 |
Maeda K. ; Xiong A. K. ; Yoshinaga T. ; Ikeda T. ; Sakamoto N. ; Hisatomi T. ; Takashima M. ; Lu D. L. ; Kanehara M. ; Setoyama T. ; et al Angew. Chem. Int. Ed. 2010, 49, 4096.
doi: 10.1002/anie.201001259 |
73 |
Maeda K. ; Lu D. L. ; Domen K. Chemistry 2013, 19, 4986.
doi: 10.1002/chem.201300158 |
74 |
Chen S. S. ; Qi Y. ; Hisatomi T. ; Ding Q. ; Asai T. ; Li Z. ; Ma S. S. K. ; Zhang F. X. ; Domen K. ; Li C. Angew. Chem. Int. Ed. 2015, 54, 8498.
doi: 10.1002/anie.201502686 |
75 | Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Zhong, M.; Wang, C. Z.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N.; et al. Nat. Mater. 2016, 15, 611. doi: 10.1038/nmat4589 |
76 |
Lin L. H. ; Yu Z. Y. ; Wang X. C. Angew. Chem. Int. Ed. 2018, 58, 6164.
doi: 10.1002/anie.201809897 |
77 |
Niu W. H. ; Yang Y. ACS Energy Lett. 2018, 3, 2796.
doi: 10.1021/acsenergylett.8b01594 |
78 |
Zhang J. W. ; Gong S. ; Mahmood N. ; Pan L. ; Zhang X. W. ; Zou J.-J. Appl. Catal. B: Environ. 2018, 221, 9.
doi: 10.1016/j.apcatb.2017.09.003 |
79 |
Zheng Y. ; Lin L. H. ; Wang B. ; Wang X. C. Angew. Chem. Int. Ed. 2015, 54, 12868.
doi: 10.1002/anie.201501788 |
80 |
Pan Z. M. ; Zhang G. G. ; Wang X. C. Angew. Chem. Int. Ed. 2019.
doi: 10.1002/anie.201902634 |
81 |
Huang Z. F. ; Song J. J. ; Wang X. ; Pan L. ; Li K. ; Zhang X. W. ; Wang L. ; Zou J.-J. Nano Energy 2017, 40, 308.
doi: 10.1016/j.nanoen.2017.08.032 |
82 |
Zheng Y. ; Yu Z. H. ; Ou H. H. ; Asiri A. M. ; Chen Y. L. ; Wang X. C. Adv. Funct. Mater. 2018, 28, 1705407.
doi: 10.1002/adfm.201705407 |
83 | Liu, N. Y.; Han, M. M.; Sun, Y.; Zhu, C.; Zhou, Y. J.; Zhang, Y. L.; Huang, H.; Kremnican, V.; Liu, Y.; Lifshitz, Y.; et al. Energy Environ. Sci. 2018, 11, 1841. doi: 10.1039/c7ee03459h |
84 |
Zhang G. G. ; Lan Z. A. ; Lin L. H. ; Lin S. ; Wang X. C. Chem. Sci. 2016, 7, 3062.
doi: 10.1039/c5sc04572j |
85 |
Pan Z. M. ; Zheng Y. ; Guo F. S. ; Niu P. P. ; Wang X. C. ChemSusChem 2017, 10, 87.
doi: 10.1002/cssc.201600850 |
86 |
Zheng D. D. ; Cao X. N. ; Wang X. C. Angew. Chem. Int. Ed. 2016, 55, 11512.
doi: 10.1002/anie.201606102 |
87 |
Sun S. C. ; Zhang Y. C. ; Shen G. Q. ; Wang Y. T. ; Liu X. L. ; Duan Z. W. ; Pan L. ; Zhang X. W. ; Zou J.-J. Appl. Catal. B: Environ. 2019, 243, 253.
doi: 10.1016/j.apcatb.2018.10.051 |
[1] | Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai. Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209037-. |
[2] | Cheng Hu, Hongwei Huang. Advances in Piezoelectric Polarization Enhanced Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212048-. |
[3] | Xiaoyan Cai, Jiahao Du, Guangming Zhong, Yiming Zhang, Liang Mao, Zaizhu Lou. Constructing a CeO2/ZnxCd1−xIn2S4 S-Scheme Hollow Heterostructure for Efficient Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2302017-. |
[4] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[5] | Zhuonan Lei, Xinyi Ma, Xiaoyun Hu, Jun Fan, Enzhou Liu. Enhancement of Photocatalytic H2-Evolution Kinetics through the Dual Cocatalyst Activity of Ni2P-NiS-Decorated g-C3N4 Heterojunctions [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110049-. |
[6] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[7] | Peng Zhang, Jiquan Wang, Yuan Li, Lisha Jiang, Zhuangzhuang Wang, Gaoke Zhang. Non-Noble-Metallic Cocatalyst Ni2P Nanoparticles Modified Graphite-Like Carbonitride with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009102-. |
[8] | Juanjuan Huang,Jianmei Du,Haiwei Du,Gengsheng Xu,Yupeng Yuan. Control of Nitrogen Vacancy in g-C3N4 by Heat Treatment in an Ammonia Atmosphere for Enhanced Photocatalytic Hydrogen Generation [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905056-. |
[9] | Liang Wang,Chenglu Zhu,Lisha Yin,Wei Huang. Construction of Pt-M (M = Co, Ni, Fe)/g-C3N4 Composites for Highly Efficient Photocatalytic H2 Generation [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907001-. |
[10] | Wei Zhou,Jun-Kang Guo,Sheng Shen,Jinbo Pan,Jie Tang,Lang Chen,Chak-Tong Au,Shuang-Feng Yin. Progress in Photoelectrocatalytic Reduction of Carbon Dioxide [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1906048-. |
[11] | Xiao-Xia CHANG,Jin-Long GONG. On the Importance of Surface Reactions on Semiconductor Photocatalysts for Solar Water Splitting [J]. Acta Phys. -Chim. Sin., 2016, 32(1): 2-13. |
[12] | PEI Juan, HAO Yan-Zhong, SUN Bao, LI Ying-Pin, FAN Long-Xue, SUN Shuo, WANG Shang-Xin. Heterojunction Interface Modification and Its Effect on the Photovoltaic Performance of Hybrid Solar Cells [J]. Acta Phys. -Chim. Sin., 2014, 30(3): 397-407. |
[13] | CUI Hai-Qin, JING Li-Qiang, XIE Ming-Zheng, LI Zhi-Jun. Hydrogenated Rutile TiO2 Nanorods and Their Photocatalytic Activity [J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1903-1908. |
[14] | WANG Xiang, LI Ren-Gui, XU Qian, HAN Hong-Xian, LI Can. Roles of (001) and (101) Facets of Anatase TiO2 in Photocatalytic Reactions [J]. Acta Phys. -Chim. Sin., 2013, 29(07): 1566-1571. |
[15] | Qiu Feng-He, Liu Shu-Ying. A Study on the Unimolecular Decomposition of the Doubly Charged Ions Produced from 4 Chloro-toluene Isomers [J]. Acta Phys. -Chim. Sin., 1994, 10(06): 526-531. |
|