Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (5): 1905009.doi: 10.3866/PKU.WHXB201905009
Special Issue: Sodium Ion Energy Storage Materials and Devices
• Review • Previous Articles Next Articles
Guanghai Chen,Ying Bai,Yongsheng Gao,Feng Wu,Chuan Wu*()
Received:
2019-05-02
Accepted:
2019-06-17
Published:
2019-06-24
Contact:
Chuan Wu
E-mail:chuanwu@bit.edu.cn
Supported by:
Guanghai Chen,Ying Bai,Yongsheng Gao,Feng Wu,Chuan Wu. Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries[J]. Acta Physico-Chimica Sinica 2020, 36(5), 1905009. doi: 10.3866/PKU.WHXB201905009
Fig 5
(a) Cell volume (top) and (b) selected bond lengths versus Se concentration. The yellow and green shaded regions as shown in the top panel indicate the compositional ranges where Na3PSxSe4?x crystallizes in the tetragonal and cubic structures, respectively, (c) the conductivity (S cm?1) vs temperature plots for Na3PSxSe4?x (x = 0, 1, 2, 3, 4) are displayed on the top panel, (d) the activation energy for Na+ diffusion as a function of Se concentration 43."
Fig 6
(a) Lattice parameter as a function of Sb concentration, (b) schematic diagram of Na ion diffusion in different compounds, (c) Arrhenius conductivity plots of Na3P1?xSbxSe4 in the temperature range of room temperature to 90 ℃, (d) room temperature ionic conductivity (r) and activation energy (Ea) as a function of Sb concentration. The inset is Nyquist impedance plots of Na3P1?xSbxSe4 44."
Fig 7
(a) Comparison of structures (unit cells) of Li10GeP2S12and the predicted Na10GeP2S12 compound 46. (b) experimental and simulated XRD patterns of Na10SnP2S12, (c) diffusivity calculated from experimentally measured ionic conductivity versus temperature. Dashed line is an Arrhenius fit to the data. (inset) Electrochemical impedance spectroscopy measurements, (d) Na-diffusivity in Na10SiP2S12, Na10GeP2S12 and Na10SnP2S12 from AIMD simulation.47."
Fig 8
(a) The framework of Na11Sn2PS12 and (b) Rietveld refinement of X-ray powder diffraction data of single phase polycrystalline Na11Sn2PS12 50. (c) The framework of Na11Sn2PS12 Na11Sn2SbS12 and (d) Rietveld refinement of X-ray powder diffraction data of single phase polycrystalline Na11Sn2SbS12 54."
Table 1
Summary of chalcogenide electrolytes for all-solid-state sodium ion batteries."
Types | Electrolyte | Structure | Conductivity @RT/(mS·cm?1) | Activation Energy/eV | Ref. |
Na3MS4 (M = P, Sb) | Na3PS4 | Cubic | 0.2 | 0.281 | |
Na3PS4 | Cubic | 0.46 | 0.198 | ||
Na2.94PS4 [D] | Cubic | 170 | - | ||
Na3PS4 | Tetragonal | 3.39 | 0.173 | ||
Na3SbS4 | Cubic | 1.05 | 0.22 | ||
Na3SbS4 | Cubic | 2.8 | 0.061 | ||
Na3SbS4 | Tetragonal | 3 | 0.25 | ||
Na3SbS4 | Tetragonal | 1.1 | 0.2 | ||
Na3SbS4 | Tetragonal | 0.1-0.2 | 0.27-0.35 | ||
Na3SbS4 | Tetragonal | 1.77 | 0.254 | ||
Doped-Na3MS4 (M = P, Sb) | Na3.125Si0.125P0.875S4 [D] | Cubic | 2.99 | 0.241 | |
Na3.0625Si0.0625P0.9375S4 [D] | Cubic | 1.66 | 0.242 | ||
Na3.0625Ge0.0625P0.9375S4[D] | Cubic | 0.54 | 0.28 | ||
Na3.0625Sn0.0625P0.9375S4[D] | Cubic | 10.7 | 0.171 | ||
Na2.9375PS3.9375Cl0.0625 | Tetragonal | 1.14 | 0.249 | ||
Na3.1Ge0.1P0.9S4 | Cubic | 0.212 | 0.21 | ||
Na3.1Ti0.1P0.9S4 | Cubic | 0.23 | 0.20 | ||
Na3.1Sn0.1P0.9S4 | Cubic | 0.25 | 0.18 | ||
Na3P0.62As0.38S4 | Tetragonal | 1.46 | 0.256 | ||
Na2.730Ca0.135PS4 | Cubic | 1.4 | 0.346 | ||
Na4?xSn1?xSbxS4 | Tetragonal | 0.2-0.5 | - | ||
Na4Sn0.67Si0.33S4 | - | 0.012 | 0.56 | ||
Na4[Sn0.67Si0.33]0.75P0.25S4 | - | 1.61 | 0.26 | ||
94Na3PS4·6Na4SiS4 | Cubic | 0.74 | 0.260 | ||
71Na3PS4?29NaI | Cubic | 0.014 | - | ||
Na3MSe4 (M = P, Sb) | Na3PSe4 | Cubic | 1.16 | 0.21 | |
Na3PSe4 | Cubic | 0.11 | 0.281 | ||
Na3SbSe4 | Cubic | 3.7 | 0.19 | ||
Na7P3X11 (X = S, Se) | Na7P3S11 [D] | Triclinic | 10.97 | 0.217 | |
Na7P3Se11 [D] | Triclinic | 12.56 | 0.213 | ||
Na10MP2S12 (M = Si, Ge, Sn) | Na10SiP2S12 [D] | Tetragonal | 10.28 | 0.229 | |
Na10GeP2S12 [D] | Tetragonal | 3.5 | 0.27 | ||
Na10SnP2S12 | Tetragonal | 0.4 | 0.356 | ||
Na11M2PS12 (M = Si, Ge, Sn) | Na11Sn2PS12 | Tetragonal | 3.7 | 0.383 | |
Na11Sn2PS12 | Tetragonal | 1.4 | 0.25 | ||
Na11M2SbS12 | Na11Sn2SbS12 | Tetragonal | 0.56 | 0.34 | |
Na11M2PSe12 | Na11Sn2PSe12 | Tetragonal | 3.04 | 0.28 | |
Others | Na10.8Sn1.9PS11.8 | Tetragonal | 0.67 | 0.307 |
Fig 12
(a) X-ray photoelectron spectrum of solid electrolyte interface, S 2p, P 2p, and Cl 2p region of after cycling of Na3PS4, Na2.9375PS3.9375Cl0.0625, Na2.875PS3.875Cl0.125, (b-d) galvanic square-wave cycling of Na metal symmetric cell using Na3PS4, Na2.9375PS3.9375Cl0.0625, Na2.875PS3.875Cl0.125 as solid state electrolyte, respectively 84."
Fig 13
(a) Schematic illustration of unstable Na-Na3SbS4 interface and stable Na-CPEO-Na3SbS4 interface 86. (b) schematic illustration of solid electrolyte-Na metal interface before (left) and after (right) electrochemical cycling. A mixed conductive interface layer grew upon cycling of the non-hydrated Na3SbS4 (top), whereas a passivating interface was formed on the hydrated compound of the surface-hydrated Na3SbS4 (bottom) 87."
Fig 14
(a) Schematic of the Na4C6O6|Na3PS4|Na15Sn4 ASIBs, (b) SEM image of cathode/electrolyte cross-section and cathode surface and corresponding EDX mapping of O and S (bottom); (c) Charge/discharge voltage profiles at different cycle numbers at 0.1C at 60 ℃ (Inset: Capacity and coulombic efficiency vs cycle number at 0.1C); (d) Representative charge/discharge voltage profiles at different current rates (Inset: Rate capabilities and cycling of the battery from 0.1C to 1C); (e) Capacity and coulombic efficiency vs cycle number at 0.2C at 60 ℃ 100."
1 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
2 |
Pan H. ; Hu Y. S. ; Chen L. Q. Energy Environ Sci. 2013, 6, 2338.
doi: 10.1039/c3ee40847g |
3 |
Yang Z. ; Zhang W. ; Shen Y. ; Yuan L. X. ; Huang Y. H. Acta Phys. -Chim. Sin. 2016, 32 (5), 1062.
doi: 10.3866/PKU.WHXB201603231 |
杨泽; 张旺; 沈越; 袁利霞; 黄云辉. 物理化学学报, 2016, 32 (5), 1062.
doi: 10.3866/PKU.WHXB201603231 |
|
4 |
Zuo X. ; Cai F. ; Liu X. M. ; Yang H. ; Shen X. D. Acta Phys. -Chim. Sin. 2013, 29 (1), 64.
doi: 10.3866/PKU.WHXB201211023 |
左翔; 蔡烽; 刘晓敏; 杨晖; 沈晓冬. 物理化学学报, 2013, 29 (1), 64.
doi: 10.3866/PKU.WHXB201211023 |
|
5 |
Ma Q. ; Hu Y. S. ; Li H. ; Chen L. Q. ; Huang X. J. ; Zhou Z. B. Acta Phys. -Chim. Sin. 2018, 34 (2), 213.
doi: 10.3866/PKU.WHXB201707172 |
马强; 胡勇胜; 李泓; 陈立泉; 黄学杰; 周志彬. 物理化学学报, 2018, 34 (2), 213.
doi: 10.3866/PKU.WHXB201707172 |
|
6 |
Tel'nova G. B. ; Solntsev K. A. Inorg. Mater. 2015, 51, 305.
doi: 10.1134/S0020168515030176 |
7 |
Noguchi Y. ; Kobayashi E. ; Plashnitsa L. S. ; Okada S. ; Yamaki J. I. Electrochim Acta 2013, 101, 59.
doi: 10.1016/j.electacta.2012.11.038 |
8 |
Santhanagopalan D. ; Qian D. ; McGilvray T. ; Wang Z. ; Wang F. ; Camino F. ; Graetz J. ; Dudney N. ; Meng Y. S. J. Phys. Chem. Lett. 2014, 5, 298.
doi: 10.1021/jz402467x |
9 |
Wang Y. ; Zhong W. H. ChemElectroChem 2015, 2, 22.
doi: 10.1002/celc.201402277 |
10 |
Nam Y. J. ; Cho S. J. ; Oh D. Y. ; Lim J. M. ; Kim S. Y. ; Song J. H. ; Lee Y. G. ; Lee S. Y. ; Jung Y. S. Nano Lett. 2015, 15, 3317.
doi: 10.1021/acs.nanolett.5b00538 |
11 |
Park K. H. ; Oh D. Y. ; Choi Y. E. ; Nam Y. J. ; Han L. ; Kim J. Y. ; Xin H. ; Lin F. ; Oh S. M. ; Jung Y. S. Adv Mater. 2016, 28, 1874.
doi: 10.1002/adma.201505008 |
12 |
Seino Y. ; Ota T. ; Takada K. ; Hayashi A. ; Tatsumisago M. Energy Environ. Sci. 2014, 7, 627.
doi: 10.1039/c3ee41655k |
13 |
Kamaya N. ; Homma K. ; Yamakawa Y. ; Hirayama M. ; Kanno R. ; Yonemura M. ; Kamiyama T. ; Kato Y. ; Hama S. ; Kawamoto K. ; et al Nat. Mater. 2011, 10, 682.
doi: 10.1038/NMAT3066 |
14 |
Jansen M. ; Henseler U. J. Solid State Chem. 1992, 99, 110.
doi: 10.1016/0022-4596(92)90295-7 |
15 |
Hayashi A. ; Noi K. ; Sakuda A. ; Tatsumisago M. Nat. Commun. 2012, 3, 1.
doi: 10.1038/ncomms1843 |
16 |
Zhu Z.Y. ; Chu I. H. ; Deng Z. ; Ong S. P. Chem. Mater. 2015, 27, 8318.
doi: 10.1021/acs.chemmater.5b03656 |
17 |
Chu I. H. ; Kompella C. S. ; Nguyen H. ; Zhu Z. ; Hy S. ; Deng Z. ; Meng Y. S. ; Ong S. P. Sci. Rep. 2016, 6, 33733.
doi: 10.1038/srep33733 |
18 |
de Klerk N. J. J. ; Wagemaker M. Chem. Mater. 2016, 28, 3122.
doi: 10.1021/acs.chemmater.6b00698 |
19 |
Noi K. ; Hayashi A. ; Tatsumisago M. J. Power Sources 2014, 269, 260.
doi: 10.1016/j.jpowsour.2014.06.158 |
20 |
Yu C. ; Ganapathy S. ; de Klerk N. J. J. ; van Eck E. R. H. ; Wagemaker M. J. Mater. Chem. A 2016, 4, 15095.
doi: 10.1039/c6ta05896e |
21 |
Hayashi A. ; Noi K. ; Tanibata N. ; Nagao M. ; Tatsumisago M. J. Power Sources 2014, 258, 420.
doi: 10.1016/j.jpowsour.2014.02.054 |
22 |
Takeuchi S. ; Suzuki K. ; Hirayama M. ; Kanno R. J. Solid State Chem. 2018, 265, 353.
doi: 10.1016/j.jssc.2018.06.023 |
23 |
Rao R. P. ; Chen H. ; Wong L. L. ; Adams S. J. Mater. Chem. A 2017, 5, 3377.
doi: 10.1039/c6ta09809f |
24 |
Ponrouch A. ; Marchante E. ; Courty M. ; Tarascon J. M. ; Palacín M. R. Energy Environ. Sci. 2012, 5, 8572.
doi: 10.1039/c2ee22258b |
25 |
Yu Z. X. ; Shang S. L. ; Seo J. H. ; Wang D. ; Luo X. ; Huang Q. ; Chen S. ; Lu J. ; Li X. ; Liu Z. K. ; et al Adv Mater. 2017, 29, 16.
doi: 10.1002/adma.201605561 |
26 |
Krebs B. Angew. Chem. Int. Ed. Engl., 1983, 22, 113.
doi: 10.1002/anie.198301131| |
27 |
Kanno R. ; Murayama M. J. Electrochem. Soc. 2001, 148, A742.
doi: 10.1149/1.1379028 |
28 |
Tanibata N. ; Noi K. ; Hayashi A. ; Tatsumisago M. RSC Adv. 2014, 4, 17120.
doi: 10.1039/c4ra00996g |
29 |
Tanibata N. ; Noi K. ; Hayashi A. ; Kitamura N. ; Idemoto Y. ; Tatsumisago M. ChemElectroChem 2014, 1, 1130.
doi: 10.1002/celc.201402016 |
30 |
Zhang L. ; Zhang D. ; Yang K. ; Yan X. ; Wang L. ; Mi J. ; Xu B. ; Li Y. Adv. Sci. 2016, 1600089.
doi: 10.1002/advs.201600089 |
31 |
Graf V. H. A. ; Schafer H. Z. Anorg. Allg. Chem. 1976, 425, 67.
doi: 10.1002/zaac.19764250109 |
32 |
Wang Y. ; Richards W. D. ; Ong S. P. ; Miara L. J. ; Kim J. C. ; Mo Y. F. ; Ceder G. Nat. Mater. 2015, 14, 1026.
doi: 10.1038/NMAT4369 |
33 |
Zhang D. ; Cao X. ; Xu D. ; Wang N. ; Yu C. ; Hu W. ; Yan X. ; Mi J. ; Wen B. ; Wang L. ; et al Electrochim. Acta 2018, 259, 100.
doi: 10.1016/j.electacta.2017.10.173 |
34 |
Mikenda A. ; Preisinger. W. Spectrochim. Acta Part A: Mol. Spectroscopy 1980, 36, 365.
doi: 10.1016/0584-8539(80)80145-0 |
35 |
Wang H. ; Chen Y. ; Hood Z. D. ; Sahu G. ; Pandian A. S. ; Keum J. K. ; An K. ; Liang C. D. Angew Chem. Int. Ed. 2016, 55, 1.
doi: 10.1002/anie.201601546 |
36 |
Zhang D. C. ; Cao X. T. ; Xu D. ; Wang N. ; Yu C. ; Hu W. T. ; Yan X. L. ; Mi J. L. ; Wen B. ; Wang L. M. ; et al Electrochim. Acta 2018, 259, 100.
doi: 10.1016/j.electacta.2017.10.173 |
37 |
Heo J. W. ; Banerjee A. ; Park K. H. ; Jung Y. S. ; Hong S. T. Adv. Energy Mater. 2018, 8, 1702716.
doi: 10.1002/aenm.201702716 |
38 |
Maier J. Nat. Mater. 2005, 4, 805.
doi: 10.1038/nmat1513 |
39 |
Jia H. H. ; Sun Y. L. ; Zhang Z. R. ; Peng L. F. ; An T. ; Xie J. Energy Storage Mater. 2019, in press.
doi: 10.1016/j.ensm.2019.04.011 |
40 |
Ong S. P. ; Mo Y. F. ; Richards W. D. ; Miara L. ; Lee H. S. ; Ceder G. Energy Environ. Sci. 2013, 6, 148.
doi: 10.1039/c2ee23355j |
41 |
Zhang L. ; Yang K. ; Mi J. ; Lu L. ; Zhao L. ; Wang L. ; Li Y. ; Zeng H. Adv. Energy Mater. 2015, 5, 1501294.
doi: 10.1002/aenm.201501294 |
42 |
Bo S. H. ; Wang Y. ; Kim J. C. ; Richards W. D. ; Ceder G. Chem. Mat. 2016, 28, 252.
doi: 10.1021/acs.chemmater.5b04013 |
43 |
Bo S. H. ; Wang Y. ; Ceder G. J. Mater. Chem. A 2016, 4, 9044.
doi: 10.1039/c6ta03027k |
44 |
Wang N. ; Yang K. ; Zhang L. ; Yan X. ; Wang L. ; Xu B. J. Mater. Sci. 2017, 53, 1987.
doi: 10.1007/s10853-017-1618-0 |
45 |
Kato Y. ; Hori S. ; Saito T. ; Suzuki K. ; Hirayama M. ; Mitsui A. ; Yonemura M. ; Iba H. ; Kanno R. Nat. Energy, 2016, 1, 16030.
doi: 10.1038/nenergy.2016.30 |
46 |
Kandagal V. S. ; Bharadwaj M. D. ; Waghmare U. V. J. Mater. Chem. A 2015, 3, 12992.
doi: 10.1039/c5ta01616a |
47 |
Richards W. D. ; Tsujimura T. ; Miara L. J. ; Wang Y. ; Kim J. C. ; Ong S. P. ; Uechi I. ; Suzuki N. ; Ceder G. Nat. Commun. 2016, 7, 11009.
doi: 10.1038/ncomms11009 |
48 |
Kandagal V. S. ; Bharadwaj M. D. ; Waghmare U. V. J. Mater. Chem. A 2015, 3, 12992.
doi: 10.1039/c5ta01616a |
49 |
Tsuji F. ; Tanibata N. ; Sakuda A. ; Hayashi A. ; Tasumisago M. Chem. Lett. 2018, 47, 13.
doi: 10.1246/cl.170836 |
50 |
Zhang Z. ; Ramos E. ; Lalère F. ; Assoud A. ; Kaup K. ; Hartman P. ; Nazar L. F. Energy Environ. Sci. 2018, 11, 87.
doi: 10.1039/c7ee03083e |
51 |
Kuhn A. ; Kohler J. ; Lotsch B. V. Phys. Chem. Chem. Phys. 2013, 15, 11620.
doi: 10.1039/c3cp51985f |
52 |
Kuhn A. ; Gerbig O. ; Zhu C. ; Falkenberg F. ; Maier J. ; Lotsch B. V. Phys. Chem. Chem. Phys. 2014, 16, 14669.
doi: 10.1039/c4cp02046d |
53 |
Duchardt M. ; Ruschewitz U. ; Adams S. ; Dehnen S. ; Roling B. Angew. Chem. Int. Ed. 2018, 57, 1351.
doi: 10.1002/ange.201712769 |
54 |
Ramos E. P. ; Zhang Z. Z. ; Assoud A. ; Kaup K. ; Lalere F. ; Nazar L. F. Chem. Mater. 2018, 30, 7413.
doi: 10.1021/acs.chemmater.8b02077 |
55 |
Yu Z. ; Shang S. L. ; Gao Y. ; Wang D. ; Li X. ; Liu Z. K. ; Wang D. H. Nano Energy 2018, 47, 325.
doi: 10.1016/j.nanoen.2018.01.046 |
56 |
Yu Z. X. ; Shang S. L. ; Wang D. W. ; Li Y. C. ; Yennawar H. P. ; Li G. X. ; Huang H. ; Gao Y. ; Mallouk T. E. ; Liu Z. K. ; et al Energy Storage Mater 2019, 17, 70.
doi: 10.1016/j.ensm.2018.11.027 |
57 |
Wang Y. ; Richards W. D. ; Bo S. H. ; Miara L. J. ; Ceder G. Chem. Mat. 2017, 29, 7475.
doi: 10.1021/acs.chemmater.7b02476 |
58 |
Han F. D. ; Westover A. S. ; Yue J. ; Fan X. L. ; Wang F. ; Chi M. F. ; Leonard D. N. ; Dudney N. J. ; Wang H. ; Wang C. S. Nat. Energy 2019, 4, 187.
doi: 10.1038/s41560-018-0312-z |
59 |
Banerjee A. ; Park K. H. ; Heo J. W. ; Nam Y. J. ; Moon C. K. ; Oh S. M. ; Hong S. T. ; Jung Y. S. Angew. Chem. Int. Ed. 2016, 55, 9634.
doi: 10.1002/anie.201604158 |
60 |
Kim T. W. ; Park K. H. ; Choi Y. E. ; Lee J. Y. ; Jung Y. S. J. Mater. Chem. A 2018, 6, 840.
doi: 10.1039/C7TA09242C |
61 |
Moon C. K. ; Lee H. J. ; Park K. H. ; Kwak H. ; Heo J. W. ; Choi K. ; Yang H. ; Kim M. S. ; Hong S. T. ; Lee J. H. ; et al ACS Energy Lett. 2018, 3, 2504.
doi: 10.1021/acsenergylett.8b01479 |
62 |
Hibi Y. ; Tanibata N. ; Hayashi A. ; Tatsumisago M. Solid State Ion. 2015, 270, 6.
doi: 10.1016/j.ssi.2014.11.024 |
63 |
Takada K. Acta Mater. 2013, 61, 759.
doi: 10.1016/j.actamat.2012.10.034 |
64 |
Sahu G. ; Lin Z. ; Li J. ; Liu Z. ; Dudney N. ; Liang C. D. Energy Environ. Sci. 2014, 7, 1053.
doi: 10.1039/c3ee43357a |
65 |
Shang S. L. ; Yu Z. ; Wang Y. ; Wang D. ; Liu Z. K. ACS Appl. Mater. Interfaces 2017, 9, 16261.
doi: 10.1021/acsami.7b03606 |
66 |
Han F. ; Gao T. ; Zhu Y. ; Gaskell K. J. ; Wang C.S. Adv Mater. 2015, 27, 3473.
doi: 10.1002/adma.201500180 |
67 |
Tian Y. S. ; Shi T. ; Richards W. D. ; Li J. ; Kim J. C. ; Bo S. H. ; Ceder G. Energy Environ. Sci. 2017, 10, 1150.
doi: 10.1039/c7ee00534b |
68 |
Han F. ; Zhu Y. ; He X. ; Mo Y. F. ; Wang C. S. Adv. Energy Mater. 2016, 6, 1501590.
doi: 10.1002/aenm.201501590 |
69 |
Takada K. ; Ohta N. ; Zhang L. ; Xu X. ; Hang B. T. ; Ohnishi T. ; Osada M. ; Sasaki T. Solid State Ion. 2012, 225, 594.
doi: 10.1016/j.ssi.2012.01.009 |
70 |
Hartmann P. ; Bender C. L. ; Vracar M. ; Durr A. K. ; Garsuch A. ; Janek J. ; Adelhelm P. Nat. Mater. 2013, 12, 228.
doi: 10.1038/NMAT3486 |
71 |
Das S. K. ; Lau S. ; Archer L. A. J. Mater. Chem. A 2014, 2, 12623.
doi: 10.1039/c4ta02176b |
72 |
Manthiram A. ; Yu X. W. Small 2015, 11, 2108.
doi: 10.1002/smll.201403257 |
73 |
Yu X. W. ; Manthiram A. Adv. Energy Mater. 2015, 5, 1500350.
doi: 10.1002/aenm.201500350 |
74 |
Wei S. ; Xu S. ; Agrawral A. ; Choudhury S. ; Lu Y. ; Tu Z. ; Ma L. ; Archer L. A. Nat. Commun. 2016, 7, 11722.
doi: 10.1038/ncomms11722 |
75 |
Wu F. ; Liu L. ; Yuan Y. F. ; Li Y. ; Bai Y. ; Lu J. ; Wu C. ACS Appl. Mater. Interfaces 2018, 10, 32.
doi: 10.1021/acsami.8b08380 |
76 |
Li Y. ; Yuan Y. F. ; Bai Y. ; Liu Y. C. ; Wang Z. H. ; Li L. M. ; Wu F. ; Khalil A. ; Wu C. ; Lu J. Adv. Energy Mater. 2018, 25, 1702781.
doi: 10.1002/aenm.201702781 |
77 |
Chen G. H. ; Bai Y. ; Li H. ; Li Y. ; Wang Z. H. ; Ni Q. ; Liu L. ; Wu F. ; Yao Y. G. ; Wu C. ACS Appl. Mater. Interfaces 2017, 9, 8.
doi: 10.1021/acsami.6b16186 |
78 |
Luo W. ; Hu L. B. ACS Cent. Sci. 2015, 1, 420.
doi: 10.1021/acscentsci.5b00357 |
79 |
Seh Z. W. ; Sun J. ; Sun Y. ; Cui Y. ACS Cent. Sci. 2015, 1, 449.
doi: 10.1021/acscentsci.5b00328 |
80 |
Luo W. ; Lin C. F. ; Zhao O. ; Noked M. ; Zhang Y. ; Rubloff G. W. ; Hu L. B. Adv. Energy Mater. 2016, 6, 1601526.
doi: 10.1002/aenm.201601526 |
81 |
Bertheville B. ; Low H. ; Bill D.F. ; Kubel F. J. Phys. Chem. Solids 1997, 58, 1569.
doi: 10.1016/S0022-3697(97)00101-7 |
82 |
Yu X. F. ; Giorgi G. ; Ushiyama H. ; Yamashita K. Chem. Phys. Lett. 2014, 612, 129.
doi: 10.1016/j.cplett.2014.08.010 |
83 |
Wenzel S. ; Leichtweiss T. ; Krüger D. ; Sann J. ; Janek J. Solid State Ion. 2015, 278, 98.
doi: 10.1016/j.ssi.2015.06.001 |
84 |
Wu E. A. ; Kompella C. S. ; Zhu Z. ; Lee J. Z. ; Lee S. C. ; Chu I. H. ; Nguyen H. ; Ong S. P. ; Banerjee A. ; Meng Y. S. ACS Appl. Mater. Interfaces 2018, 10, 12.
doi: 10.1021/acsami.7b19037 |
85 |
Hartmann P. ; Leichtweiss T. ; Busche M. R. ; Schneider M. ; Reich M. ; Sann J. ; Adelhelm P. ; Janek J. J. Phys. Chem. C 2013, 117, 21064.
doi: 10.1021/jp4051275 |
86 |
Hu P. ; Zhang Y. ; Chi X. ; Kumar Rao K. ; Hao F. ; Dong H. ; Guo F. ; Ren Y. ; Grabow L. C. ; Yao Y. ACS Appl. Mater. Interfaces 2019, 11, 9672.
doi: 10.1021/acsami.8b19984 |
87 |
Tian Y. ; Sun Y. ; Hannah D. C. ; Xiao Y. ; Liu H. ; Chapman K. W. ; Bo S. H. ; Ceder G. Joule 2019, 3, 1.
doi: 10.1016/j.joule.2018.12.019 |
88 |
Kim J. K. ; Lim Y. J. ; Kim H. J. ; Cho G. B. ; Kim Y. Energy Environ. Sci. 2015, 8, 3589.
doi: 10.1016/j.joule.2018.12.019 |
89 |
Li H. ; Bai Y. ; Wu F. ; Li Y. ; Wu C. J. Power Sources 2015, 273, 784.
doi: 10.1016/j.jpowsour.2014.09.153 |
90 |
Li H. ; Yu X. ; Bai Y. ; Wu F. ; Wu C. ; Liu L. Y. ; Yang X. Q. J. Mater. Chem. A 2015, 3, 9578.
doi: 10.1039/c5ta00277j |
91 |
Li H. ; Wu C. ; Bai Y. ; Wu F. ; Wang M. Z. J. Power Sources 2016, 326, 14.
doi: 10.1016/j.jpowsour.2016.06.096 |
92 |
Zhang Z. ; Zhang Q. ; Shi J. ; Chu Y. S. ; Yu X. ; Xu K. ; Ge M. ; Yan H. ; Li W. ; Gu L. ; et al Adv. Energy Mater. 2017, 7, 1601196.
doi: 10.1002/aenm.201601196 |
93 |
Ni Q. ; Bai Y. ; Li Y. ; Ling L. M. ; Li L. ; Chen G. H. ; Wang Z. H. ; Ren H. X. ; Wu F. ; Wu C. Small 2018, 14, 1702864.
doi: 10.1002/smll.201702864 |
94 |
Ni'mah Y. L. ; Cheng M. Y. ; Cheng J. H. ; Rick J. ; Hwang B. J. J. Power Sources. 2015, 278, 375.
doi: 10.1016/j.jpowsour.2014.11.047 |
95 |
Tatsumisago M. ; Hayashi A. Int. J. Appl. Glass Sci. 2014, 5, 226.
doi: 10.1111/ijag.12084 |
96 |
Wan H. ; Mwizerwa J. P. ; Qi X. ; Liu X. ; Xu X. ; Li H. ; Hu Y. S. ; Yao X. Y. ACS Nano 2018, 12, 2809.
doi: 10.1021/acsnano.8b00073 |
97 |
Tanibata N. ; Deguchi M. ; Hayashi A. ; Tatsumisago M. Chem. Mat. 2017, 29, 5232.
doi: 10.1021/acs.chemmater.7b01116 |
98 |
Tanibata N. ; Tsukasaki H. ; Deguchi M. ; Mori S. ; Hayashi A. ; Tatsumisago M. Solid State Ion. 2017, 311, 6.
doi: 10.1016/j.ssi.2017.08.022 |
99 |
Yue J. ; Han F. D. ; Fan X. L. ; Zhu X. Y. ; Ma Z. H. ; Yang J. ; Wang C. S. ACS Nano 2017, 11, 4885.
doi: 10.1021/acsnano.7b01445 |
100 |
Chi X. W. ; Liang Y. L. ; Hao F. ; Zhang Y. ; Whiteley J. ; Dong H. ; Hu P. ; Lee S. ; Yao Y. Angew Chem. Int. Ed. 2018, 57, 2630.
doi: 10.1002/anie.201712895 |
101 |
Sakuda A. ; Hayashi A. ; Tatsumisago M. Sci. Rep. 2013, 3, 2261.
doi: 10.1038/srep02261 |
102 |
Minami T. ; Hayashi A. ; Tatsumisago M. Solid State Ion. 2006, 177, 2715.
doi: 10.1016/j.ssi.2006.07.017 |
103 |
Nagao M. ; Hayashi A. ; Tatsumisago M. Electrochimica Acta 2011, 56, 6055.
doi: 10.1016/j.electacta.2011.04.084 |
104 |
Noi K. ; Nagata Y. ; Hakari T. ; Suzuki K. ; Yubuchi S. ; Ito Y. ; Sakuda A. ; Hayashi A. ; Tatsumisago M. ACS Appl. Mater. Interfaces 2018, 10, 19605.
doi: 10.1021/acsami.8b02427 |
105 |
Yue J. ; Zhu X. Y. ; Han F. D. ; Fan X. L. ; Wang L. N. ; Yang J. ; Wang C. S. ACS Appl. Mater. Interfaces 2018, 10, 39645.
doi: 10.1021/acsami.8b12610 |
106 |
Wu F. ; Fitzhugh W. ; Ye L. H. ; Ning J. X. ; Li X. Nat. Commun. 2018, 9, 4037.
doi: 10.1038/s41467-018-06123-2 |
[1] | Chun-An Huo, Sheng-Jie Qiu, Qing-Man Liang, Bi-Jun Geng, Zhi-Chao Lei, Gan Wang, Yu-Ling Zou, Zhong-Qun Tian, Yang Yang. Progress in the Trapping and Manipulation Volume of Optical Tweezers [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303037-. |
[2] | Ganchang Lei, Yong Zheng, Yanning Cao, Lijuan Shen, Shiping Wang, Shijing Liang, Yingying Zhan, Lilong Jiang. Deactivation Mechanism of COS Hydrolysis over Potassium Modified Alumina [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2210038-0. |
[3] | Yongzhi Zhao, Chenyang Chen, Wenyi Liu, Weifei Hu, Jinping Liu. Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2211017-0. |
[4] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[5] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[6] | Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2210027-0. |
[7] | Kunjie Wu, Yongyi Zhang, Zhenzhong Yong, Qingwen Li. Continuous Preparation and Performance Enhancement Techniques of Carbon Nanotube Fibers [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2106034-. |
[8] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[9] | Ke Sun, Yongqing Zhao, Jie Yin, Jing Jin, Hanwen Liu, Pinxian Xi. Surface Modification of NiCo2O4 Nanowires using Organic Ligands for Overall Water Splitting [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107005-. |
[10] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[11] | Yuhao Yin, Yang Shen, Hu Wang, Xiao Chen, Lin Shao, Wenyu Hua, Juan Wang, Yi Cui. In Situ Growth and Characterization of TiN/HfxZr1-xO2/TiN Ferroelectric Capacitors [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006016-. |
[12] | Miaomiao Liu, Wenjuan Wang, Xiuping Hao, Xiaoyan Dong. Seeding and Cross-Seeding Aggregations of Aβ40 and hIAPP in Solution and on Surface [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002024-. |
[13] | Mingkai Chang, Na Hu, Yao Li, Dongfan Xian, Wanqiang Zhou, Jingyi Wang, Yanlin Shi, Chunli Liu. Sorption of Eu(Ⅲ) on Montmorillonite and Effects of Carbonate and Phosphate on Its Sorption [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003031-. |
[14] | Xinrun Yu, Jun Ma, Chunbo Mou, Guanglei Cui. Percolation Structure Design of Organic-inorganic Composite Electrolyte with High Lithium-Ion Conductivity [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912061-. |
[15] | Houfu Song, Feiyu Kang. Recent Progress on Thermal Conduction of Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101013-. |
|