Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (3): 1912061.doi: 10.3866/PKU.WHXB201912061
• REVIEW • Previous Articles Next Articles
Xinrun Yu1,2, Jun Ma2,*(), Chunbo Mou1, Guanglei Cui2,*()
Received:
2019-12-25
Accepted:
2020-01-15
Published:
2020-03-10
Contact:
Jun Ma,Guanglei Cui
E-mail:majun@qibebt.ac.cn;cuigl@qibebt.ac.cn
About author:
Email: cuigl@qibebt.ac.cn (G.C.)Supported by:
Xinrun Yu, Jun Ma, Chunbo Mou, Guanglei Cui. Percolation Structure Design of Organic-inorganic Composite Electrolyte with High Lithium-Ion Conductivity[J]. Acta Phys. -Chim. Sin. 2022, 38(3), 1912061. doi: 10.3866/PKU.WHXB201912061
Fig 4
(a) Cross-section SEM image of the VS film. (b) Cross-sectional SEM image of VAVS-CSPE. (c) Ionic conductivity of PEO-SPE, VS-CSPE and VAVS-CSPE at different temperature 40, 41. (d–f) Schematic of staggered "brick-and-mortar" microstructure and cross-sectional SEM images of layered LAGP tablets and LAGP-PEO NCPE film showing the staggered microstructure 46."
Fig 6
(a) Schematic illustration of the synthesis of LLTO framework composite electrolytes. (b) Ionic conductivity of composite electrolytes with LLTO framework, LLTO nanoparticle, and silica particle. (c) Schematic illustration of possible conduction mechanism in composite electrolytes with agglomerated nanoparticles and 3D continuous framework, respectively 49."
Table 1
Comparison of Lithium-ion conductivity of Composite electrolytes based on different structure Design and orientation of Inorganic fillers (RT = room temperature)."
Dimension | Filler | Electrolyte composition | Conductivity/(S·cm-1) | Ref. |
0D | Necklacelike aligned LATP particle | LATP@PEGDA@PDMS | 2.4 × 10-6 (RT) | |
Vertical aligned LATP particle | PEO-LiClO4-LATP | 0.52 × 10-4 (RT) | ||
1D | Randomly dispersed LLTO nanowire | PAN-LiClO4-15% LLTO | 2.4 × 10-4 (RT) | |
Randomly dispersed LLTO nanowire | PEO-LiTFSI-15% LLTO | 2.4 × 10-4 (RT) | ||
Vertical aligned LLTO nanowire | PAN-LiClO4-3% LLTO | 6.05 × 10-5 (30 ℃) | ||
Nacre-like LAGP | LAGP-PEO NCPEs | 1.25 × 10-4 (25 ℃) | ||
2D | Randomly dispersed VS | PEO-LiTFSI-10% VS | 2.9 × 10-5 (25 ℃) | |
Vertical aligned VS | PEO-LiTFSI-10% VAVS | 1.89 × 10-4 (25 ℃) | ||
3D | 3D print network LAGP | PP-LAGP | 1.6 × 10-4 (RT) | |
3D network LLZO | PEO-LiTFSI-LLZO | 1.12 × 10-4 (RT) | ||
LLTO framework | PEO-LiTFSI-LLTO | 8.8 × 10-5 (RT) |
1 |
Cheng F. ; Liang J. ; Tao Z. ; Chen J. Adv. Mater. 2011, 23, 1695.
doi: 10.1002/adma.201003587 |
2 |
Tarascon J. M. ; Armand M. Nature 2001, 414, 359.
doi: 10.1038/35104644 |
3 |
Lin D. ; Liu Y. ; Cui Y. Nat. Nanotechnol. 2017, 12, 194.
doi: 10.1038/nnano.2017.16 |
4 |
Liu B. ; Zhang J. G. ; Xu W. Joule 2018, 2, 833.
doi: 10.1016/j.joule.2018.03.008 |
5 |
Fan L. ; Wei S. ; Li S. ; Li Q. ; Lu Y. Adv. Energy Mater. 2018, 8, 1702657.
doi: 10.1002/aenm.201702657 |
6 |
Chen S. ; Wen K. ; Fan J. ; Bando Y. ; Golberg D. J. Mater. Chem. A 2018, 6, 11631.
doi: 10.1039/c8ta03358g |
7 |
Nowak S. ; Winter M. J. Electrochem. Soc. 2015, 162 (14), A2500.
doi: 10.1149/2.0121514jes |
8 |
Schroeder D. J. ; Hubaud A. A. ; Vaughey J. T. Mater. Res. Bull. 2014, 49, 614.
doi: 10.1016/j.materresbull.2013.10.006 |
9 | Cui W. Y. ; An M. Z. ; Yang P. X. Acta Phys. -Chim. Sin. 2010, 26 (5), 1233. |
崔闻宇; 安茂忠; 杨培霞. 物理化学学报, 2010, 26 (5), 1233.
doi: 10.3866/PKU.WHXB20100530 |
|
10 |
Chen R. ; Qu W. ; Guo X. ; Li L. ; Wu F. Mater. Horiz. 2016, 3, 487.
doi: 10.1039/c6mh00218h |
11 |
Hu Y. S. Nat. Energy 2016, 1, 16042.
doi: 10.1038/nenergy.2016.42 |
12 |
Janek J. ; Zeier W. G. Nat. Energy 2016, 1, 16141.
doi: 10.1038/nenergy.2016.141 |
13 |
Zhou D. ; Shanmukaraj D. ; Tkacheva A. ; Armand M. ; Wang G. Chemistry 2019, 5, 2326.
doi: 10.1016/j.chempr.2019.05.009 |
14 |
Cheng X. B. ; Zhao C. Z. ; Yao Y. X. ; Liu H. ; Zhang Q. Chemistry 2019, 5, 74.
doi: 10.1016/j.chempr.2018.12.002 |
15 |
Zhu Y. ; He X. ; Mo Y. ACS Appl. Mater. Interfaces 2015, 7, 23685.
doi: 10.1021/acsami.5b07517 |
16 |
Bachman J. C. ; Muy S. ; Grimaud A. ; Chang H. H. ; Pour N. ; Lux S. F. ; Paschos O. ; Maglia F. ; Lupart S. ; Lamp P. ; et al Chem. Rev. 2016, 116, 140.
doi: 10.1021/acs.chemrev.5b00563 |
17 |
Chinnam P. R. ; Wunder S. L. ACS Energy Lett. 2016, 2, 134.
doi: 10.1021/acsenergylett.6b00609 |
18 |
Han F. ; Zhu Y. ; He X. ; Mo Y. ; Wang C. Adv. Energy Mater. 2016, 6 (8), 1501590.
doi: 10.1002/aenm.201501590 |
19 |
Yao X. ; Huang B. ; Yin J. ; Peng G. ; Huang Z. ; Gao C. ; Liu D. ; Xu X. Chin. Phys. B 2016, 25, 018802.
doi: 10.1088/1674-1056/25/1/018802 |
20 |
Hu P. ; Chai J. ; Duan Y. ; Liu Z. ; Cui G. ; Chen L. J. Mater. Chem. A 2016, 4, 10070.
doi: 10.1039/c6ta02907h |
21 |
Zhang X. ; Wang S. ; Xue C. ; Xin C. ; Lin Y. ; Shen Y. ; Li L. ; Nan C. W. Adv. Mater. 2019, 31, e1806082.
doi: 10.1002/adma.201806082 |
22 |
Zhang W. ; Nie J. ; Li F. ; Wang Z. L. ; Sun C. Nano Energy 2018, 45, 413.
doi: 10.1016/j.nanoen.2018.01.028 |
23 | Fei H. F. ; Liu Y. P. ; Wei C. L. ; Zhang Y. C. ; Feng J. K. ; Chen C. Z. ; Yu H. J. Acta Phys. -Chim. Sin. 2020, 36 (5), 1905015. |
费慧芳; 刘永鹏; 魏传亮; 张煜婵; 冯金奎; 陈传忠; 于慧君. 物理化学学报, 2020, 36 (5), 1905015.
doi: 10.3866/PKU.WHXB201905015 |
|
24 |
Quartarone E. ; Mustarelli P. Chem. Soc. Rev. 2011, 40, 2525.
doi: 10.1039/c0cs00081g |
25 |
Zhou Q. ; Ma J. ; Dong S. ; Li X. ; Cui G. Adv. Mater. 2019, 31 (50), 1902029.
doi: 10.1002/adma.201902029 |
26 |
Hu T. S. ; Hong P. K. ; Saikia D. ; Kao H. M. ; Chen M. C Ionics 2014, 20, 1561.
doi: 10.1007/s11581-014-1107-2 |
27 |
Masoud E. M. ; El-Bellihi A. A. ; Bayoumy W. A. ; Mousa M. A. J. Alloy. Compd. 2013, 575, 223.
doi: 10.1016/j.jallcom.2013.04.054 |
28 |
Zhang X. ; Liu T. ; Zhang S. ; Huang X. ; Xu B. ; Lin Y. ; Xu B. ; Li L. ; Nan C. W. ; Shen Y. J. Am. Chem. Soc. 2017, 139, 13779.
doi: 10.1021/jacs.7b06364 |
29 |
Zheng J. ; Tang M. ; Hu Y. Y. Angew. Chem. Int. Ed. 2016, 55, 12538.
doi: 10.1002/anie.201607539 |
30 |
Zhao Y. ; Wu C. ; Peng G. ; Chen X. ; Yao X. ; Bai Y. ; Wu F. ; Chen S. ; Xu X. J. Power Sources 2016, 301, 47.
doi: 10.1016/j.jpowsour.2015.09.111 |
31 |
Dieterich W. ; Dürr O. ; Pendzig P. ; Bunde A. ; Nitzan A. Phys. A 1999, 266, 229.
doi: 10.1016/S0378-4371(98)00597-4 |
32 |
Li Z. ; Huang H. ; Zhu J. ; Wu J. ; Yang H. ; Wei L. ; Guo X. ACS Appl. Mater. Interfaces 2018, 11 (1), 784.
doi: 10.1021/acsami.8b17279 |
33 |
Kitajima S. ; Kitaura H. ; Im D. ; Hwang Y. ; Ishida M. ; Zhou H. Solid State Ionics 2018, 316, 29.
doi: 10.1016/j.ssi.2017.12.018 |
34 |
Chen L. ; Li Y. ; Li S. P. ; Fan L. Z. ; Nan C. W. ; Goodenough J. B. Nano Energy 2018, 46, 176.
doi: 10.1016/j.nanoen.2017.12.037 |
35 |
Liu X. ; Peng S. ; Gao S. ; Cao Y. ; You Q. ; Zhou L. ; Jin Y. ; Liu Z. ; Liu J. ACS Appl. Mater. Interfaces 2018, 10, 15691.
doi: 10.1021/acsami.8b01631 |
36 |
Zhai H. ; Xu P. ; Ning M. ; Cheng Q. ; Mandal J. ; Yang Y. Nano Lett. 2017, 17, 3182.
doi: 10.1021/acs.nanolett.7b00715 |
37 |
Liu W. ; Liu N. ; Sun J. ; Hsu P. C. ; Li Y. ; Lee H. W. ; Cui Y. Nano Lett. 2015, 15, 2740.
doi: 10.1021/acs.nanolett.5b00600 |
38 |
Zhu P. ; Yan C. ; Dirican M. ; Zhu J. ; Zang J. ; Selvan R. K. ; Chung C. C. ; Jia H. ; Li Y. ; Kiyak Y. ; et al J. Mater. Chem. A 2018, 6, 4279.
doi: 10.1039/c7ta10517g |
39 |
Liu W. ; Lee S. W. ; Lin D. ; Shi F. ; Wang S. ; Sendek A. D. ; Cui Y. Nat. Energy 2017, 2, 17035.
doi: 10.1038/nenergy.2017.35 |
40 |
Tang W. ; Tang S. ; Zhang C. ; Ma Q. ; Xiang Q. ; Yang Y. W. ; Luo J. Adv. Energy Mater. 2018, 8, 1800866.
doi: 10.1002/aenm.201800866 |
41 |
Tang W. ; Tang S. ; Guan X. ; Zhang X. ; Xiang Q. ; Luo J. Adv. Funct. Mater. 2019, 29, 1900648.
doi: 10.1002/adfm.201900648 |
42 |
Jia W. ; Li Z. ; Wu Z. ; Wang L. ; Wu B. ; Wang Y. ; Cao Y. ; Li J. Solid State Ionics 2018, 315, 7.
doi: 10.1016/j.ssi.2017.11.026 |
43 |
Kammoun M. ; Berg S. ; Ardebili H. Nanoscale 2015, 7, 17516.
doi: 10.1039/c5nr04339e |
44 |
Cheng S. ; Smith D. M. ; Li C. Y. Macromolecule 2015, 48, 4503.
doi: 10.1021/acs.macromol.5b00972 |
45 |
Yuan M. ; Erdman J. ; Tang C. ; Ardebili H. RSC Adv. 2014, 4, 59637.
doi: 10.1039/c4ra07919a |
46 |
Li A. ; Liao X. ; Zhang H. ; Shi L. ; Wang P. ; Cheng Q. ; Borovilas J. ; Li Z. ; Huang W. ; Fu Z. ; et al Adv. Mater. 2019, 32, 1905517.
doi: 10.1002/adma.201905517 |
47 |
Zekoll S. ; Marriner-Edwards C. ; Hekselman A. K. O. ; Kasemchainan J. ; Kuss C. ; Armstrong D. E. J. ; Cai D. ; Wallace R. J. ; Richter F. H. ; Thijssen J. H. J. ; et al Energy Environ. Sci. 2018, 11, 185.
doi: 10.1039/c7ee02723k |
48 |
Xie H. ; Yang C. ; Fu K. ; Yao Y. ; Jiang F. ; Hitz E. ; Liu B. ; Wang S. ; Hu L. Adv. Energy Mater. 2018, 8, 1703474.
doi: 10.1002/aenm.201703474 |
49 |
Bae J. ; Li Y. ; Zhang J. ; Zhou X. ; Zhao F. ; Shi Y. ; Goodenough J. B. ; Yu G. Angew. Chem. Int. Ed. 2018, 57, 2096.
doi: 10.1002/anie.201710841 |
50 |
Zhou Q. ; Zhang J. ; Cui G. Macromol. Mater. Eng. 2018, 303, 1800337.
doi: 10.1002/mame.201800337 |
51 |
Duan H. ; Fan M. ; Chen W. P. ; Li J. Y. ; Wang P. F. ; Wang W. P. ; Shi J. L. ; Yin Y. X. ; Wan L. J. ; Guo Y. G. Adv. Mater. 2019, 31, e1807789.
doi: 10.1002/adma.201807789 |
52 |
Zhou W. ; Wang Z. ; Pu Y. ; Li Y. ; Xin S. ; Li X. ; Chen J. ; Goodenough J. B. Adv. Mater. 2018, 31, 1805574.
doi: 10.1002/adma.201805574 |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Youwen Rong, Jiaqi Sang, Li Che, Dunfeng Gao, Guoxiong Wang. Designing Electrolytes for Aqueous Electrocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212027-0. |
[3] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[4] | Liliang Tian, Weiqi Zhang, Zheng Xie, Kai Peng, Qiang Ma, Qian Xu, Sivakumar Pasupathi, Huaneng Su. Enhanced Performance and Durability of High-Temperature Polymer Electrolyte Membrane Fuel Cell by Incorporating Covalent Organic Framework into Catalyst Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009049-. |
[5] | Jujia Zhang, Jin Zhang, Haining Wang, Yan Xiang, Shanfu Lu. Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010071-. |
[6] | Kangjie LYU,Yanqiu PENG,Li XIAO,Juntao LU,Lin ZHUANG. Atomistic Understanding of the Peculiar Dissolution Behavior of Alkaline Polymer Electrolytes in Alcohol/Water Mixed Solvents [J]. Acta Phys. -Chim. Sin., 2019, 35(4): 378-384. |
[7] | Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries [J]. Acta Phys. -Chim. Sin., 2018, 34(2): 213-218. |
[8] | HOU Hong-Ying. Recent Research Progress in Alkaline Polymer Electrolyte Membranes for Alkaline Solid Fuel Cells [J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1393-1407. |
[9] | WANG Xiu-Ping, ZHOU De-Feng, YANG Guo-Cheng, SUN Shi-Cheng, LI Zhao-Hui. Structure and Electrical Properties of Ce0.8Nd0.2O1.9-La0.95Sr0.05Ga0.9Mg0.1O3-δ Solid Composite Electrolytes [J]. Acta Phys. -Chim. Sin., 2014, 30(1): 95-101. |
[10] | ZUO Xiang, CAI Feng, LIU Xiao-Min, YANG Hui, SHEN Xiao-Dong. Synthesis and Characterization of a Novel Physically Cross-Linked Gel Polymer Electrolyte [J]. Acta Phys. -Chim. Sin., 2013, 29(01): 64-72. |
[11] | LIANG Gui-Jie, ZHONG Zhi-Cheng, XU Jie, ZHANG Zeng-Chang, CHEN Mei-Hua, LI Zai-Fang, HE Ping, HOU Qiu-Fei. Quasi-Solid State Dye-Sensitized Solar Cells Based on the Novel Crosslinked Polymer Electrolyte [J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2852-2860. |
[12] | DAI Yu-Hua, LI Xiao-Jie, FANG Yan-Yan, SHI Qiu-Fei, LIN Yuan, YANG Ming-Shan. Influence of Polymer Gel Electrolyte on the Performance of Dye-Sensitized Solar Cells Analyzed by Electrochemical Impedance Spectroscopy [J]. Acta Phys. -Chim. Sin., 2012, 28(11): 2669-2675. |
[13] | LIANG Gui-Jie, ZHONG Zhi-Cheng, XU Jie, XU Wei-Lin, CHEN Mei-Hua, ZHANG Zeng-Chang, LI Wen-Lian. Formation Mechanism, Structure Model and Electrochemical Performance of an In situ Cross Linking Hybrid Polymer Electrolyte Membrane [J]. Acta Phys. -Chim. Sin., 2012, 28(09): 2057-2064. |
[14] | GUO Xue-Yi, YI Peng-Fei, WANG Wei-Jia, YANG Ying. Electrochemical Properties of an Agarose-Based Magnetic Polymer Electrolyte in Dye-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2012, 28(03): 585-590. |
[15] | CHEN Lang, RAO Mu-Min, LI Wei-Shan, XU Meng-Qing, LIAO You-Hao, TAN Chun-Lin, YI Jin. Performance Improvement of Polyethylene-Supported PAMS Electrolyte Using Urea as Foaming Agent [J]. Acta Phys. -Chim. Sin., 2011, 27(07): 1689-1694. |
|