Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (9): 2003047.doi: 10.3866/PKU.WHXB202003047
Special Issue: Precise Nanosynthesis
Previous Articles Next Articles
Tianyi Yang1, Cheng Cui1, Hongpan Rong1,*(), Jiatao Zhang1, Dingsheng Wang2,*(
)
Received:
2020-03-19
Accepted:
2020-04-17
Published:
2020-04-24
Contact:
Hongpan Rong,Dingsheng Wang
E-mail:rhp@bit.edu.cn;wangdingsheng@mail.tsinghua.edu.cn
Supported by:
Tianyi Yang, Cheng Cui, Hongpan Rong, Jiatao Zhang, Dingsheng Wang. Recent Advances in Platinum-based Intermetallic Nanocrystals: Controlled Synthesis and Electrocatalytic Applications[J]. Acta Physico-Chimica Sinica 2020, 36(9), 2003047. doi: 10.3866/PKU.WHXB202003047
Table 1
DOE technical targets for polymer electrolyte membrane fuel cell components 9."
Characteristic | Units | 2020 Targets |
Cost | $·kW-1 | 3 |
Mass activity | A·mg-1 @ 900 mV | 0.44 |
Loss in initial catalytic activity | % mass activity loss | < 40 |
Electrocatalyst support stability | % mass activity loss | 0.44 |
Platinum group metal total loading (both electrodes) | mg·cm-2 electrode area | 0.125 |
Rated power (150 kPa) | mW·cm-2 | 1000 |
Table 2
Synthesis methods of Pt based intergeneric compounds in recent years."
Method | Catalysts | Surfactants & solvents | Metal precursor | Reaction time/h | Reaction temperature/℃ | Ref. | Year | |
A | B | |||||||
Solvothermal reactions | Pt3Sn | PVP, DMF | Pt(acac)2 | SnCl2 | 6 | 180 | 2016 | |
PtZn | PVP, DMF | Pt(acac)2 | Zn(acac)2 | 9 | 180 | 2014 | ||
Oil phase synthesis | Pt45Sn25Bi30 | ODE, OAm, AA, CTAB | Pt(acac)2 | SnCl2, Bi(act)3 | 1 | 220 | 2019 | |
Pt3Ga@Pt | ODE, OAm | Pt(acac)2 | GaCl3 | 12 | 300 | 2018 | ||
PtPb | ODE, OAm, AA | Pt(acac)2 | Pb(acac)2 | 5 | 160 | 2016 | ||
Polyol process | PtSn/ATO | EG | H2PtCl6 | SnCl4 | 3 | 200 | 2019 | |
PtBi/Pt | PVP, DEG | Pt(acac)2 | C30H57BiO6 | 0.5 | 150 | 2018 | ||
PtSn | TEG | K2PtCl6 | SnCl2 | 0.5 | 550 | 2008 | ||
PtPb | TEG | K2PtCl6 | Pb(C2H3O2)2 | 0.5 | 550 | 2008 | ||
PtBi | TEG | K2PtCl6 | Bi(NO3)3 | 0.5 | 550 | 2008 | ||
FePt3 | TEG | K2PtCl6 | FeCl3 | 0.5 | 550 | 2008 | ||
Method | Catalysts | Metal precursor | Reaction time/h | Reaction temperature/℃ | Ref. | Year | ||
A | B | |||||||
Annealing | PtZn/HNCNT | H2PtCl6 | ZnO | 1 | 800 | 2019 | ||
Pt3Ti | Pt(NH3)4(NO3)2 | TiH2 | 0.5 | 700 | 2019 | |||
L10-CoPt | Pt(acac)2 | Co(acac)2 | 6 | 650 | 2019 | |||
L10-FePt | Pt(acac)2 | Fe(CO)5 | 6 | 700 | 2015 | |||
FeCuPt | Pt(acac)2 | Cu(acac)2, Fe(CO)5 | 1 | 220 | 2014 | |||
Pt3Co/C | H2PtCl6 | CoCl2 | 2 | 700 | 2012 | |||
fct-FePtAu | Pt(acac)2 | Fe(CO)5, HAuCl4 | 1 | 600 | 2012 | |||
FePt/MgO | Pt(acac)2 | Fe(CO)5 | 6 | 750 | 2010 | |||
CVD | Pt3Co | H2PtCl6 | Co(acac)2 | 6 | 550 | 2015 | ||
PtGe | Pt(NH3)4Cl2 | Ge(acac)2Cl2 | 1 | 550 | 2000 |
Fig 3
Synthetic scheme and characterization of the PtZn intermetallic nanoparticles. (a) Synthetic strategy of PtZn intermetallic nanoparticles supported on hollow nitrogen-doped carbon nanotubes (PtZn/HNCNT). (b–d) TEM (b) HAADF-STEM (c), and AC-HAADF-STEM (d) images of PtZn/HNCNT. Scale bar, 500 nm (b); 200 nm (c); 10 nm (d). (e) Crystal structure of PtZn intermetallic compound (IMC) (Pt: red; Zn: green). (f, g) AC-HAADF-STEM (f) image and elemental mappings (g) of a PtZn IMC nanoparticle. Scale bar, 1 nm 56. Adapted from Nature Publishing Group publisher."
Table 3
Electrochemical performance of platinum-based intermetallic catalyst for various electrocatalytic reactions in recent years."
Ref. | Pt (w, %) | Main catalytic performances | Electrolyte/(mol?L?1) | |||||
η/(mV@10 mA?cm?2) vs RHE | Tafel slope/(mV?decade?1) | SA/(mA?cm?2) | MA/(A?mg?1) | Cycling tests | ||||
HER | Lim, 2019 | 86.72 | 27 | 43.3 | 145.2 @ 50 mV | 0.55 @ 50 mV | Retain ~95% in current | 0.5 H2SO4 |
Pt3Ga | (ICP-MS) | density (10000 cycle) | ||||||
#Li, 2019 | 1 | 32.7 | 32.3 | 17.17 @ 50 mV | 1.305 @ 50 mV | The η reduced by 2.3 mV (2000 cycle) | 0.1 HClO4 | |
Pt/Ti3C2Tx | (ICP-MS) | |||||||
#Lim, 2019 | 76.4 | 53 | 37 | 56.2 @ ?0.1 V | 0.3678 @ ?0.1 V | No obvious loss of performance (10000 cycle) | 0.5 H2SO4 | |
Pt3Ge | (ICP-MS) | |||||||
Maccio, 2005, | – | 150 | 121 | – | / | – | 1 NaOH | |
PtHo | ||||||||
*Pt black, | – | 30 | 47.6 | 137.6 @ 50 mV | 0.45 @ 50 mV | – | 0.5 H2SO4 | |
7440-06-4 | ||||||||
*Pt/C, 599002 | 20 | 31 | 51.4 | 104.1 @ 50 mV | 1.7 @ 50 mV | The η reduced by 7 mV (10000 cycle) | 0.5 H2SO4 | |
*commercial Pt/Vulcan | 20 | 55.8 | – | 1.79 @ 50 mV | 0.397 @ 50 mV | – | 0.1 HClO4 | |
Ref. | Pt : M | HOR onset potential/V | Tafel slope/(mV?decade?1) | CO-tolerance | Cycling tests | Electrolyte | ||
HOR | #Liu, 2011 | Pt : Fe = | 0 V vs SCE (1000 ppm CO, balance H2) | – | Exhibit sharp CO oxidation peaks | No obvious loss of catalytic performance (500 cycles) | 0.5 H2SO4 | |
Pt3Fe@Pt | 63 : 37 | |||||||
Innocente 2007, | Pt : Sb = | – | 57 | CO-covered PtSb surfaces achieved current densities higher than equivalent Pt surfaces | – | 0.15 HClO4 | ||
PtSb | 1 : 1 | |||||||
Ref. | Pt (w, %) | Half-wave potential/V vs RHE | Electrochemical active surface area/(m | SA/(mA?cm?2) | MA/(A?mg?1) @ 0.9 V | Cycling tests | Electrolyte/(mol?L?1) | |
ORR | #Li, 2019, L10-CoPt@Pt | 8 (ICP-MS) | – | 26.4 | 8.26 @ 0.9 V | 2.26 | 18% MA loss (30000 cycles) | 0.1 HClO4 |
#Wang, 2018 | – | 0.92 | 45 | 5.1 @ 0.85 V | 1.15 | Half wave potential loss | 0.1 HClO4 | |
Pt3Co | 12 mV (30000 cycles) | |||||||
#Xiao, 2018 | – | – | – | – | 4.93 | Half wave potential loss | 0.1 HClO4 | |
PdFe@Pt | 6 mV (10000 cycles) | |||||||
#Kuttiyiel, 2018, | – | 0.9 | – | 0.53 @ 0.9 V | 0.68 | Half wave potential loss | 0.1 HClO4 | |
L10-AuPtCo@Pt | 7 mV (10000 cycles) | |||||||
#Xiong, 2018, | 35.49 | 0.943 | 51 | 1.1 @ 0.9 V | 0.5 | Half wave potential loss | 0.1 HClO4 | |
Pt3Co/C | (TGA) | 25 mV (4000 cycles) | ||||||
#Wang, 2017, | – | – | 58.8 | 4.33 @ 0.9 V | 2.55 | 15.4% loss of | 0.1 HClO4 | |
PdCuB2@Pt-Cu | activity(10000 cycles) | |||||||
#Bu, 2016, | – | – | 55 | 7.8 @ 0.9 V | 4.3 | 7.7% loss of mass activity | 0.1 HClO4 | |
PtPb@Pt | (50000 cycles) | |||||||
#Chung, 2015, fct- | – | – | – | 2.3 @ 0.9 V | 1.6 | A little ESCA is lost | 0.1 HClO4 | |
PtFe@N-C | (10000 cycles) | |||||||
#Li, 2015, fct?FePt | – | 0.927 | – | 3.16 @ 0.9 V | 0.69 | Fe : Pt ratio reduced from | 0.5 H2SO4 | |
50 : 50 to 47 : 53 | ||||||||
(20000 cycles) | ||||||||
#Wang, 2014, AuCu@Pt | 2.8 (XRF) | – | – | 0.37 @ 0.9 V | 0.56 | 29% MA loss | 0.1 HClO4 | |
(10000 cycles) | ||||||||
#Na, 2008, | 9.3 (TGA) | 0.791 | 129.4 | – | 0.296 | 11% MA loss | 0.1 HClO4 | |
Pt/ITO/CB | (3000 cycles) | |||||||
Ref. | Pt (w, %) | Main catalytic performances | Electrolyte/(mol?L?1) | |||||
η/(mV@10 mA?cm?2) vs RHE | Tafel slope/(mV?decade?1) | SA/(mA?cm?2) | MA/(A?mg?1) | Cycling tests | ||||
FAOR | *Commercial Pt/C | – | – | – | 0.22 @ 0.9 V | 0.12 | 85% MA loss | 0.1 HClO4 |
(30000 cycles) | ||||||||
*Pt/C Tanaka Kikinzoku | 46.6 | 0.86 | – | 0.25 @ 0.9 V | 0.22 | Half wave potential loss | 0.1 HClO4 | |
12 mV (10000 cycles) | ||||||||
*Pt/C(Johnson Matthey Co.) | 20 | – | – | 0.22 @ 0.9 V | 0.14 | The ESCA decreased significantly (10000 cycles) | 0.1 HClO4 | |
*Pt catalyst | 18.6 | 0.872 | 81.8 | – | > 0.9 | Half wave potential loss | 0.1 HClO4 | |
(HiSPEC 2000) | 65 mV (3000 cycles) | |||||||
#Rong, 2016, Pt3Sn | – | – | 5.1 | 27.6 | 1.7 | lost about 5% of initial peak current density, | 0.1 HClO4 | |
#Zhang, 2012, fct-FePtAu | – | ?0.2 vs Ag/AgCl | – | – | 2.8099 | Retain 92.5% of this MA(13 h) | 0.5 H2SO4 | |
#Abe, 2008, Pt3Ti | – | 0.05 vs Ag/AgCl | – | – | – | – | 0.1 H2SO4 | |
*Commercial Pt/C | 20 | – | 70.9 | – | – | Lost about 80% of initial peak current density | 0.1 HClO4 | |
Ref. | Pt (w, %) | Oxidation onset potential/V | Electrochemical active surface area/(m | SA/(mA?cm?2) | MA/(A?mg?1) | Cycling tests | Electrolyte/(mol?L?1) | |
MOR | #Wang, 2019, | – | 0.39 vs RHE | 53 | 1.3 | 0.69 | – | 0.1 HClO4 |
PtFe@PtRuFe | ||||||||
#Feng, 2019, | – | – | – | 7.195 | 1.09 | The loss of peak current density is negligible | 0.5 H2SO4 | |
3Ga@Pt | (1000 cycles) | |||||||
#Feng, 2017, | / | / | 60.5 | – | – | – | 0.1 HClO4 | |
Au@Ag2S@Pt 102 | ||||||||
#Qi, 2017, | / | 0.154 vs Ag/AgCl | – | 1.08 | 0.612 | 3% SA loss | 0.5 H2SO4 | |
PtZn/MWNT | (1000 cycles) | |||||||
*Commercial Pt/C(JM) | 20 | 0.83 vs RHE | 71 | 0.15 | 0.11 | – | 0.1 HClO4 | |
*Commercial PtRu/C | / | 0.43 vs RHE | 49 | 0.83 | 0.41 | – | 0.1 HClO4 | |
*Commercial | / | 0.247 vs Ag/AgCl | – | – | – | 50% SA loss | 0.5 H2SO4 | |
Pt/Vulcan | (1000 cycles) | |||||||
Ref. | Pt (w, %) | Oxidation onset potential/V | Completely oxidizes ethanol to CO2 | SA/(mA?cm?2) | MA/(A?mg?1) | Cycling tests | Electrolyte/(mol?L?1) | |
EtOR | #Yuan, 2018, PtBi@Pt | – | – | – | 136.5 vs RHE | 5.95 | No significant change in the size and shape (10000 s) | 1 NaOH |
#Zhang, 2016, Pt3Co@Pt | – | – | No | – | 0.79 | – | 0.1 HClO4 | |
#Kodiyath, 2015, Pt3Ta | – | 0.27 V vs Ag/AgCl | Yes | – | – | Retain 85% in ESCA (10000 cycles) | 0.5 H2SO4 | |
*Commercial | 20 | – | – | 22.2 vs RHE | 0.689 | Serious aggregation | 1 NaOH | |
Pt/C | (10000 s) |
Fig 6
DFT calculations of oxygen adsorption energyy 43. (A) Atomic models of the Pt (110) surface. Three stable adsorption sites for oxygen: hollow ("h") and two bridge sites ("b1" and "b2"). The blue and green spheres represent Pt and O atoms, respectively. (B to D) On the Pt (110) surface, ΔEO as a function of biaxial strain in [110] and [001] directions for the "h" site (B) and the "b1" site (C), and the "b2" site is plotted in (D). The optimal ΔEO value is set to be 0. ΔEO value falling into the shaded region implies a higher ORR activity than that on the flat Pt (111) surface 43. Adapted from the American Association for the Advancement of Science publisher."
Fig 9
Free binding energies of *CHO or *COH are plotted against the corresponding energies for *CO 17. The green and blue triangles represent data points for intermetallic surfaces that bind and do not bind CO, respectively. The red circle stands for Cu(111). The red and green lines are linear fits to data for the intermetallic compounds and pure transition metals, respectively. The overpotential is given by the vertical distance of each point from the diagonal 17. Adapted from American Chemical Society publisher."
Fig 10
(a) Structures of {100}-terminated Cu3B-A@CuM alloy models used in this study. (b) the parity plot shows a comparison of the CO adsorption energies on the Cu3X-Ni@CuML and the Cu3X-Rh@CuML alloys (X: transition metal atoms) calculated using the machine-learning model with the geometry-based primary features and the self-consistent DFT 119. A few alloys including Cu3Y-Ni @ CuML, Cu3Sc-Ni @ CuML, Cu3Ti-Rh @ CuML, Cu3V-Rh @ CuML and Cu3Mo-Rh @ CuML are identified to have desired CO adsorption energies within the shaded region. The inset (b) shows the geometric structure of the model system. The deviation of the RMSE from 16 random sampling is < 0.02 eV 119. Adapted from Elsevier publisher."
1 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
2 |
Xu Q. ; Guo C. ; Tian S. ; Zhang J. ; Chen W. ; Cheong W. ; Gu L. ; Zheng L. ; Xiao J. ; Liu Q. ; et al Sci. China Mater. 2020.
doi: 10.1007/s40843-020-1334-6 |
3 |
Xiong Y. ; Dong J. ; Zheng Q. ; Xin P. ; Chen W. ; Wang Y. ; Li Z. ; Jin Z. ; Xing W. ; Zhuang Z. ; et al Nat. Nanotechnol. 2020.
doi: 10.1038/s41565-020-0665-x |
4 |
Li X. ; Rong H. ; Zhang J. ; Wang D. ; Li Y. Nano Res. 2020.
doi: 10.1007/s12274-020-2755-3 |
5 |
Sun T. ; Xu L. ; Wang D. ; Li Y. Nano Res. 2019, 12, 2067.
doi: 10.1007/s12274-019-2345-4 |
6 |
Huang L. ; Jiang Z. ; Gong W. ; Shen P. K. Appl. Nano Mater. 2018, 1, 5019.
doi: 10.1021/acsanm.8b01113 |
7 |
Huang L. ; Zhang X. ; Wang Q. ; Han Y. ; Fang Y. ; Dong S. J. Am. Chem. Soc. 2018, 140, 1142.
doi: 10.1021/jacs.7b12353 |
8 |
Xue S. ; Deng W. ; Yang F. ; Yang J. ; Amiinu I. S. ; He D. ; Tang H. ; Mu S. ACS Catal. 2018, 8, 7578.
doi: 10.1021/acscatal.8b00366 |
9 | US Department of Energy. (2018). DOE technical targets for polymer electrolyte membrane fuel cell components. https://www.energy.gov/eere/fuelcells/doe-technicaltargets-polymer-electrolyte-membrane-fuelcell-components |
10 |
Fu K. ; Zeng L. ; Liu J. ; Liu M. ; Li S. ; Guo W. ; Gao Y. ; Pan M. J. Alloys Compd. 2020, 815, 152374.
doi: 10.1016/j.jallcom.2019.152374 |
11 |
Liu L. ; Corma A. Chem. Rev. 2018, 118, 4981.
doi: 10.1021/acs.chemrev.7b00776 |
12 |
Robinson J. E. ; Labrador N. Y. ; Chen H. ; Sartor B. E. ; Esposito D. V. ACS Catal. 2018, 8, 11423.
doi: 10.1021/acscatal.8b03626 |
13 | Wu, Z.; Bukowski, B. C.; Li, Z.; Milligan, C.; Zhou, L.; Ma, T.; Wu, Y.; Ren, Y.; Ribeiro, F. H.; Delgass, W. N.; et al. J. Am. Chem. Soc. 2018, 140, 14870. doi: 10.1021/jacs.8b08162 |
14 |
Zhao X. ; Liu X. ; Huang B. ; Wang P. ; Pei Y. J. Mater. Chem. A 2019, 7, 24583.
doi: 10.1039/c9ta08661g |
15 |
Xiao W. ; Lei W. ; Gong M. ; Xin H. L. ; Wang D. ACS Catal. 2018, 8, 3237.
doi: 10.1021/acscatal.7b04420 |
16 |
Li J. ; Sun S. Acc. Chem. Res. 2019, 52, 2015.
doi: 10.1021/acs.accounts.9b00172 |
17 |
Karamad M. ; Tripkovic V. ; Rossmeisl J. ACS Catal. 2014, 4, 2268.
doi: 10.1021/cs500328c |
18 |
Zhu Y. ; Yuan M. ; Deng L. ; Ming R. ; Zhang A. ; Yang M. ; Chai B. ; Ren Z. RSC Adv. 2017, 7, 1553.
doi: 10.1039/c6ra24754g |
19 |
Magno L. M. ; Sigle W. ; van Aken P. A. ; Angelescu D. ; Stubenrauch C. Phys. Chem. Chem. Phys. 2011, 13, 9134.
doi: 10.1039/c1cp20159j |
20 |
Wang C. ; Sang X. ; Gamler J. T. L. ; Chen D. P. ; Unocic R. R. ; Skrabalak S. E. Nano Lett. 2017, 17, 5526.
doi: 10.1021/acs.nanolett.7b02239 |
21 |
Thompson S. T. ; James B. D. ; Huya-Kouadio J. M. ; Houchins C. ; DeSantis D. A. ; Ahluwalia R. ; Wilson A. R. ; Kleen G. ; Papageorgopoulos D. J. Power Sources 2018, 399, 304.
doi: 10.1016/j.jpowsour.2018.07.100 |
22 |
Li J. ; Sharma S. ; Liu X. ; Pan Y. ; Spendelow J. S. ; Chi M. ; Jia Y. ; Zhang P. ; Cullen D. A. ; Cullen D. A. ; Xi Z. ; et al Joule 2019, 3, 124.
doi: 10.1016/j.joule.2018.09.016 |
23 |
Wang X. X. ; Swihart M. T. ; Wu G. Nat. Catal. 2019, 2, 578.
doi: 10.1038/s41929-019-0304-9 |
24 |
Bortoloti F. ; Garcia A. C. ; Angelo A. C. D. Int. J. Int. J. Hydrogen Energy 2015, 40, 10816.
doi: 10.1016/j.ijhydene.2015.06.145 |
25 |
Santos E. ; Pinto L. M. C. ; Soldano G. ; Innocente A. F. ; Ângelo A. C. D. ; Schmickler W. Catal. Today 2013, 202, 191.
doi: 10.1016/j.cattod.2012.07.044 |
26 |
Rong H. ; Mao J. ; Xin P. ; He D. ; Chen Y. ; Wang D. ; Niu Z. ; Wu Y. ; Li Y. Adv. Mater. 2016, 28, 2540.
doi: 10.1002/adma.201504831 |
27 |
Russell A. E. Faraday Discuss. 2008, 140, 9.
doi: 10.1039/b814058h |
28 |
You G. ; Jiang J. ; Li M. ; Li L. ; Tang D. ; Zhang J. ; Zeng X. C. ; He R. ACS Catal. 2017, 8, 132.
doi: 10.1021/acscatal.7b02698 |
29 |
Cui Z. ; Chen H. ; Zhao M. ; Marshall D. ; Yu Y. ; Abruna H. ; DiSalvo F. J. J. Am. Chem. Soc. 2014, 136, 29.
doi: 10.1021/ja504573a |
30 |
Liao H. ; Zhu J. ; Hou Y. Nanoscale 2014, 6, 1049.
doi: 10.1039/c3nr05590f |
31 |
Qi Z. ; Xiao C. ; Liu C. ; Goh T. W. ; Zhou L. ; Maligal-Ganesh R. ; Pei Y. ; Li X. ; Curtiss L. A. ; Huang W. J. Am. Chem. Soc. 2017, 139, 4762.
doi: 10.1021/jacs.6b12780 |
32 |
Yuan X. ; Jiang X. ; Cao M. ; Chen L. ; Nie K. ; Zhang Y. ; Xu Y. ; Sun X. ; Li Y. ; Zhang Q. Nano Res. 2018, 12, 429.
doi: 10.1007/s12274-018-2234-2 |
33 |
Wang Q. ; Chen S. ; Li P. ; Ibraheem S. ; Li J. ; Deng J. ; Wei Z. Appl. Catal., B 2019, 252, 120.
doi: 10.1016/j.apcatb.2019.04.023 |
34 |
Furukawa S. ; Komatsu T. ACS Catal. 2017, 7, 735.
doi: 10.1021/acscatal.6b02603 |
35 |
Abe H. ; Matsumoto F. ; Alden L. R. ; Warren S. C. ; Abruña H. D. ; DiSalvo F. J. J. Am. Chem. Soc. 2008, 130, 5452.
doi: 10.1021/ja075061c |
36 |
Yan Y. ; Du J. S. ; Gilroy K. D. ; Yang D. ; Xia Y. ; Zhang H. Adv. Mater. 2017, 29, 1605997.
doi: 10.1002/adma.201605997 |
37 |
Wang D. ; Peng Q. ; Li Y. Nano Res. 2010, 3, 574.
doi: 10.1007/s12274-010-0018-4 |
38 |
Chen Q. L. ; Zhang J. W. ; Jia Y. Y. ; Jiang Z. Y. ; Xie Z. X. ; Zheng L. S. Nanoscale 2014, 6, 7019.
doi: 10.1039/c4nr00313f |
39 |
Dong H. ; Chen Y. C. ; Feldmann C. Green Chem. 2015, 17, 4107.
doi: 10.1039/c5gc00943j |
40 |
Teichert J. ; Heise M. ; Chang J. H. ; Ruck M. Eur. J. Inorg. Chem. 2017, 42, 4930.
doi: 10.1002/ejic.201700966 |
41 |
Chen W. ; Lei Z. ; Zeng T. ; Wang L. ; Cheng N. C. ; Tan Y. Y. ; Mu S. C. Nanoscale 2019, 11, 19895.
doi: 10.1039/c9nr07245d |
42 |
Bauer J. C. ; Chen X. ; Liu Q. S. ; Phan T. H. ; Schaak R. E. J. Mater. Chem. 2008, 18, 275.
doi: 10.1039/b712035d |
43 |
Bu L. ; Zhang N. ; Guo S. ; Zhang X. ; Li J. ; Yao J. ; Wu T. ; Lu G. ; Ma J. ; Su D. ; et al Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
44 |
Feng Q. ; Zhao S. ; He D. ; Tian S. ; Gu L. ; Wen X. ; Chen C. ; Peng Q. ; Wang D. ; Li Y. J. Am. Chem. Soc. 2018, 140, 2773.
doi: 10.1021/jacs.7b13612 |
45 |
Luo S. ; Chen W. ; Cheng Y. ; Song X. ; Wu Q. ; Li L. ; Wu X. ; Wu T. ; Li M. ; Yang Q. ; et al Adv. Mater. 2019, 31, 1903683.
doi: 10.1002/adma.201903683 |
46 |
Kim J. ; Lee Y. ; Sun S. H. J. Am. Chem. Soc. 2010, 132, 14.
doi: 10.1021/ja1009629 |
47 |
Gamler J. T. L. ; Ashberry H. M. ; Skrabalak S. E. ; Koczkur K. M. Adv. Mater. 2018, 30, 40.
doi: 10.1002/adma.201801563 |
48 |
Li J. ; Xi Z. ; Pan Y. ; Spendelow Jacob S. ; Duchesne Paul N. ; Su D. ; Li Q. ; Yu C. ; Yin Z. ; Shen B. ; et al J. Am. Chem. Soc. 2018, 140, 2926.
doi: 10.1021/jacs.7b12829 |
49 |
Wang D. ; Xin H. L. ; Hovden R. ; Wang H. ; Yu Y. ; Muller D. A. ; DiSalvo F. J. ; Abruña H. D. Nat. Mater. 2012, 12, 81.
doi: 10.1038/nmat3458 |
50 |
Shim J. ; Lee J. ; Ye Y. ; Hwang J. ; Kim S. K. ; Lim T. H. ; Wiesner U. ; Lee J. ACS Nano 2012, 6, 8.
doi: 10.1021/nn301692y |
51 |
Zhang B.-W. ; Jiang Y.-X. ; Ren J. ; Qu X. -M. ; Xu G.-L. ; Sun S. -G. Electrochim. Acta 2015, 162, 254.
doi: 10.1016/j.electacta.2014.09.159 |
52 |
Zhang G. ; Yang Z. ; Zhang W. ; Hu H. ; Wang C. ; Huang C. ; Wang Y. Nanoscale 2016, 8, 3075.
doi: 10.1039/c5nr08013d |
53 |
Kim J. ; Rong C. ; Liu J. P. ; Sun S. Adv. Mater. 2009, 21, 906.
doi: 10.1002/adma.200801620 |
54 |
Kim J. ; Rong C. ; Lee Y. ; Liu J. P. ; Sun S. Chem. Mater. 2008, 20, 7242.
doi: 10.1021/cm8024878 |
55 |
Yu J. ; Gao W. ; Liu F. ; Ju Y. ; Zhao F. ; Yang Z. ; Chu X. ; Che S. ; Hou Y. Sci. China Mater. 2018, 61, 961.
doi: 10.1007/s40843-017-9203-9 |
56 |
Han A. ; Zhang J. ; Sun W. ; Chen W. ; Zhang S. ; Hang Y. ; Feng Q. ; Zheng L. ; Gu L. ; Chen C. ; et al Nat. Commun. 2019, 10, 3787.
doi: 10.1038/s41467-019-11794-6 |
57 |
Li Q. ; Wu L. ; Wu G. ; Su D. ; Lu H. ; Zhang S. ; Zhu W. ; Casimir A. ; Zhu H. ; Mendoza-Garcia A. ; et al Nano Lett. 2015, 15, 2468.
doi: 10.1021/acs.nanolett.5b00320 |
58 |
Zhang S. ; Guo S. ; Zhu H. ; Su D. ; Sun S. J. Am. Chem. Soc. 2012, 134, 5060.
doi: 10.1021/ja300708j |
59 |
Zhang S. ; Zhang X. ; Jiang G. ; Zhu H. ; Guo S. ; Su D. ; Lu G. ; Sun S. J. Am. Chem. Soc. 2014, 136, 7734.
doi: 10.1021/ja5030172 |
60 |
Bernal S. ; Calvino J. J. ; Gatica J. M. ; Larese C. ; López-Cartes C. ; Pérez-Omil J. A. J. Catal. 1997, 169, 510.
doi: 10.1006/jcat.1997.1707 |
61 |
Li Z. ; Qi Z. ; Wang S. ; Ma T. ; Zhou L. ; Wu Z. ; Luan X. ; Lin F. ; Chen M. ; Miller J. ; et al Nano Lett. 2019, 19, 5102.
doi: 10.1021/acs.nanolett.9b01381 |
62 |
Huang L. L. ; Liu M. ; Lin H. X. ; Xu Y. B. ; Wu J. S. ; Dravid V. P. ; Wolverton C. ; Mirkin C. A. Science 2019, 365, 1159.
doi: 10.1126/science.aax5843 |
63 |
Komatsu T. ; Mesuda M. ; Yashima T. Appl. Catal. A 2000, 194, 333.
doi: 10.1016/S0926-860X(99)00379-8 |
64 |
Saedy S. ; Palagin D. ; Safonova O. ; van Bokhoven J. A. ; Khodadadi A. A. ; Mortazavi Y. J. Mater. Chem. A 2017, 5, 24396.
doi: 10.1039/C7TA06737B |
65 |
Geisler A. H. ; Martin D. L. J. Appl. Phys. 1952, 23, 375.
doi: 10.1063/1.1702216 |
66 |
Na H. ; Choi H. ; Oh J. W. ; Jung Y. S. ; Cho Y. S. ACS Appl. Mater. Interfaces 2019, 11, 25179.
doi: 10.1021/acsami.9b06159 |
67 |
Chung D. ; Jun S. ; Yoon G. ; Kwon S. ; Shin D. ; Seo P. ; Yoo J. ; Shin H. ; Chung Y. ; Kim H. ; et al J. Am. Chem. Soc. 2015, 137, 15478.
doi: 10.1021/jacs.5b09653 |
68 |
Lim S. C. ; Chan C. Y. ; Chen K. T. ; Tuan H. Y. Electrochim. Acta 2019, 297, 288.
doi: 10.1016/j.electacta.2018.11.152 |
69 |
Lim S. C. ; Hsiao M. C. ; Lu M. D. ; Tung Y. L. ; Tuan H. Y. Nanoscale 2018, 10, 16657.
doi: 10.1039/c8nr03983f |
70 |
Maccio D. ; Rosalbino F. ; Saccone A. ; Delfino S. J. Alloys Compd. 2005, 391, 60.
doi: 10.1016/j.jallcom.2004.08.050 |
71 |
Strasser P. ; Kuhl S. Nano Energy 2016, 29, 166.
doi: 10.1016/j.nanoen.2016.04.047 |
72 |
Rößner L. ; Armbrüster M. ACS Catal. 2019, 9, 2018.
doi: 10.1021/acscatal.8b04566 |
73 |
Leidheiser H. J. Am. Chem. Soc. 1949, 71, 3634.
doi: 10.1021/ja01179a015 |
74 |
Wang X. X. ; Hwang S. ; Pan Y. T. ; Chen K. ; He Y. H. ; Karakalos S. ; Zhang H. G. ; Spendelow J. S. ; Su D. ; Wu G. Nano Lett. 2018, 18, 4163.
doi: 10.1021/acs.nanolett.8b00978 |
75 |
Gokhale R. ; Chen Y. C. ; Serov A. ; Artyushkova K. ; Atanassov P. Electrochim. Acta 2017, 224, 49.
doi: 10.1016/j.electacta.2016.12.052 |
76 |
Xiong Y. ; Xiao L. ; Yang Y. ; DiSalvo F. J. ; Abruna H. D. Chem. Mater. 2018, 30, 1532.
doi: 10.1021/acs.chemmater.7b04201 |
77 | Zhu H. ; Luo M. C. ; Cai Y. Z. ; Sun Z. N. Acta Phys. -Chim. Sin. 2016, 32, 2462. |
朱红; 骆明川; 蔡业政; 孙照男. 物理化学学报, 2016, 32, 2462.
doi: 10.3866/PKU.WHXB201606293 |
|
78 |
Kuttiyiel K. ; Kattel S. ; Cheng S. ; Lee J. ; Wu L. ; Zhu Y. ; Park G. ; Liu P. ; Sasaki K. ; Chen J. ; et al ACS Appl. Energy Mater. 2018, 1, 3771.
doi: 10.1021/acsaem.8b00555 |
79 |
Wang G. W. ; Huang B. ; Xiao L. ; Ren Z. D. ; Chen H. ; Wang D. L. ; Abruna H. D. ; Lu J. T. ; Zhuang L. J. Am. Chem. Soc. 2014, 136, 9643.
doi: 10.1021/ja503315s |
80 |
Xiao W. ; Cordeiro M. ; Gao G. ; Zheng A. ; Wang J. ; Lei W. ; Gong M. ; Lin R. ; Stavitski E. ; Xin H. ; et al Nano Energy 2018, 50, 70.
doi: 10.1016/j.nanoen.2018.05.032 |
81 |
Masuda T. ; Fukumitsu H. ; Fugane K. ; Togasaki H. ; Matsumura D. ; Tamura K. ; Matsumura D. ; Tamura K. ; Nishihata Y. ; Yoshikawa H. ; Kobayashi K. ; Mori T. ; et al J. Phys. Chem. C 2012, 116, 10098.
doi: 10.1021/jp301509t |
82 |
Sasaki K. ; Zhang L. ; Adzic R. R. Phys. Chem. Chem. Phys. 2008, 10, 159.
doi: 10.1039/b709893f |
83 |
Wang Y.-J. ; Zhao N. ; Fang B. ; Li H. ; Bi X. T. ; Wang H. Chem. Rev. 2015, 115, 3433.
doi: 10.1021/cr500519c |
84 |
Luo M. ; Sun Y. ; Wang L. ; Guo S. Adv. Energy Mater. 2017, 7, 11.
doi: 10.1002/aenm.201602073 |
85 |
Antolini E. Appl. Catal. B 2017, 217, 201.
doi: 10.1016/j.apcatb.2017.05.081 |
86 |
Liang J. ; Miao Z. ; Ma F. ; Pan R. ; Chen X. ; Wang T. ; Xie H. ; Li Q. Chin. J. Catal. 2018, 39, 583.
doi: 10.1016/S1872-2067(17)62989-9 |
87 |
Chen X. ; McCrum I. T. ; Schwarz K. A. ; Janik M. J. ; Koper M. T. M. Angew. Chem. Int. Ed. 2017, 56, 15025.
doi: 10.1002/anie.201709455 |
88 |
Park E. D. ; Lee D. ; Lee H. C. Catal. Today 2009, 139, 280.
doi: 10.1016/j.cattod.2008.06.027 |
89 |
Innocente A. F. ; Ângelo A. C. D. J. Power Sources 2008, 175, 779.
doi: 10.1016/j.jpowsour.2007.10.001 |
90 |
Liu Z. ; Jackson G. S. ; Eichhorn B. W. Energy Environ. Sci. 2011, 4, 1900.
doi: 10.1039/C1EE01125A |
91 |
Neurock M. ; Janik M. ; Wieckowski A. Faraday Discuss. 2009, 140, 363.
doi: 10.1039/B804591G |
92 |
Xu H. ; Yan B. ; Li S. ; Wang J. ; Wang C. ; Guo J. ; Du Y. Chem. Eng. J. 2018, 334, 2638.
doi: 10.1016/j.cej.2017.10.175 |
93 |
Zhu J. ; Zheng X. ; Wang J. ; Wu Z. ; Han L. ; Lin R. ; Xin H. L. ; Wang D. J. Mater. Chem. A 2015, 3, 22129.
doi: 10.1039/C5TA05699C |
94 |
Ramesh G. V. ; Kodiyath R. ; Tanabe T. ; Manikandan M. ; Fujita T. ; Umezawa N. ; Ueda S. ; Ishihara S. ; Ariga K. ; Abe H. ACS Appl. Mater. Interfaces 2014, 6, 16124.
doi: 10.1021/am504147q |
95 |
Ghosh T. ; Zhou Q. ; Gregoire J. M. ; van Dover R. B. ; DiSalvo F. J. J. Phys. Chem. C 2010, 114, 12545.
doi: 10.1021/jp101175m |
96 |
Casado-Rivera E. ; Gál Z. ; Angelo A. C. D. ; Lind C. ; DiSalvo F. J. ; Abruña H. D. ChemPhysChem 2003, 4, 193.
doi: 10.1002/cphc.200390030 |
97 |
Ji X. ; Lee K. T. ; Holden R. ; Zhang L. ; Zhang J. ; Botton G. A. ; Couillard M. ; Nazar L. F. Nat. Chem. 2010, 2, 286.
doi: 10.1038/nchem.553 |
98 |
Casado-Rivera E. ; Volpe D. J. ; Alden L. ; Lind C. ; Downie C. ; Vázquez-Alvarez T. ; Angelo A. C. D. ; DiSalvo F. J. ; Abruña H. D. J. Am. Chem. Soc. 2004, 126, 4043.
doi: 10.1021/ja038497a |
99 |
Pan Y. -T. ; Yan Y. ; Shao Y. -T. ; Zuo J. -M. ; Yang H. Nano Lett. 2016, 16, 6599.
doi: 10.1021/acs.nanolett.6b03302 |
100 |
Kang Y. ; Murray C. B. J. Am. Chem. Soc. 2010, 132, 7568.
doi: 10.1021/ja100705j |
101 |
Ghosh T. ; Leonard B. M. ; Zhou Q. ; DiSalvo F. J. Chem. Mater. 2010, 22, 2190.
doi: 10.1021/cm9018474 |
102 |
Feng Y. ; Liu H. ; Yang J. Sci. Adv. 2017, 3, e1700580.
doi: 10.1126/sciadv.1700580 |
103 |
Sanetuntikul J. ; Ketpang K. ; Shanmugam S. ACS Catal. 2015, 5, 7321.
doi: 10.1021/acscatal.5b01390 |
104 |
Zhang B. ; Sheng T. ; Wang Y. ; Qu X. ; Zhang J. ; Zhang Z. ; Liao H. ; Zhu F. ; Dou S. ; Jiang Y. ; et al ACS Catal. 2017, 7, 892.
doi: 10.1021/acscatal.6b03021 |
105 |
Mikhailova A. A. ; Pasynskii A. A. ; Grinberg V. A. ; Velikodnyi Y. A. ; Khazova O. A. Russ. J. Electrochem. 2010, 46, 26.
doi: 10.1134/s1023193510010039 |
106 |
Herranz T. ; Ibáñez M. ; Gómez de la Fuente J. L. ; Pérez-Alonso F. J. ; Peña M. A. ; Cabot A. ; Rojas S. ChemElectroChem 2014, 1, 885.
doi: 10.1002/celc.201300254 |
107 |
Kwak D.-H. ; Lee Y. -W. ; Han S. -B. ; Hwang E. -T. ; Park H. -C. ; Kim M.-C. ; Park K. -W. J. Power Sources 2015, 275, 557.
doi: 10.1016/j.jpowsour.2014.11.050 |
108 |
Ramesh G. ; Kodiyath R. ; Tanabe T. ; Manikandan M. ; Fujita T. ; Matsumoto F. ; Ishihara S. ; Ueda S. ; Yamashita Y. ; Ariga K. ; et al ChemElectroChem 2014, 1, 728.
doi: 10.1002/celc.201300240 |
109 |
Sun Y. ; Liang Y. ; Luo M. ; Lv F. ; Qin Y. ; Wang L. ; Xu C. ; Fu E. ; Guo S. Small 2018, 14, 1702259.
doi: 10.1002/smll.201702259 |
110 |
Gunji T. ; Tanabe T. ; Jeevagan A. J. ; Usui S. ; Tsuda T. ; Kaneko S. ; Saravanan G. ; Abe H. ; Matsumoto F. J. Power Sources 2015, 273, 990.
doi: 10.1016/j.jpowsour.2014.09.182 |
111 |
Kodiyath R. ; Ramesh G. ; Koudelkova E. ; Tanabe T. ; Ito M. ; Manikandan M. ; Ueda S. ; Fujita T. ; Umezawa N. ; Noguchi H. ; et al Energy Environ. Sci. 2015, 8, 1685.
doi: 10.1039/C4EE03746D |
112 |
Nia N. S. ; Guillen-Villafuerte O. ; Griesser C. ; Manning G. ; Kunze-Liebhauser J. ; Arevalo C. ; Pastor E. ; Garcia G. ACS Catal. 2020, 10, 1113.
doi: 10.1021/acscatal.9b04348 |
113 |
Xue X. Z. ; Ge J. J. ; Tian T. ; Liu C. P. ; Xing W. ; Lu T. H. J. Power Sources 2007, 172, 560.
doi: 10.1016/j.jpowsour.2007.05.091 |
114 | Gao Z. F. ; Chen H. ; Qi S. T. ; Yin C. H. ; Yang B. L. Acta Phys. -Chim. Sin. 2013, 29, 1900. |
高子丰; 陈昊; 齐随涛; 伊春海; 杨伯伦. 物理化学学报, 2013, 29, 1900.
doi: 10.3866/PKU.WHXB201307021 |
|
115 |
Chen C. ; Zuo Y. X. ; Ye W. K. ; Li X. G. ; Deng Z. ; Ong S. P. Adv. Energy Mater. 2020, 10, 1903242.
doi: 10.1002/aenm.201903242 |
116 | Chen F. ; Yang Z. Y. ; Wen H. ; Xu Z. H. Acta Phys. -Chim. Sin. 1997, 13, 712. |
陈锋; 杨章远; 温浩; 许志宏. 物理化学学报, 1997, 13, 712.
doi: 10.3866/PKU.WHXB19970807 |
|
117 | Han M. R. ; Zhou Y. N. ; Zhou X. ; Chu W. Acta Phys. -Chim. Sin. 2019, 35, 850. |
韩萌茹; 周亚男; 周旋; 储伟. 物理化学学报, 2019, 35, 850.
doi: 10.3866/PKU.WHXB201811040 |
|
118 |
Toyao T. ; Maeno Z. ; Takakusagi S. ; Kamachi T. ; Takigawa I. ; Shimizu K.-I. ACS Catal. 2020, 10, 2260.
doi: 10.1021/acscatal.9b04186 |
119 |
Li Z. ; Ma X. F. ; Xin H. L. Catal. Today 2017, 280, 232.
doi: 10.1016/j.cattod.2016.04.013 |
120 |
Li Z. ; Wang S. W. ; Chin W. S. ; Achenie L. E. ; Xin H. L. J. Mater. Chem. A 2017, 5, 24131.
doi: 10.1039/c7ta01812f |
121 |
Tran K. ; Ulissi Z. W. Nat. Catal. 2018, 1, 696.
doi: 10.1038/s41929-018-0142-1 |
[1] | Heng Chen, Jincan Zhang, Xiaoting Liu, Zhongfan Liu. Effect of Gas-Phase Reaction on the CVD Growth of Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101053-. |
[2] | Shuchen Zhang,Na Zhang,Jin Zhang. Controlled Synthesis of Carbon Nanotubes: Past, Present and Future [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907021-. |
[3] | Mingchuan LUO, Yingjun SUN, Yingnan QIN, Yong YANG, Dong WU, Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures [J]. Acta Physico-Chimica Sinica, 2018, 34(4): 361-376. |
[4] | Xue-Jiao HU,Guan-Bin GAO,Ming-Xi ZHANG. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications [J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1324-1337. |
[5] | Wei-Yan LIU,Ya-Dong LI,Tian LIU,Lin GAN. Investigation of the Growth Mechanism and Compositional Segregations of Monodispersed Ferrite Nanoparticles by Transmission Electron Microscopy [J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2106-2112. |
[6] | ZHAI Wei, WANG Jian-yuan. 【Retracted】Stability of Au Nanocrystals in 2D Superlattice [J]. Acta Phys. -Chim. Sin., 2012, 28(11): 9999-9999. |
[7] | LI Zhen-Hu, MA Yu-Rong, QI Li-Min. Controlled Synthesis of Cobalt-Doped Magnetic Iron Oxide Nanoparticles [J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2493-2499. |
[8] | ZHANG Yi, CHEN Biao, YANG Zu-Pei, ZHANG Zhi-Jun. Controlled Synthesis and Characterization of the Structure and Property of Fe3O4 Nanoparticle-Graphene Oxide Composites [J]. Acta Phys. -Chim. Sin., 2011, 27(05): 1261-1266. |
[9] | WANG Yan; HOU Yan-Bing; TANG Ai-Wei; FENG Bin; LI Yan; TENG Feng. Synthesis and Optical Properties of Water-Soluble CdTe Nanocrystals [J]. Acta Phys. -Chim. Sin., 2008, 24(02): 296-300. |
[10] | CHEN Shu-Tang; XU Ji-Chuan; WANG Yu-Ping; LI Hu-Lin. Synthesis of CdSe Nanocrystals by the Pyrolysis Methods [J]. Acta Phys. -Chim. Sin., 2005, 21(02): 113-116. |
[11] | YAN Qing-Zhi;SU Xin-Tai;ZHOU Yan-Ping;GE Chang-Chun. Controlled Synthesis of TiO2 Nanometer Powders by Sol-gel Auto-igniting Process and Their Structural Property [J]. Acta Phys. -Chim. Sin., 2005, 21(01): 57-62. |
[12] | Li Huan-Yong;Hu Rong-Zu;Zhang Hong;Jie Wan-Qi. Kinetics of Formation of ZnSe Nanocrystals under Linear Temperature Increase Condition [J]. Acta Phys. -Chim. Sin., 2003, 19(04): 315-319. |
[13] | Xin Chun-Yu, Gao Shan-Min, Cui De-Liang, Huang Bai-Biao, Qin Xiao-Yan, Jiang Min-Hua. The Stability of GaP Nanocrystals under Benzene Thermal Conditions [J]. Acta Phys. -Chim. Sin., 1999, 15(02): 105-109. |
|