Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2005027.doi: 10.3866/PKU.WHXB202005027
Special Issue: CO2 Reduction
• REVIEW • Previous Articles Next Articles
Zuzeng Qin1,*(), Jing Wu1, Bin Li1, Tongming Su1, Hongbing Ji1,2,*()
Received:
2020-05-11
Accepted:
2020-06-18
Published:
2020-06-24
Contact:
Zuzeng Qin,Hongbing Ji
E-mail:qinzuzeng@gxu.edu.cn;jihb@mail.sysu.edu.cn
About author:
Email: jihb@mail.sysu.edu.cn (H.J.); Tel.: +86-20-84113658 (H. J.)Supported by:
Zuzeng Qin, Jing Wu, Bin Li, Tongming Su, Hongbing Ji. Ultrathin Layered Catalyst for Photocatalytic Reduction of CO2[J]. Acta Phys. -Chim. Sin. 2021, 37(5), 2005027. doi: 10.3866/PKU.WHXB202005027
Fig 7
Transition metals and sulfur group elements contained in about 40 kinds of TMDC displayed in color in the periodic table. Only part of Co, Rh, IR and Ni are shown in color, indicating that only part of these transition elements are layered. Adapted from Nature Chemistry, Springer publisher 68. Color online."
Fig 10
(a) UV-Vis diffuse reflectance spectra and (b) Tauc plots of gersiloxenes (x = 0.1, 0.3, 0.5, 0.7, 0.9), GeH and Si6H3(OH)3; (c) schematic illustration of topotactic deintercalation of CaGe2−2xSi2x to gersiloxenes (GeH)1−x(SiOH)x (x < 0.5) or (GeH)1−xSix(OH)0.5Hx−0.5(x ≥ 0.5) 84. Ca, blue; Ge, green; H, white; O, red; Si, yellow. Color online."
Table 1
Preparation, modification methods, photocatalytic activity test conditions, and product yield of ultrathin layered catalyst for photocatalytic CO2 reduction"
Photocatalyst species | Preparation method | Sacrificial agent | Reaction phase state | Light source | Product | Catalyst dosage (mg) | Yield (μmol∙h−1) | Ref |
g-C3N4 | Annealed at 550 ℃ | G-S | 300 W Xe lamp | CH4 | 20 | 0.10 | ||
S@g-C3N4 | Using thiourea instead of melamine as raw material | G-S | 300 W Xe lamp | CH3OH | 100 | 0.037 | ||
(VN)g-C3N4 | Post-treatment with 3% hydrogen argon at 550 ℃ in a tubular furnace | G-S | 500 W Xe lamp, 400 nm filter | CH4 | 1.16 (g−1) | |||
0D/2D BP/g-C3N4 | Mechanical mixing | G-S | 300 W Xe lamp | CO | 30 | 0.20 | ||
2D/2D g-C3N4/NiAl-LDH | In situ hydrothermal synthesis of NiAl-LDH on g-C3N4 | G-S | 300 W Xe lamp, 420 nm filter | CO | 50 | 0.41 | ||
(VO)ZnAl-(LDH) | Reverse micelle method | G-S | 300 W Xe lamp | CO | 100 | 0.76 | ||
(VO)TiO2QDs/g-C3N4 | In situ pyrolysis of mixture of melamine and NH2-MIL-125 (Ti) | TEOA | G-L-S | 300 W Xe lamp, 400 nm filter | CO | 5 | 0.47 | |
0D/2D B4C/TiO2 | In situ formation of TiO2 on B4C by solvothermal addition | G-S | 300 W Xe lamp | CH4 | 6 | 0.025 | ||
0D/2D Cu/TiO2 | In situ online synchronous photo deposition | G-L-S | 300 W Xe lamp | CO | 100 | 0.16 | ||
2D/2D SnS2/TiO2 | In situ hydrothermal synthesis of SnS2 on TiO2 | G-S | 300 W Xe lamp | CH4 | 100 | 2.3 | ||
GO | Use mild oxidant H3PO4 instead of H2SO4 | G-S | 300 W Halogen lamp | CH3OH | 200 | 0.030 | ||
MEA-ZnO | Amino functionalization of monoethanolamine by hydrothermal method | G-S | 300 W Xe lamp | CO | 20 | 0.13 | ||
0D/2D Cu2O/WO3-001 | Electrodeposition of Cu2O on the surface of WO3 | G-S | 300 W Xe lamp, (400 nm filter) | CO | 85 | 0.49 | ||
Co3O4(Adding photosensitizer) | Calcination of Co-MOF nano tablets as precursors | TEOA | G-L-S | 5 W LED lamp | CO | 7.5 | 4.5 | |
Bi2WO6 | Intermediate precursor method of lamellar Bi-oleate complex | G-L-S | 300 W Xe lamp, AM 1.5G filter | CH3OH | 200 | 15 | ||
Bi2MoO6 | Solvothermal method | G-L-S | 13 W LED lamp | C2H5OH | 50 | 1.7 | ||
Co@BiVO4 | In situ doping, self-assembly of surfactant (CTAB) | G-S | 25 W Ultraviolet lamp | CH4 | 30 | 0.69 | ||
(VV)BiVO4 | Self-assembly of surfactant (CTAB), Lower reaction temperature and longer reaction time | G-L-S | 300 W Xe lamp, AM 1.5 filter | CH3OH | 200 | 79.66 | ||
Sr3Ti(2−x−y)FexSO(7−z)Nz | In situ doping of Fe2O3 and thiourea | NaOH | G-L-S | 77 W Mercury lamp | CH3OH | 400 | 24 | |
Ag/BaLa4Ti4O15 | Ag loaded as cocatalyst | G-L-S | 400 W Mercury lamp | CO | 300 | 22 | ||
BiOCl | Self-assembly of surfactant (CTAB) | G-L-S | 500 W Xe lamp | CH4 | 100 | 0.15 | ||
(VO)BiOBr | Solvothermal method of glycol instead of water | G-S | 500 W Xe lamp, AM 1.5 filter | CH4 | 0.96 (g−1) | |||
Bi4O5Br2-UN | Self-assembly of surfactant (CTAB) | G-S | 300 W Xe lamp | CO | 20 | 0.63 | ||
0D/2D Ag/2H-MoS2 | Phase transformation in o-dichlorobenzene after liquid flaking, then loading Ag particles by chemical reduction | G-L-S | 250 W Mercury lamp | CH3OH | 20 | 7.3 | ||
Partial oxidation SnS2 | Solvothermal method of glycol replacing one sixth of water | G-S | 300 W Xe lamp, AM 1.5 filter, 420 nm filter | CO | 100 | 1.2 | ||
Zn-MOF(Adding photosensitizer) | Solvothermal method | TEOA | G-L-S | 300 W Xe lamp, 420 nm filter | CO | 10 | 133.8 | |
HGeSiOH | Accomplished by the typical topotactic deintercalation of the Zintl-phase precursor in −30 ℃ hydrochloric acid | NaSO3 | G-L-S | 300 W Xe lamp | CO | 60 | 0.41 |
Fig 12
ESR spectra of (A) ZnAl-1, (B) ZnAl-2, and (C) ZnAl-3; (D) UV-vis diffuse reflectance spectra of (a) ZnAl-1, (b) ZnAl-2, and (c) ZnAl-3 22. Each plot (A)–(C) contains spectra for (a) fresh catalyst, (b) catalyst after 20 min of visible light irradiation (λ > 400 nm), and (c) catalyst after 20 min of UV-Vis light irradiation. All ESR spectra were collected at room temperature under an Ar atmosphere. "
Fig 13
DFT calculations for calculated density of states of (A) V-defective o-BiVO4 single-unit-cell layer slab and (B) perfect o-BiVO4 single-·unit-cell layer slab along the [001] orientation; (C) positron lifetime spectrum of defects characterization for the Vv-rich and Vv-poor o-BiVO4 atomic layers; (D, E) schematic representation of trapped positrons 120."
Fig 14
(a) Photocatalytic CO2 → CO reduction activity of Cu/TiO2-2 for three consecutive runs, (b) high-resolution XPS spectra of the Cu 2p region of Cu/TiO2-2/24 h and Cu/TiO2-2, (c) UV-Vis absorption spectra of pristine TiO2, Cu/TiO2-2, Cu/TiO2-2/24 h, and Cu/TiO2/Air, (d) high-resolution XPS spectra of the O 1s region of Cu/TiO2-2/24 h and Cu/TiO2-2, (e) EDS mapping images of Cu/TiO2-2 125."
Fig 15
(a) PL spectra and (b) transient photocurrent responses of g-C3N4, NiAl-LDH, and g-C3N4/NiAl-LDH heterojunction photocatalysts; (c) Schematic illustration of the proposed mechanism for CO2 photoreduction in the g-C3N4/NiAl-LDH heterojunctions; (d) schematic illustration of the synthesis process of g-C3N4/NiAl-LDH hybrid heterojunctions 128."
1 |
Vergara J. ; McKesson C. ; Walczak M. Energy Policy 2012, 49, 333.
doi: 10.1016/j.enpol.2012.06.026 |
2 |
Zhao Y. ; Liu Z. Chin. J. Chem. 2018, 36 (5), 455.
doi: 10.1002/cjoc.201800014 |
3 |
Steinlechner C. ; Junge H. Angew. Chem. Int. Edit. 2018, 57 (1), 44.
doi: 10.1002/anie.201709032 |
4 |
Guo S. H. ; Zhou J. ; Zhao X. ; Sun C. Y. ; You S. Q. ; Wang X. L. ; Su Z. M. J. Catal. 2019, 369, 201.
doi: 10.1016/j.jcat.2018.11.004 |
5 |
Li A. ; Wang T. ; Li C. ; Huang Z. ; Luo Z. ; Gong J. Angew. Chem. Int. Edit. 2019, 58 (12), 3804.
doi: 10.1002/anie.201812773 |
6 |
Zhou B. ; Song J. ; Xie C. ; Chen C. ; Qian Q. ; Han B. ACS Sustain. Chem. Eng. 2018, 6 (5), 5754.
doi: 10.1021/acssuschemeng.8b00956 |
7 |
Ye J. ; He J. ; Wang S. ; Zhou X. ; Zhang Y. ; Liu G. ; Yang Y. Sep. Purif. Technol. 2019, 220, 8.
doi: 10.1016/j.seppur.2019.03.042 |
8 |
Ávila-López M. A. ; Luévano-Hipólito E. ; Torres-Martínez L. M. J. Photochem. Photobiol. A 2019, 382, 111933.
doi: 10.1016/j.jphotochem.2019.111933 |
9 |
Wang Z. -J. ; Song H. ; Pang H. ; Ning Y. ; Dao T. D. ; Wang Z. ; Chen H. ; Weng Y. ; Fu Q. ; Nagao T. Appl. Catal. B 2019, 250, 10.
doi: 10.1016/j.apcatb.2019.03.003 |
10 |
Wang H. ; Zhang L. ; Wang K. ; Sun X. ; Wang W. Appl. Catal. B 2019, 243, 771.
doi: 10.1016/j.apcatb.2018.11.021 |
11 |
Qin Z. ; Tian H. ; Su T. ; Ji H. ; Guo Z. RSC Adv. 2016, 6 (58), 52665.
doi: 10.1039/C6RA03340G |
12 |
Su T. ; Tian H. ; Qin Z. ; Ji H. Appl. Catal. B 2017, 202, 364.
doi: 10.1016/j.apcatb.2016.09.035 |
13 |
Teh Y. W. ; Goh Y. W. ; Kong X. Y. ; Ng B. -J. ; Yong S. -T. ; Chai S. -P. ChemCatChem 2019, 11 (24), 6431.
doi: 10.1002/cctc.201901653 |
14 |
Li P. ; Xu H. ; Liu L. ; Kako T. ; Umezawa N. ; Abe H. ; Ye J. J. Mater. Chem. A 2014, 2 (16), 5606.
doi: 10.1039/C4TA00105B |
15 | Shen W. J. Acta Phys. -Chim. Sin. 2017, 33 (3), 455. |
申文杰. 物理化学学报, 2017, 33 (3), 455.
doi: 10.3866/PKU.WHXB201702231 |
|
16 |
Pang H. ; Meng X. ; Song H. ; Zhou W. ; Yang G. ; Zhang H. ; Izumi Y. ; Takei T. ; Jewasuwan W. ; Fukata N. ; et al Appl. Catal. B 2019, 244, 1013.
doi: 10.1016/j.apcatb.2018.12.010 |
17 |
Zhang P. ; Wang S. ; Guan B. Y. ; Lou X. W. Energy Environ. Sci. 2019, 12 (1), 164.
doi: 10.1039/C8EE02538J |
18 |
Xia W. ; Wu J. ; Hu J. C. ; Sun S. ; Li M. -D. ; Liu H. ; Lan M. ; Wang F. ChemSusChem 2019, 12 (20), 4617.
doi: 10.1002/cssc.201901633 |
19 | Zhou L ; Zhang X. H. ; Lin L. ; Li P. ; Shao K. J. ; Li C. Z. ; He T. Acta Phys. -Chim. Sin. 2017, 33 (9), 1884. |
周亮; 张雪华; 林琳; 李盼; 邵坤娟; 李春忠; 贺涛. 物理化学学报, 2017, 33 (9), 1884.
doi: 10.3866/PKU.WHXB201705084 |
|
20 |
Zhang Y. ; Zhou Y. ; Tang L. ; Wang M. ; Li P. ; Tu W. ; Liu J. ; Zou Z. Part. Part. Syst. Charact. 2016, 33 (8), 583.
doi: 10.1002/ppsc.201500235 |
21 | Pan Z. M. ; Liu M. H. ; Niu P. P. ; Guo F. S. ; Fu X. Z. ; Wang X. C. Acta Phys. -Chim. Sin. 2020, 36 (1), 1906014. |
潘志明; 刘明辉; 牛萍萍; 郭芳松; 付贤智; 王心晨. 物理化学学报, 2020, 36 (1), 1906014.
doi: 10.3866/PKU.WHXB201906014 |
|
22 |
Zhao Y. ; Chen G. ; Bian T. ; Zhou C. ; Waterhouse G. I. N. ; Wu L. -Z. ; Tung C. -H. ; Smith L. J. ; O'Hare D. ; Zhang T. .Adv. Mater. 2015, 27 (47), 7824.
doi: 10.1002/adma.201503730 |
23 |
Wu H. -Z. ; Bandaru S. ; Huang X. -L. ; Liu J. ; Li L. -L. ; Wang Z. .Phys. Chem. Chem. Phys. 2019, 21 (3), 1514.
doi: 10.1039/C8CP06956E |
24 |
Han C. ; Wang B. ; Wu C. ; Shen S. ; Zhang X. ; Sun L. ; Tian Q. ; Lei Y. ; Wang Y. ChemistrySelect 2019, 4 (7), 2211.
doi: 10.1002/slct.201900102 |
25 |
Sun S. ; Watanabe M. ; Wang P. ; Ishihara T. ACS Appl. Energy Mater. 2019, 2 (3), 2104.
doi: 10.1021/acsaem.8b02153 |
26 |
Kulandaivalu T. ; Abdul Rashid S. ; Sabli N. ; Tan T. L. Diam. Relat. Mater. 2019, 91, 64.
doi: 10.1016/j.diamond.2018.11.002 |
27 |
Du F. ; Lu H. ; Lu S. ; Wang J. ; Xiao Y. ; Xue W. ; Cao S. Int. J. Hydrog. Energy 2018, 43 (6), 3223.
doi: 10.1016/j.ijhydene.2017.12.181 |
28 |
Feng L. P. ; Li A. ; Wang P. C. ; Liu Z. T. J. Phys. Chem. C 2018, 122 (42), 24359.
doi: 10.1021/acs.jpcc.8b06211 |
29 |
Meng M. ; Gan Z. ; Zhang J. ; Liu K. ; Wang L. ; Li S. ; Yao Y. ; Zhu Y. ; Li J. Phys. Status Solidi B 2017, 254 (7), 1700011.
doi: 10.1002/pssb.201700011 |
30 |
Liu C. ; Huang H. ; Ye L. ; Yu S. ; Tian N. ; Du X. ; Zhang T. ; Zhang Y. Nano Energy 2017, 41, 738.
doi: 10.1016/j.nanoen.2017.10.031 |
31 |
Hu S. ; Zhu M. ChemCatChem 2019, 11 (24), 6147.
doi: 10.1002/cctc.201901597 |
32 |
Ong W. J. ; Tan L. L. ; Ng Y. H. ; Yong S. T. ; Chai S. P. Chem. Rev. 2016, 116 (12), 7159.
doi: 10.1021/acs.chemrev.6b00075 |
33 |
Wang L. ; Hou Y. ; Xiao S. ; Bi F. ; Zhao L. ; Li Y. ; Zhang X. ; Gai G. ; Dong X. RSC Adv. 2019, 9 (67), 39304.
doi: 10.1039/C9RA08922E |
34 |
Samanta S. ; Yadav R. ; Kumar A. ; Kumar Sinha A. ; Srivastava R. Appl. Catal. B 2019, 259, 118054.
doi: 10.1016/j.apcatb.2019.118054 |
35 |
Niu P. ; Yang Y. ; Yu J. C. ; Liu G. ; Cheng H. -M. Chem. Commun. 2014, 50 (74), 10837.
doi: 10.1039/C4CC03060E |
36 |
Ding F. ; Yang D. ; Tong Z. ; Nan Y. ; Wang Y. ; Zou X. ; Jiang Z. Environ. Sci. Nano 2017, 4 (7), 1455.
doi: 10.1039/C7EN00255F |
37 |
Carvalho A. ; Wang M. ; Zhu X. ; Rodin A. S. ; Su H. ; Castro Neto A. H. Nat. Rev. Mater. 2016, 1 (11), 16061.
doi: 10.1038/natrevmats.2016.61 |
38 |
Liu H. ; Neal A. T. ; Zhu Z. ; Luo Z. ; Xu X. ; Tománek D. ; Ye P. D. ACS Nano 2014, 8 (4), 4033.
doi: 10.1021/nn501226z |
39 |
Xia F. ; Wang H. ; Xiao D. ; Dubey M. ; Ramasubramaniam A. Nat. Photonics 2014, 8 (12), 899.
doi: 10.1038/nphoton.2014.271 |
40 |
Low J. ; Cao S. ; Yu J. ; Wageh S. Chem. Commun. 2014, 50 (74), 10768.
doi: 10.1039/C4CC02553A |
41 |
Guo Z. ; Chen S. ; Wang Z. ; Yang Z. ; Liu F. ; Xu Y. ; Wang J. ; Yi Y. ; Zhang H. ; Liao L. ; et al Adv. Mater. 2017, 29 (42), 1703811.
doi: 10.1002/adma.201703811 |
42 |
Wang X. ; Jones A. M. ; Seyler K. L. ; Tran V. ; Jia Y. ; Zhao H. ; Wang H. ; Yang L. ; Xu X. ; Xia F. Nat. Nanotechnol. 2015, 10 (6), 517.
doi: 10.1038/nnano.2015.71 |
43 |
Ezawa M. New J. Phys. 2014, 16 (11), 115004.
doi: 10.1088/1367-2630/16/11/115004 |
44 |
Rudenko A. N. ; Katsnelson M. I. Phys. Rev. B 2014, 89 (20), 201408.
doi: 10.1103/PhysRevB.89.201408 |
45 |
Han C. ; Li J. ; Ma Z. ; Xie H. ; Waterhouse G. I. N. ; Ye L. ; Zhang T. Sci. China Mater. 2018, 61 (9), 1159.
doi: 10.1007/s40843-018-9245-y |
46 |
Bai H. ; Li C. ; Shi G. Adv. Mater. 2011, 23 (9), 1089.
doi: 10.1002/adma.201003753 |
47 |
Dreyer D. R. ; Park S. ; Bielawski C. W. ; Ruoff R. S. Chem. Soc. Rev. 2010, 39 (1), 228.
doi: 10.1039/B917103G |
48 |
Albero J. ; Mateo D. ; Garcia H. Molecules 2019, 24 (5), 906.
doi: 10.3390/molecules24050906 |
49 |
Yeh T. F. ; Syu J. M. ; Cheng C. ; Chang T. H. ; Teng H. Adv. Funct. Mater. 2010, 20 (14), 2255.
doi: 10.1002/adfm.201000274 |
50 |
Hsu H. C. ; Shown I. ; Wei H. Y. ; Chang Y. C. ; Du H. Y. ; Lin Y. G. ; Tseng C. A. ; Wang C. H. ; Chen L. C. ; Lin Y. C. ; et al Nanoscale 2013, 5 (1), 262.
doi: 10.1039/C2NR31718D |
51 |
Zhang X. ; Yang J. ; Cai T. ; Zuo G. ; Tang C. Appl. Surf. Sci. 2018, 443, 558.
doi: 10.1016/j.apsusc.2018.02.275 |
52 |
Liao Y. ; Hu Z. ; Gu Q. ; Xue C. Molecules 2015, 20 (10), 18847.
doi: 10.3390/molecules201018847 |
53 |
Shi W. ; Guo X. ; Cui C. ; Jiang K. ; Li Z. ; Qu L. ; Wang J. C. Appl. Catal. B 2019, 243, 236.
doi: 10.1016/j.apcatb.2018.09.076 |
54 |
Chen W. ; Han B. ; Tian C. ; Liu X. ; Liang S. ; Deng H. ; Lin Z. Appl. Catal. B 2019, 244, 996.
doi: 10.1016/j.apcatb.2018.12.045 |
55 |
Shi R. ; Waterhouse G. I. N. ; Zhang T. Solar RRL 2017, 1 (11), 1700126.
doi: 10.1002/solr.201700126 |
56 |
Yi H. ; Qin L. ; Huang D. ; Zeng G. ; Lai C. ; Liu X. ; Li B. ; Wang H. ; Zhou C. ; Huang F. ; et al Chem. Eng. J. 2019, 358, 480.
doi: 10.1016/j.cej.2018.10.036 |
57 |
Silva Ribeiro C. ; Azário Lansarin M. React. Kinet. Mech. Catal. 2019, 127 (2), 1059.
doi: 10.1007/s11144-019-01591-z |
58 |
Jeyalakshmi V. ; Mahalakshmy R. ; Ramesh K. ; Rao P. V. C. ; Choudary N. V. ; Sri Ganesh G. ; Thirunavukkarasu K. ; Krishnamurthy K. R. ; Viswanathan B. RSC Adv. 2015, 5 (8), 5958.
doi: 10.1039/C4RA11985A |
59 |
Iizuka K. ; Wato T. ; Miseki Y. ; Saito K. ; Kudo A. J. Am. Chem. Soc. 2011, 133 (51), 20863.
doi: 10.1021/ja207586e |
60 |
Yang Y. ; Zhang C. ; Lai C. ; Zeng G. ; Huang D. ; Cheng M. ; Wang J. ; Chen F. ; Zhou C. ; Xiong W. Adv. Colloid Interface Sci. 2018, 254, 76.
doi: 10.1016/j.cis.2018.03.004 |
61 |
Wang Z. ; Chen M. ; Huang D. ; Zeng G. ; Xu P. ; Zhou C. ; Lai C. ; Wang H. ; Cheng M. ; Wang W. Chem. Eng. J. 2019, 374, 1025.
doi: 10.1016/j.cej.2019.06.018 |
62 |
Zhou C. ; Lai C. ; Xu P. ; Zeng G. ; Huang D. ; Zhang C. ; Cheng M. ; Hu L. ; Wan J. ; Liu Y. ; et al ACS Sustain. Chem. Eng. 2018, 6 (3), 4174.
doi: 10.1021/acssuschemeng.7b04584 |
63 |
Zhao L. ; Zhang X. ; Fan C. ; Liang Z. ; Han P. Physica B 2012, 407 (17), 3364.
doi: 10.1016/j.physb.2012.04.039 |
64 |
Zhang L. ; Wang W. ; Jiang D. ; Gao E. ; Sun S. Nano Res. 2015, 8 (3), 821.
doi: 10.1007/s12274-014-0564-2 |
65 |
Wu D. ; Ye L. ; Yip H. Y. ; Wong P. K. Catal. Sci. Technol. 2017, 7 (1), 265.
doi: 10.1039/C6CY02040B |
66 |
Ye L. ; Jin X. ; Ji X. ; Liu C. ; Su Y. ; Xie H. ; Liu C. Chem. Eng. J. 2016, 291, 39.
doi: 10.1016/j.cej.2016.01.032 |
67 |
Kong X. Y. ; Lee W. P. C. ; Ong W. -J. ; Chai S. -P. ; Mohamed A. R. ChemCatChem 2016, 8 (19), 3074.
doi: 10.1002/cctc.201600782 |
68 |
Chhowalla M. ; Shin H. S. ; Eda G. ; Li L. -J. ; Loh K. P. ; Zhang H. Nat. Chem. 2013, 5 (4), 263.
doi: 10.1038/nchem.1589 |
69 |
Zheng Y. ; Yin X. ; Jiang Y. ; Bai J. ; Tang Y. ; Shen Y. ; Zhang M. Energy Technol. 2019, 7 (11), 1900582.
doi: 10.1002/ente.201900582 |
70 |
Jiao X. ; Li X. ; Jin X. ; Sun Y. ; Xu J. ; Liang L. ; Ju H. ; Zhu J. ; Pan Y. ; Yan W. ; et al J. Am. Chem. Soc. 2017, 139 (49), 18044.
doi: 10.1021/jacs.7b10287 |
71 |
Zhang J. ; Wang Y. ; Jin J. ; Zhang J. ; Lin Z. ; Huang F. ; Yu J. ACS Appl. Mater. Interfaces 2013, 5 (20), 10317.
doi: 10.1021/am403327g |
72 |
Su T. ; Hood Z. D. ; Naguib M. ; Bai L. ; Luo S. ; Rouleau C. M. ; Ivanov I. N. ; Ji H. ; Qin Z. ; Wu Z. ACS Appl. Energy Mater. 2019, 2 (7), 4640.
doi: 10.1021/acsaem.8b02268 |
73 |
Su T. ; Hood Z. D. ; Naguib M. ; Bai L. ; Luo S. ; Rouleau C. M. ; Ivanov I. N. ; Ji H. ; Qin Z. ; Wu Z. Nanoscale 2019, 11 (17), 8138.
doi: 10.1039/C9NR00168A |
74 |
Sun Z. ; Talreja N. ; Tao H. ; Texter J. ; Muhler M. ; Strunk J. ; Chen J. Angew. Chem. Int. Edit. 2018, 57 (26), 7610.
doi: 10.1002/anie.201710509 |
75 |
Zhang X. ; Zhang Z. ; Li J. ; Zhao X. ; Wu D. ; Zhou Z. J. Mater. Chem. A 2017, 5 (25), 12899.
doi: 10.1039/C7TA03557H |
76 |
Zhao Y. ; Jia X. ; Waterhouse G. I. N. ; Wu L. -Z. ; Tung C. -H. ; O'Hare D. ; Zhang T. .Adv. Energy Mater. 2016, 6 (6), 1501974.
doi: 10.1002/aenm.201501974 |
77 |
Liu C. ; Wang W. ; Liu B. ; Qiao J. ; Lv L. ; Gao X. ; Zhang X. ; Xu D. ; Liu W. ; Liu J. ; et al Catalysts 2019, 9 (8), 658.
doi: 10.3390/catal9080658 |
78 |
Fu Y. ; Wu J. ; Du R. ; Guo K. ; Ma R. ; Zhang F. ; Zhu W. ; Fan M. RSC Adv. 2019, 9 (65), 37733.
doi: 10.1039/C9RA08097J |
79 |
Ye L. ; Gao Y. ; Cao S. ; Chen H. ; Yao Y. ; Hou J. ; Sun L. Appl. Catal. B 2018, 227, 54.
doi: 10.1016/j.apcatb.2018.01.028 |
80 |
Wang C. ; Liu X. -M. ; Zhang M. ; Geng Y. ; Zhao L. ; Li Y. -G. ; Su Z. -M. ACS Sustain. Chem. Eng. 2019, 7 (16), 14102.
doi: 10.1021/acssuschemeng.9b02699 |
81 |
Wang S. ; Wang X. Small 2015, 11 (26), 3097.
doi: 10.1002/smll.201500084 |
82 |
Matthes L. ; Pulci O. ; Bechstedt F. J. Phys. Condens. Matter 2013, 25 (39), 395305.
doi: 10.1088/0953-8984/25/39/395305 |
83 |
Zhou S. ; Pei W. ; Zhao J. ; Du A. Nanoscale 2019, 11 (16), 7734.
doi: 10.1039/C9NR01336A |
84 |
Zhao F. ; Feng Y. ; Wang Y. ; Zhang X. ; Liang X. ; Li Z. ; Zhang F. ; Wang T. ; Gong J. ; Feng W. Nat. Commun. 2020, 11 (1), 1443.
doi: 10.1038/s41467-020-15262-4 |
85 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306 (5696), 666.
doi: 10.1126/science.1102896 |
86 |
Castellanos-Gomez A. ; Vicarelli L. ; Prada E. ; Island J. O. ; Narasimha-Acharya K. L. ; Blanter S. I. ; Groenendijk D. J. ; Buscema M. ; Steele G. A. ; Alvarez J. V. ; et al 2D Mater. 2014, 1 (2), 025001.
doi: 10.1088/2053-1583/1/2/025001 |
87 |
Xiao H. ; Zhao M. ; Zhang J. ; Ma X. ; Zhang J. ; Hu T. ; Tang T. ; Jia J. ; Wu H. Electrochem. Commun. 2018, 89, 10.
doi: 10.1016/j.elecom.2018.02.010 |
88 |
Sun Z. ; Fan Q. ; Zhang M. ; Liu S. ; Tao H. ; Texter J. Adv. Sci. 2019, 6 (18), 1901084.
doi: 10.1002/advs.201901084 |
89 |
Wang J. ; Shen Z. ; Yi M. Carbon 2019, 153, 156.
doi: 10.1016/j.carbon.2019.07.008 |
90 | Zhang F. ; Ye C. ; Cui N. ; Guo P. ; Wu M. ; Lyu L. ; Lin C. ; Zhan Z. Surf. Technol. 2019, 48 (6), 20. |
张帆; 叶辰; 崔乃元; 郭沛; 吴明亮; 吕乐; 林正得; 詹肇麟. 表面技术, 2019, 48 (6), 20.
doi: 10.16490/j.cnki.issn.1001-3660.2019.06.002 |
|
91 |
Miao J. ; Xu G. ; Liu J. ; Lv J. ; Wu Y. J. Solid State Chem. 2017, 246, 186.
doi: 10.1016/j.jssc.2016.11.028 |
92 |
Fan C. ; Miao J. ; Xu G. ; Liu J. ; Lv J. ; Wu Y. RSC Adv. 2017, 7 (59), 37185.
doi: 10.1039/C7RA05732F |
93 |
Zheng X. ; Wang G. ; Huang F. ; Liu H. ; Gong C. ; Wen S. ; Hu Y. ; Zheng G. ; Chen D. Front. Chem. 2019, 7, 544.
doi: 10.3389/fchem.2019.00544 |
94 |
Brent J. R. ; Savjani N. ; Lewis E. A. ; Haigh S. J. ; Lewis D. J. ; O'Brien P. Chem. Commun. 2014, 50 (87), 13338.
doi: 10.1039/C4CC05752J |
95 |
Yasaei P. ; Kumar B. ; Foroozan T. ; Wang C. ; Asadi M. ; Tuschel D. ; Indacochea J. E. ; Klie R. F. ; Salehi-Khojin A. Adv. Mater. 2015, 27 (11), 1887.
doi: 10.1002/adma.201405150 |
96 |
Di J. ; Xia J. ; Li X. ; Ji M. ; Xu H. ; Chen Z. ; Li H. Carbon 2016, 107, 1.
doi: 10.1016/j.carbon.2016.05.028 |
97 |
Peng J. ; Chen X. ; Ong W. -J. ; Zhao X. ; Li N. Chem 2019, 5 (1), 18.
doi: 10.1016/j.chempr.2018.08.037 |
98 |
She X. ; Wu J. ; Zhong J. ; Xu H. ; Yang Y. ; Vajtai R. ; Lou J. ; Liu Y. ; Du D. ; Li H. ; et al Nano Energy 2016, 27, 138.
doi: 10.1016/j.nanoen.2016.06.042 |
99 |
He M. ; Lei J. ; Zhou C. ; Shi H. ; Sun X. ; Gao B. Mater. Res. Express 2019, 6 (11), 1150.
doi: 10.1088/2053-1591/ab4d70 |
100 |
Srivastava S. ; Kashyap P. K. ; Singh V. ; Senguttuvan T. D. ; Gupta B. K. New J. Chem. 2018, 42 (12), 9550.
doi: 10.1039/C8NJ00885J |
101 |
Khalifa Z. S. ; Mahmoud S. A. Phys. E 2017, 91, 60.
doi: 10.1016/j.physe.2017.03.010 |
102 |
Meier A. J. ; Garg A. ; Sutter B. ; Kuhn J. N. ; Bhethanabotla V. R. ACS Sustain. Chem. Eng. 2019, 7 (1), 265.
doi: 10.1021/acssuschemeng.8b03168 |
103 |
Zhou C. ; Zhao Y. ; Shang L. ; Shi R. ; Wu L. -Z. ; Tung C. -H. ; Zhang T. Chem. Commun. 2016, 52 (53), 8239.
doi: 10.1039/C6CC03739A |
104 |
Cheng W. ; He J. ; Yao T. ; Sun Z. ; Jiang Y. ; Liu Q. ; Jiang S. ; Hu F. ; Xie Z. ; He B. ; et al J. Am. Chem. Soc. 2014, 136 (29), 10393.
doi: 10.1021/ja504088n |
105 |
Zhou Y. ; Zhang Y. ; Lin M. ; Long J. ; Zhang Z. ; Lin H. ; Wu J. C. S. ; Wang X. Nat. Commun. 2015, 6 (1), 8340.
doi: 10.1038/ncomms9340 |
106 |
Liang L. ; Lei F. ; Gao S. ; Sun Y. ; Jiao X. ; Wu J. ; Qamar S. ; Xie Y. Angew. Chem. Int. Edit. 2015, 54 (47), 13971.
doi: 10.1002/anie.201506966 |
107 |
Lei F. ; Sun Y. ; Liu K. ; Gao S. ; Liang L. ; Pan B. ; Xie Y. J. Am. Chem. Soc. 2014, 136 (19), 6826.
doi: 10.1021/ja501866r |
108 |
Gao S. ; Sun Y. ; Lei F. ; Liu J. ; Liang L. ; Li T. ; Pan B. ; Zhou J. ; Xie Y. Nano Energy 2014, 8, 205.
doi: 10.1016/j.nanoen.2014.05.017 |
109 |
Lopez-Bezanilla A. Phys. Rev. B 2016, 93 (3), 035433.
doi: 10.1103/PhysRevB.93.035433 |
110 |
Bai Y. ; Yang P. ; Wang L. ; Yang B. ; Xie H. ; Zhou Y. ; Ye L. Chem. Eng. J. 2019, 360, 473.
doi: 10.1016/j.cej.2018.12.008 |
111 |
Ahsaine H. A. ; Slassi A. ; Naciri Y. ; Chennah A. ; Jaramillo-Páez C. ; Anfar Z. ; Zbair M. ; Benlhachemi A. ; Navío J. A. ChemistrySelect 2018, 3 (27), 7778.
doi: 10.1002/slct.201801729 |
112 |
Wang K. ; Zhang L. ; Su Y. ; Sun S. ; Wang Q. ; Wang H. ; Wang W. Catal. Sci. Technol. 2018, 8 (12), 3115.
doi: 10.1039/C8CY00513C |
113 |
Liu G. ; Niu P. ; Sun C. ; Smith S. C. ; Chen Z. ; Lu G. Q. ; Cheng H. -M. J. Am. Chem. Soc. 2010, 132 (33), 11642.
doi: 10.1021/ja103798k |
114 |
Wang K. ; Li Q. ; Liu B. ; Cheng B. ; Ho W. ; Yu J. Appl. Catal. B 2015, 176, 44.
doi: 10.1016/j.apcatb.2015.03.045 |
115 |
Di J. ; Zhao X. ; Lian C. ; Ji M. ; Xia J. ; Xiong J. ; Zhou W. ; Cao X. ; She Y. ; Liu H. ; et al Nano Energy 2019, 61, 54.
doi: 10.1016/j.nanoen.2019.04.029 |
116 |
Yang X. ; Wang S. ; Yang N. ; Zhou W. ; Wang P. ; Jiang K. ; Li S. ; Song H. ; Ding X. ; Chen H. ; et al Appl. Catal. B 2019, 259, 118088.
doi: 10.1016/j.apcatb.2019.118088 |
117 |
Du P. ; Su T. ; Luo X. ; Zhou X. ; Qin Z. ; Ji H. ; Chen J. Chin. J. Chem. 2018, 36 (6), 538.
doi: 10.1002/cjoc.201700761 |
118 |
Tang J. Y. ; Kong X. Y. ; Ng B. -J. ; Chew Y. -H. ; Mohamed A. R. ; Chai S. -P. Catal. Sci. Technol. 2019, 9 (9), 2335.
doi: 10.1039/C9CY00449A |
119 |
Du C. ; Zhang Q. ; Lin Z. ; Yan B. ; Xia C. ; Yang G. Appl. Catal. B 2019, 248, 193.
doi: 10.1016/j.apcatb.2019.02.027 |
120 |
Gao S. ; Gu B. ; Jiao X. ; Sun Y. ; Zu X. ; Yang F. ; Zhu W. ; Wang C. ; Feng Z. ; Ye B. ; et al J. Am. Chem. Soc. 2017, 139 (9), 3438.
doi: 10.1021/jacs.6b11263 |
121 |
Xiao S. ; Weiyue X. ; Xiaohong Y. Beilstein J. Nanotechnol. 2017, 8, 2264.
doi: 10.3762/bjnano.8.226 |
122 |
Shi H. ; Long S. ; Hu S. ; Hou J. ; Ni W. ; Song C. ; Li K. ; Gurzadyan G. G. ; Guo X. Appl. Catal. B 2019, 245, 760.
doi: 10.1016/j.apcatb.2019.01.036 |
123 |
Qiao B. ; Wang A. ; Yang X. ; Allard L.F. ; Jiang Z. ; Cui Y. ; Liu J. ; Li J. ; Zhang T. Nat. Chem. 2011, 3 (8), 634.
doi: 10.1038/nchem.1095 |
124 |
Wang L. ; Chen W. ; Zhang D. ; Du Y. ; Amal R. ; Qiao S. ; Wu J. ; Yin Z. Chem. Soc. Rev. 2019, 48 (21), 5310.
doi: 10.1039/C9CS00163H |
125 |
Jiang Z. ; Sun W. ; Miao W. ; Yuan Z. ; Yang G. ; Kong F. ; Yan T. ; Chen J. ; Huang B. ; An C. ; et al Adv. Sci. 2019, 6 (15), 1900289.
doi: 10.1002/advs.201900289 |
126 |
Su T. ; Qin Z. ; Ji H. ; Wu Z. Nanotechnology 2019, 30 (50), 502002.
doi: 10.1088/1361-6528/ab3f15 |
127 |
Su T. ; Shao Q. ; Qin Z. ; Guo Z. ; Wu Z. ACS Catal. 2018, 8 (3), 2253.
doi: 10.1021/acscatal.7b03437 |
128 |
Tonda S. ; Kumar S. ; Bhardwaj M. ; Yadav P. ; Ogale S. ACS Appl. Mater. Interfaces 2018, 10 (3), 2667.
doi: 10.1021/acsami.7b18835 |
129 |
Han C. ; Lei Y. ; Wang B. ; Wang Y. ChemSusChem 2018, 11 (24), 4237.
doi: 10.1002/cssc.201802088 |
130 |
She H. ; Zhou H. ; Li L. ; Zhao Z. ; Jiang M. ; Huang J. ; Wang L. ; Wang Q. ACS Sustain. Chem. Eng. 2019, 7 (1), 650.
doi: 10.1021/acssuschemeng.8b04250 |
[1] | Chengbo Zhang, Xiaoping Tao, Wenchao Jiang, Junxue Guo, Pengfei Zhang, Can Li, Rengui Li. Microwave-Assisted Synthesis of Bismuth Chromate Crystals for Photogenerated Charge Separation [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303034-. |
[2] | Kezhen Lai, Fengyan Li, Ning Li, Yangqin Gao, Lei Ge. Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304018-. |
[3] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[4] | Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212038-0. |
[5] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[6] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[7] | Xinhe Wu, Guoqiang Chen, Juan Wang, Jinmao Li, Guohong Wang. Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212016-0. |
[8] | Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai. Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209037-. |
[9] | Zhongqi Zan, Xibao Li, Xiaoming Gao, Juntong Huang, Yidan Luo, Lu Han. 0D/2D Carbon Nitride Quantum Dots (CNQDs)/BiOBr S-Scheme Heterojunction for Robust Photocatalytic Degradation and H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209016-. |
[10] | Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211010-0. |
[11] | Yonggang Lei, Tianyu Zhao, Kim Hoong Ng, Yingzhen Zhang, Xuerui Zang, Xiao Li, Weilong Cai, Jianying Huang, Jun Hu, Yuekun Lai. Metallic Tungsten Carbide Coupled with Liquid-Phase Dye Photosensitizer for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2206006-0. |
[12] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[13] | Yaoyu Liu, Yuchen Wang, Biying Liu, Mahmoud Amer, Kai Yan. Cobalt-Vanadium Layered Double Hydroxides Nanosheets as High-Performance Electrocatalysts for Urea Oxidation Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205028-0. |
[14] | Jing Kong, Jingui Zhang, Sufen Zhang, Juqun Xi, Ming Shen. Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212039-. |
[15] | Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302049-. |
|