Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (1): 2006021.doi: 10.3866/PKU.WHXB202006021
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Fanfan Liu1, Zhiwen Zhang1, Shufen Ye1, Yu Yao1, Yan Yu1,2,*()
Received:
2020-06-10
Accepted:
2020-07-01
Published:
2020-07-08
Contact:
Yan Yu
E-mail:yanyumse@ustc.edu.cn
About author:
Yan Yu. Email: yanyumse@ustc.edu.cn; Tel.: +86-551-63607179Supported by:
Fanfan Liu, Zhiwen Zhang, Shufen Ye, Yu Yao, Yan Yu. Challenges and Improvement Strategies Progress of Lithium Metal Anode[J]. Acta Phys. -Chim. Sin. 2021, 37(1), 2006021. doi: 10.3866/PKU.WHXB202006021
Fig 2
(a) Schematic of fabricating layered rGO and Li composite electrode 44. (b) Schematic of inducing Li deposition via N-doped graphene 45. (c) Schematic of fabricating Li and graphene foam modified by metallic oxide nanoarrays 46. (a) Adapted from Ref. 44. Copyright 2017, Springer Nature. (b) Adapted with permission from Ref. 45. Copyright 2016, Wiley-VCH. (c) Adapted with permission from Ref. 46. Copyright 2018, Wiley-VCH."
Fig 3
(a) Schematic of inducing Li deposition via Ag nanoparticle modifying carbon nanofibers (CNFs) 59. (b) Schematic of fabricating Li@CC-CNTs composite electrode 62. (c) Schematic of TiN-VN@CNFs applied for Li anode and sulfur cathode 63. (a) Adapted with permission from Ref. 59. Copyright 2017, Wiley-VCH. (b) Adapted with permission from Ref. 62. Copyright 2018, Wiley-VCH. (c) Adapted with permission from Ref. 63. Copyright 2019, Wiley-VCH."
Fig 4
(a) Schematic of synthesizing Li-Ni composite and the corresponding optical photograph 86. (b) Schematic of fabricating Cu nanowires and the effects of regulating Li ions flux between planar and 3D porous Cu 95. (c) Schematic of inducing Li nucleation between Cu nanofibers and Al coated Cu nanofibers 99. (a) Adapted with permission from Ref. 86. Copyright 2017, Wiley-VCH. (b) Adapted from Ref. 95. Copyright 2015, Springer Nature. (c) Adapted with permission from Ref. 99. Copyright 2019, Wiley-VCH."
Fig 5
(a) Schematic of infusing molten Li into CNTs cluster 103. (b) Schematic of Li and ZIF-8 based carbon material composite electrode and the corresponding Li-Zn binary phase diagram 106. (c) Schematic of fabricating LAN electrode derived Li powder, AlN and CNT powder 109. (a) Adapted with permission from Ref. 103. Copyright 2017, Royal Society of Chemistry. (b) Adapted with permission from Ref. 106. Copyright 2018, Wiley-VCH. (c) Adapted with permission from Ref. 109. Copyright 2020, American Chemical Society."
Table 1
The cycling performance comparison of Li symmetrical cells with different matrix."
3D matrix strategy | Electrolyte | Cycle condition | Cycle life | |
Graphene-based | Layered rGO-Li | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 900 h |
Unstacked graphene | LiTFSI-LiFSI dual-salt in DOL/DME | 2 mA·cm-2, 0.1 mAh·cm-2 | 70 h | |
Li-Mn/graphene foam | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 2 mA·cm-2, 1 mAh·cm-2 | 300 h | |
N-doped porous graphene-Li | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 5 mA·cm-2, 10 mAh·cm-2 | 500 h | |
Interconnected graphene | 1 mol·L-1 LiTFSI in DOL/DME with 0.2 mol·L-1 LiNO3 | 2 mA·cm-2, 1 mAh·cm-2 | 200 h | |
Ni3N/graphene | 1 mol·L-1 LiTFSI in DOL/DME with 2% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 1400 h | |
CF-based | CNF/Ag | 1 mol·L-1 LiTFSI in DOL/DME | 0.5 mA·cm-2, 1 mAh·cm-2 | 500 h |
CF/Ag-Li | 1 mol·L-1 LiTFSI in DOL/DME | 1 mA·cm-2, 1 mAh·cm-2 | 400 h | |
GCF/Li | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 300 h | |
Li-GT scaffold | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 900 h | |
Li-CNF/TiN-VN | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 2 mA·cm-2, 1 mAh·cm-2 | 1000 h | |
Li-CC/CNTs | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 5 mA·cm-2, 1 mAh·cm-2 | 500 h | |
CFC/Co-NC@Li | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 1000 h | |
Li-CFC | 1 mol·L-1 LiPF6 in EC/DEC | 1 mA·cm-2, 1 mAh·cm-2 | 400 h | |
Li-CF/SnO2 | 1 mol·L-1 LiPF6 in EC/DEC | 1 mA·cm-2, 1 mAh·cm-2 | 750 h | |
3D hollow CF | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 2 mA·cm-2, 1 mAh·cm-2 | 600 h | |
Metal-based | Li-Ni foam composite | 1 mol·L-1 LiPF6 in EC/DMC/EMC | 1 mA·cm-2, 1 mAh·cm-2 | 200 h |
Li-Ni foam/CoO | 1 mol·L-1 LiTFSI in DOL/DME with 0.1 mol·L-1 LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 270 h | |
Li-Cu mesh | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 600 h | |
3D porous Cu | 1 mol·L-1 LiTFSI in DOL/DME with 2% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 800 h | |
Cu nanowires | 1 mol·L-1 LiTFSI in DOL/DME | 0.2 mA·cm-2, 0.5 mAh·cm-2 | 600 h | |
Graphene/Cu foam | 1 mol·L-1 LiTFSI in DOL/DME with 2% (w) LiNO3 | 0.5 mA·cm-2, 1 mAh·cm-2 | 2000 h | |
Li-Cu foam | 1 mol·L-1 LiPF6 in EC/DMC with 10% (w) FEC | 3 mA·cm-2, 1 mAh·cm-2 | 200 h | |
3D vertical Cu microchannel | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 200 h | |
Li-3D Cu/Al | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 1450 h | |
Delloying derived porous Cu | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 0.5 mA·cm-2, 1 mAh·cm-2 | 1000 h | |
Cu-CuO-Ni | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 580 h | |
Powder-based | Li-CNT | 1 mol·L-1 LiPF6 in EC/DMC/EMC | 0.5 mA·cm-2, 0.1 mAh·cm-2 | 400 h |
Li-CNT/AB | 1 mol·L-1 LiTFSI in DOL/DME | 0.5 mA·cm-2, 0.5 mAh·cm-2 | 480 h | |
Li-cMOFs | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 700 h | |
LAN | 1 mol·L-1 LiTFSI in DOL/DME | 1 mA·cm-2, 1 mAh·cm-2 | 1000 h | |
Li-Co@N-G | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 1000 h | |
Li-CMK-3/Sn | 1 mol·L-1 LiTFSI in DOL/DME with 2% (w) LiNO3 | 2 mA·cm-2, 1 mAh·cm-2 | 1200 h |
Fig 6
(a) The effect schematic between solvent molecule and ions in conventional, high-concentrated and diluted concentrated electrolyte. (b) Schematic of the effect of highly fluorinated interphase in Li metal battery, (c) the full battery performance comparison between conventional electrolyte and F-rich electrolyte, (d) the LUMO and HOMO energy comparison between EC, DMC and LiFSI. (a) Adapted from Ref. 125. Copyright 2019, Springer Nature. (b–d) Adapted from Ref. 126. Copyright 2017, Elsevier."
Fig 7
(a) Schematic of FEC additive protecting Li metal anode and the LUMO energy comparison between EC, FEC and DEC 147. (b) The sectional image of Li anode after cycling using conventional electrolyte and FEC/LiNO3 electrolyte, and the corresponding performance comparison full battery 153. (c) Schematic of inducing Li deposition via CsPF6 additive and the corresponding morphologies after cycling without and with CsPF6 28. (a) Adapted with permission from Ref. 147. Copyright 2017, Wiley-VCH. (b) Adapted with permission from Ref. 153. Copyright 2018, Wiley-VCH. (c) Adapted with permission from Ref. 28. Copyright 2013, American Chemical Society."
Fig 8
(a) Schematic of fabricating LiF protection layer and the corresponding morphology structure 170. (b) Schematic of Li deposition on the bare Li and MClx (M = In, Zn, Bi, As) protected Li, the corresponding sectional structure and full battery performance comparison 176. (c) Schematic of the fabrication process and effect of Li2S protection layer 183. (d) Schematic of Li-PAA protecting Li metal anode 194. (a) Adapted with permission from Ref. 170. Copyright 2017, American Chemical Society. (b) Adapted from Ref. 176. Copyright 2017, Springer Nature. (c) Adapted with permission from Ref. 183. Copyright 2019, Wiley-VCH. (d) Adapted with permission from Ref. 194. Copyright 2018, Wiley-VCH."
Table 2
The cycle performance comparison of Li symmetrical cells with different artificial SEI."
SEI strategy | Electrolyte | Cycle condition | Cycle life |
LiF derived from Li/F2 | 1 mol·L-1 LiPF6 in EC/DEC | 1 mA·cm-2, 1 mAh·cm-2 | 600 h |
LiF-rich derived from Li/NH4HF2 | 1 mol·L-1 LiTFSI in DOL/DME | 1 mA·cm-2, 1 mAh·cm-2 | 600 h |
LiF-rich derived from Li/BF3·H2O | 1 mol·L-1 LiTFSI in DOL/DME with 2% (w) LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 700 h |
LiF/Cu | 1 mol·L-1 LiTFSI in DOL/DME | 2.5 mA·cm-2, 0.5 mAh·cm-2 | 830 h |
LiF/Li3Sb-SBR | 1 mol·L-1 LiTFSI in DOL/DME | 1 mA·cm-2, 1 mAh·cm-2 | 500 h |
LiF/LixAl | 1 mol·L-1 LiTFSI in DOL/DME with 0.2 mol·L-1 LiNO3 | 3 mA·cm-2, 1 mAh·cm-2 | 600 h |
LiCl/LixM | 1 mol·L-1 LiTFSI in DOL/DME | 2 mA·cm-2, 2 mAh·cm-2 | 1000 h |
Li2S | 1 mol·L-1 LiPF6 in EC/DEC | 2 mA·cm-2, 5 mAh·cm-2 | 750 h |
Sulfurized SEI | 1 mol·L-1 LiTFSI in DOL/DME | 1 mA·cm-2, 1 mAh·cm-2 | 120 h |
Li2S/Li2Se | 1 mol·L-1 LiTFSI in DOL/DME with 1% (w) LiNO3 | 1.5 mA·cm-2, 3 mAh·cm-2 | 900 h |
MoS2 | 1 mol·L-1 LiTFSI in DOL/DME | 10 mA·cm-2, 5 mAh·cm-2 | 300 h |
Phosphorene | 1.3 mol·L-1 LiPF6 in EC/DEC | 2 mA·cm-2, 1 mAh·cm-2 | 100 h |
Li2TiO3 | 1 mol·L-1 LiPF6 in EC/DEC with 10% (w) FEC | 1 mA·cm-2, 1 mAh·cm-2 | 350 h |
Li3PO4 | 1 mol·L-1 LiPF6 in EC/DMC/EMC | 0.5 mA·cm-2, 1 mAh·cm-2 | 600 h |
LixSi | 1 mol·L-1 LiTFSI in DOL/DME with 0.1 mol·L-1 LiNO3 | 1 mA·cm-2, 1 mAh·cm-2 | 400 h |
Ge | 1 mol·L-1 LiTFSI in TEGDME and 0.5 mol·L-1 LiTFSI in IL | 3 mA·cm-2, 1 mAh·cm-2 | 320 h |
Li-Sn | 1 mol·L-1 LiPF6 in EC/DMC with 10% (w) FEC and 1% (w) VC | 3 mA·cm-2, 3 mAh·cm-2 | 600 h |
Mg | 1 mol·L-1 LiTFSI in DGM with 0.025 mol·L-1 Mg(TFSI)2 | 0.5 mA·cm-2, 1.5 mAh·cm-2 | 580 |
Li3N nanoparticle | 1 mol·L-1 LiPF6 in EC/DEC | 1 mA·cm-2, 2 mAh·cm-2 | 350 h |
Li3N derived from Li/N2 | 1 mol·L-1 LiPF6 in EC/DEC | 1 mA·cm-2, 2 mAh·cm-2 | 500 h |
Li-PAA | 1 mol·L-1 LiPF6 in EC/DMC/EMC | 1 mA·cm-2, 1 mAh·cm-2 | 200 h |
Li-PEO/UPy | 1 mol·L-1 LiTFSI in DOL/DME with 2% (w) LiNO3 | 20 mA·cm-2, 1 mAh·cm-2 | 400 h |
PVDF-HFP/LiF | 1 mol·L-1 LiTFSI in DOL/DME | 2 mA·cm-2, 1 mAhc·m-2 | 200 h |
Fig 10
(a) Schematic of solid Li metal battery using SPEs, ICEs and ASE as electrolyte 222. (b) Schematic of Li-C composite on LLZO electrolyte, the corresponding optical image and the full battery performance using LFP as cathode 223. (c) Schematic of Li deposition behavior and morphology structure in PLL solid electrolyte and liquid electrolyte 224. (d) Sectional structure and schematic of solid Li metal battery using Ag/C as Li-free anode 227. (a) Adapted with permission from Ref. 222. Copyright 2018, American Chemical Society. (b) Adapted with permission from Ref. 223. Copyright 2019, Wiley-VCH. (c) Adapted from Ref. 224. Copyright 2014, National Academy of Sciences. (d) Adapted from Ref. 227. Copyright 2020, Springer Nature."
Table 3
The cycle performance comparison of solid-state Li metal batteries."
Li/Electrolyte strategy | Cycle condition | Work temperature | Cycle life |
Li-graphite/LLZTO | 0.3 mA·cm-2, 0.15 mAh·cm-2 | room temperature | 250 h |
Li-C3N4/LLZTO | 0.3 mA·cm-2, 0.15 mAh·cm-2 | room temperature | 300 h |
Li/ASE | 0.1 mA·cm-2, 1 mAh·cm-2 | 55 ℃ | 3200 h |
Li/PLL | 0.1 mA·cm-2, 1 mAh·cm-2 | 60 ℃ | 800 h |
Li-Mg/LLZO | 0.1 mA·cm-2, 0.01 mAh·cm-2 | 25 ℃ | 30 h |
Li/porous-dense-porous LLCZN | 0.5 mA·cm-2, 1 mAh·cm-2 | room temperature | 300 h |
Li-Li3N/LLZTO | 0.1 mA·cm-2, 0.01 mAh·cm-2 | 25 ℃ | 210 h |
Li/PEGDEM-4 | 0.2 mA·cm-2, 0.2 mAh·cm-2 | 60 ℃ | 2500 h |
Li-Mg3N2/PEO | 0.2 mA·cm-2, 0.2 mAh·cm-2 | 60 ℃ | 1500 h |
Li/PEO-Li10SnP2S12 | 0.2 mA·cm-2, 0.2 mAh·cm-2 | 60 ℃ | 600 h |
Li-TCF/garnet | 0.3 mA·cm-2, 0.15 mAh·cm-2 | room temperature | 600 h |
Li/Li-Al-O SSE | 0.2 mA·cm-2, 0.4 mAh·cm-2 | room temperature | 1400 h |
Li/COF-LLZTO | 0.1 mA·cm-2, 0.1 mAh·cm-2 | room temperature | 60 h |
1 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
2 |
Chu S. ; Majumdar A. Nature 2012, 488, 294.
doi: 10.1038/nature11475 |
3 |
Armand M. ; Tarascon J. M. Nature 2008, 451, 652.
doi: 10.1038/451652a |
4 |
Liang Y. ; Zhao C. Z. ; Yuan H. ; Chen Y. ; Zhang W. C. ; Huang J. Q. ; Yu D. S. ; Liu Y. L. ; Titirici M. M. ; Chueh Y. L. ; et al InfoMat 2019, 1, 6.
doi: 10.1002/inf2.12000 |
5 |
Janek J. ; Zeier W. G. Nat. Energy 2016, 1, 16141.
doi: 10.1038/nenergy.2016.141 |
6 |
Goodenough J. B. ; Kim Y. Chem. Mater. 2010, 22, 587.
doi: 10.1021/cm901452z |
7 |
Etacheri V. ; Marom R. ; Elazari R. ; Salitra G. ; Aurbach D. Energy Environ. Sci. 2011, 4, 3243.
doi: 10.1039/c1ee01598b |
8 |
Lin D. C. ; Liu Y. Y. ; Cui Y. Nat. Nanotech. 2017, 12, 194.
doi: 10.1038/nnano.2017.16 |
9 |
Bruce P. G. ; Freunberger S. A. ; Hardwick L. J. ; Tarascon J. M. Nat. Mater. 2012, 11, 19.
doi: 10.1038/nmat3191 |
10 | Liu S. ; Yao L. ; Zhang Q. ; Li L. L. ; Hu N. T. ; Wei L. M. ; Wei H. Acta Phys. -Chim. Sin. 2017, 33, 2339. |
刘帅; 姚路; 章琴; 李路路; 胡南滔; 魏良明; 魏浩. 物理化学学报, 2017, 33, 2339.
doi: 10.3866/PKU.WHXB201706021 |
|
11 |
Brandt K. Solid State Ionics 1994, 69, 173.
doi: 10.1016/0167-2738(94)90408-1 |
12 |
Whittingham M. S. Chem. Rev. 2004, 104, 4271.
doi: 10.1021/cr020731c |
13 |
Tarascon J. M. ; Armand M. Nature 2001, 414, 359.
doi: 10.1038/35104644 |
14 |
Xu W. ; Wang J. L. ; Ding F. ; Chen X. L. ; Nasybutin E. ; Zhang Y. H. ; Zhang J. G. Energy Environ. Sci. 2014, 7, 513.
doi: 10.1039/c3ee40795k |
15 |
Guo Y. P. ; Li H. Q. ; Zhai T. Y. Adv. Mater. 2017, 29, 1700007.
doi: 10.1002/adma.201700007 |
16 |
Liu B. ; Zhang J. G. ; Xu W. Joule 2018, 2, 833.
doi: 10.1016/j.joule.2018.03.008 |
17 |
Tikekar M. D. ; Choudhury S. ; Tu Z. Y. ; Archer L. A. Nat. Energy 2016, 1, 1.
doi: 10.1038/nenergy.2016.114 |
18 |
Aurbach D. J. Power Sources 2000, 89, 206.
doi: 10.1016/s0378-7753(00)00431-6 |
19 |
Sacci R. L. ; Black J. M. ; Balke N. ; Dudney N. J. ; More K. L. ; Unocic R. R. Nano Lett. 2015, 15, 2011.
doi: 10.1021/nl5048626 |
20 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
21 |
Wang D. ; Zhang W. ; Zheng W. T. ; Cui X. Q. ; Rojo T. ; Zhang Q. Adv. Sci. 2017, 4, 1600168.
doi: 10.1002/advs.201600168 |
22 |
Yoshio M. ; Wang H. Y. ; Fukuda K. ; Hara Y. ; Adachi Y. J. Electrochem. Soc. 2000, 147, 1245.
doi: 10.1149/1.1393344 |
23 |
Obrovac M. N. ; Christensen L. Electrochem. Solid State Lett. 2004, 7, A93.
doi: 10.1149/1.1652421 |
24 |
Gregory T. D. ; Hoffman R. J. ; Winterton R. C. J. Electrochem. Soc. 1990, 137, 775.
doi: 10.1149/1.2086553 |
25 |
Matsui M. J. Power Sources 2011, 196, 7048.
doi: 10.1016/j.jpowsour.2010.11.141 |
26 |
Ling C. ; Banerjee D. ; Matsui M. Electrochim. Acta 2012, 76, 270.
doi: 10.1016/j.electacta.2012.05.001 |
27 |
Jaeckle M. ; Gross A. J. Chem. Phys. 2014, 141, 174710.
doi: 10.1063/1.4901055 |
28 |
Ding F. ; Xu W. ; Graff G. L. ; Zhang J. ; Sushko M. L. ; Chen X. L. ; Shao Y. Y. ; Engelhard M. H. ; Nie Z. M. ; Xiao J. ; et al J. Am. Chem. Soc. 2013, 135, 4450.
doi: 10.1021/ja312241y |
29 |
Brissot C. ; Rosso M. ; Chazalviel J. N. ; Lascaud S. J. Power Sources 1999, 81, 925.
doi: 10.1016/s0378-7753(98)00242-0 |
30 |
Yamaki J. ; Tobishima S. ; Hayashi K. ; Saito K. ; Nemoto Y. ; Arakawa M. J. Power Sources 1998, 74, 219.
doi: 10.1016/s0378-7753(98)00067-6 |
31 |
Jeong J. H. ; Goldenfeld N. ; Dantzig J. A. Phys. Rev. E 2001, 64, 041602.
doi: 10.1103/PhysRevE.64.041602 |
32 |
Okajima Y. ; Shibuta Y. ; Suzuki T. Comput. Mater. Sci. 2010, 50, 118.
doi: 10.1016/j.commatsci.2010.07.015 |
33 |
Ely D. R. ; Garcia R. E. J. Electrochem. Soc. 2013, 160, A662.
doi: 10.1149/1.057304jes |
34 |
Chazalviel J. N. Phys. Rev. A 1990, 42, 7355.
doi: 10.1103/PhysRevA.42.7355 |
35 |
Yoo E. ; Kim J. ; Hosono E. ; Zhou H. ; Kudo T. ; Honma I. Nano Lett. 2008, 8, 2277.
doi: 10.1021/nl800957b |
36 |
Nitta N. ; Wu F. X. ; Lee J. T. ; Yushin G. Mater. Today 2015, 18, 252.
doi: 10.1016/j.mattod.2014.10.040 |
37 | Chen K. ; Sun Z. H. ; Fang R. P. ; Li F. ; Chen H. M. Acta Phys. -Chim. Sin. 2018, 34, 377. |
陈克; 孙振华; 方若翩; 李峰; 成会明. 物理化学学报, 2018, 34, 377.
doi: 10.3866/PKU.WHXB201709001 |
|
38 |
Castro Neto A. H. ; Guinea F. ; Peres N. M. R. ; Novoselov K. S. ; Geim A. K. Rev. Mod. Phys. 2009, 81, 109.
doi: 10.1103/RevModPhys.81.109 |
39 |
Wu Z. S. ; Ren W. C. ; Xu L. ; Li F. ; Cheng H. M. ACS Nano 2011, 5, 5463.
doi: 10.1021/nn2006249 |
40 |
Nie X. ; Zhang A. ; Liu Y. ; Shen C. ; Chen M. ; Xu C. ; Liu Q. ; Cai J. ; Alfaraidi A. ; Zhou C. Energy Storage Mater. 2019, 17, 341.
doi: 10.1016/j.ensm.2018.09.028 |
41 |
Yi J. S. ; Chen J. H. ; Yang Z. ; Dai Y. ; Li W. M. ; Cui J. ; Ciucci F. ; Lu Z. H. ; Yang C. L. Adv. Energy Mater. 2019, 9, 1901796.
doi: 10.1002/aenm.201901796 |
42 |
Zhang R. ; Wen S. W. ; Wang N. ; Qin K. Q. ; Liu E. Z. ; Shi C. S. ; Zhao N. Q. Adv. Energy Mater. 2018, 8, 1800914.
doi: 10.1002/aenm.201800914 |
43 |
Liu S. ; Wang A. X. ; Li Q. Q. ; Wu J. S. ; Chiou K. ; Huang J. X. ; Luo J. Y. Joule 2018, 2, 184.
doi: 10.1016/j.joule.2017.11.004 |
44 |
Lin D. C. ; Liu Y. Y. ; Liang Z. ; Lee H. W. ; Sun J. ; Wang H. T. ; Yan K. ; Xie J. ; Cui Y. Nat. Nanotech. 2016, 11, 626.
doi: 10.1038/nnano.2016.32 |
45 |
Zhang R. ; Cheng X. B. ; Zhao C. Z. ; Peng H. J. ; Shi J. L. ; Huang J. Q. ; Wang J. F. ; Wei F. ; Zhang Q. Adv. Mater. 2016, 28, 2155.
doi: 10.1002/adma.201504117 |
46 |
Yu B. Z. ; Tao T. ; Mateti S. ; Lu S. G. ; Chen Y. Adv. Funct. Mater. 2018, 28, 1803023.
doi: 10.1002/adfm.201803023 |
47 |
Zhang R. ; Chen X. R. ; Chen X. ; Cheng X. B. ; Zhang X. Q. ; Yan C. ; Zhang Q. Angew. Chem. Int. Ed. 2017, 56, 7764.
doi: 10.1002/anie.201702099 |
48 |
Wang T. S. ; Zhai P. B. ; Legut D. ; Wang L. ; Liu X. P. ; Li B. X. ; Dong C. X. ; Fan Y. C. ; Gong Y. J. ; Zhang Q. Adv. Energy Mater. 2019, 9, 1804000.
doi: 10.1002/aenm.201804000 |
49 |
Zhai P. B. ; Wang T. S. ; Yang W. W. ; Cui S. Q. ; Zhang P. ; Nie A. ; Zhang Q. ; Gong Y. J. Adv. Energy Mater. 2019, 9, 1804019.
doi: 10.1002/aenm.201804019 |
50 |
Wang H. S. ; Li Y. Z. ; Li Y. B. ; Liu Y. Y. ; Lin D. C. ; Zhu C. ; Chen G. X. ; Yang A. K. ; Yan K. ; Chen H. ; et al Nano Lett. 2019, 19, 1326.
doi: 10.1021/acs.nanolett.8b04906 |
51 |
Huang G. ; Han J. H. ; Zhang F. ; Wang Z. Q. ; Kashani H. ; Watanabe K. ; Chen M. W. Adv. Mater. 2019, 31, 1805334.
doi: 10.1002/adma.201805334 |
52 |
Jin T. ; Han Q. Q. ; Wang Y. J. ; Jiao L. F. Small 2018, 14, 1703086.
doi: 10.1002/smll.201703086 |
53 |
Ohsaki T. ; Kanda M. ; Aoki Y. ; Shiroki H. ; Suzuki S. J. Power Sources 1997, 68, 102.
doi: 10.1016/s0378-7753(97)02634-7 |
54 |
Jiang J. ; Zhu J. H. ; Ai W. ; Fan Z. X. ; Shen X. N. ; Zou C. J. ; Liu J. P. ; Zhang H. ; Yu T. Energy Environ. Sci. 2014, 7, 2670.
doi: 10.1039/c4ee00602j |
55 |
Zuo T. T. ; Wu X. W. ; Yang C. P. ; Yin Y. X. ; Ye H. ; Li N. W. ; Guo Y. G. Adv. Mater. 2017, 29, 1700389.
doi: 10.1002/adma.201700389 |
56 |
Liu L. ; Yin Y. X. ; Li J. Y. ; Li N. W. ; Zeng X. X. ; Ye H. ; Guo Y. G. ; Wan L. J. Joule 2017, 1, 563.
doi: 10.1016/j.joule.2017.06.004 |
57 |
Wang Q. ; Yang C. K. ; Yang J. J. ; Wu K. ; Qi L. Y. ; Tang H. ; Zhang Z. Y. ; Liu W. ; Zhou H. H. Energy Storage Mater. 2018, 15, 249.
doi: 10.1016/j.ensm.2018.04.030 |
58 |
Liu S. F. ; Xia X. H. ; Yao Z. J. ; Wu J. B. ; Zhang L. Y. ; Deng S. J. ; Zhou C. G. ; Shen S. H. ; Wang X. L. ; Tu J. P. Small Methods 2018, 2, 1800035.
doi: 10.1002/smtd.201800035 |
59 |
Yang C. P. ; Yao Y. G. ; He S. M. ; Xie H. ; Hitz E. ; Hu L. B. Adv. Mater. 2017, 29, 1702714.
doi: 10.1002/adma.201702714 |
60 |
Zhang R. ; Chen X. ; Shen X. ; Zhang X. Q. ; Chen X. R. ; Cheng X. B. ; Yan C. ; Zhao C. Z. ; Zhang Q. Joule 2018, 2, 764.
doi: 10.1016/j.joule.2018.02.001 |
61 |
Xiang J. W. ; Yuan L. X. ; Shen Y. ; Cheng Z. X. ; Yuan K. ; Guo Z. Z. ; Zhang Y. ; Chen X. ; Huang Y. H. Adv. Energy Mater. 2018, 8, 1802352.
doi: 10.1002/aenm.201802352 |
62 |
Liu F. F. ; Xu R. ; Hu Z. X. ; Ye S. F. ; Zeng S. F. ; Yao Y. ; Li S. Q. ; Yu Y. Small 2019, 15, 1803734.
doi: 10.1002/smll.201803734 |
63 |
Yao Y. ; Wang H. Y. ; Yang H. ; Zeng S. F. ; Xu R. ; Liu F. F. ; Shi P. C. ; Feng Y. Z. ; Wang K. ; Yang W. J. ; et al Adv. Mater. 2020, 32, 1905658.
doi: 10.1002/adma.201905658 |
64 |
Zhou Y. ; Han Y. ; Zhang H. T. ; Sui D. ; Sun Z. H. ; Xiao P. S. ; Wang X. T. ; Ma Y. F. ; Chen Y. S. Energy Storage Mater. 2018, 14, 222.
doi: 10.1016/j.ensm.2018.04.006 |
65 |
Zhang Y. ; Wang C. W. ; Pastel G. ; Kuang Y. D. ; Xie H. ; Li Y. J. ; Liu B. Y. ; Luo W. ; Chen C. ; Hu L. B. Adv. Energy Mater. 2018, 8, 1800635.
doi: 10.1002/aenm.201800635 |
66 |
Ye S. F. ; Liu F. F. ; Xu R. ; Yao Y. ; Zhou X. F. ; Feng Y. Z. ; Cheng X. L. ; Yu Y. Small 2019, 15, 1903725.
doi: 10.1002/smll.201903725 |
67 |
Liu F. F. ; Jin Z. Z. ; Hu Z. X. ; Zhang Z. W. ; Liu W. ; Yu Y. Chem. Asian J. 2020, 15, 1057.
doi: 10.1002/asia.201901668 |
68 |
Liu Y. Y. ; Lin D. C. ; Liang Z. ; Zhao J. ; Yan K. ; Cui Y. Nat. Commun. 2016, 7, 10992.
doi: 10.1038/ncomms10992 |
69 |
Yue X. Y. ; Bao J. ; Yang S. Y. ; Luo R. J. ; Wang Q. C. ; Wu X. J. ; Shadike Z. ; Yang X. Q. ; Zhou Y. N. Nano Energy 2020, 71, 104614.
doi: 10.1016/j.nanoen.2020.104614 |
70 |
Go W. ; Kim M. H. ; Park J. ; Lim C. H. ; Joo S. H. ; Kim Y. ; Lee H. W. Nano Lett. 2019, 19, 1504.
doi: 10.1021/acs.nanolett.8b04106 |
71 |
Peng H. J. ; Huang J. Q. ; Cheng X. B. ; Zhang Q. Adv. Energy Mater. 2017, 7, 1700260.
doi: 10.1002/aenm.201700260 |
72 |
Yin Y. X. ; Xin S. ; Guo Y. G. ; Wan L. J. Angew. Chem. Int. Ed. 2013, 52, 13186.
doi: 10.1002/anie.201304762 |
73 |
Jin S. ; Xin S. ; Wang L. J. ; Du Z. Z. ; Cao L. N. ; Chen J. F. ; Kong X. H. ; Gong M. ; Lu J. L. ; Zhu Y. W. ; et al Adv. Mater. 2016, 28, 9094.
doi: 10.1002/adma.201602704 |
74 |
Jin C. B. ; Sheng O. W. ; Zhang W. K. ; Luo J. M. ; Yuan H. D. ; Yang T. ; Huang H. ; Gan Y. P. ; Xia Y. ; Liang C. ; et al Energy Storage Mater. 2018, 15, 218.
doi: 10.1016/j.ensm.2018.04.001 |
75 |
Wu H. ; Wu Q. P. ; Chu F. L. ; Hu J. L. ; Cui Y. H. ; Yin C. L. ; Li C. L. J. Power Sources 2019, 419, 72.
doi: 10.1016/j.jpowsour.2019.02.033 |
76 |
Li H. Y. ; Cheng Z. ; Natan A. ; Hafez A. M. ; Cao D. X. ; Yang Y. ; Zhu H. L. Small 2019, 15, 1804609.
doi: 10.1002/smll.201804609 |
77 |
Yang H. ; Xu R. ; Gong Y. ; Yao Y. ; Gu L. ; Yu Y. Nano Energy 2018, 48, 448.
doi: 10.1016/j.nanoen.2018.04.006 |
78 |
Yu Y. ; Chen C. H. ; Shui J. L. ; Xie S. Angew. Chem. Int. Ed. 2005, 44, 7085.
doi: 10.1002/anie.200501905 |
79 |
Zhang M. ; Xiang L. ; Galluzzi M. ; Jiang C. L. ; Zhang S. Q. ; Li J. Y. ; Tang Y. B. Adv. Mater. 2019, 31, 1900826.
doi: 10.1002/adma.201900826 |
80 |
Mazouzi D. ; Reyter D. ; Gauthier M. ; Moreau P. ; Guyomard D. ; Roue L. ; Lestriez B. Adv. Energy Mater. 2014, 4, 1301718.
doi: 10.1002/aenm.201301718 |
81 |
Adair K. R. ; Iqbal M. ; Wang C. ; Zhao Y. ; Banis M. N. ; Li R. ; Zhang L. ; Yang R. ; Lu S. ; Sun X. Nano Energy 2018, 54, 375.
doi: 10.1016/j.nanoen.2018.10.002 |
82 |
Qiu H. ; Tang T. ; Asif M. ; Huang X. ; Hou Y. Adv. Funct. Mater. 2019, 29, 1808468.
doi: 10.1002/adfm.201808468 |
83 |
Yun Q. ; He Y. B. ; Lv W. ; Zhao Y. ; Li B. ; Kang F. ; Yang Q. H. Adv. Mater. 2016, 28, 6932.
doi: 10.1002/adma.201601409 |
84 |
Li P. L. ; Dong X. L. ; Li C. ; Liu J. Y. ; Liu Y. ; Feng W. L. ; Wang C. X. ; Wang Y. G. ; Xia Y. Y. Angew. Chem. Int. Ed. 2019, 58, 2093.
doi: 10.1002/anie.201813905 |
85 |
Wang L. M. ; Tang Z. F. ; Lin J. ; He X. D. ; Chen C. S. ; Chen C. H. J. Mater. Chem. A 2019, 7, 17376.
doi: 10.1039/c9ta05357c |
86 |
Chi S. S. ; Liu Y. ; Song W. L. ; Fan L. Z. ; Zhang Q. Adv. Funct. Mater. 2017, 27, 1700348.
doi: 10.1002/adfm.201700348 |
87 |
Zhou Y. ; Zhao K. ; Han Y. ; Sun Z. H. ; Zhang H. T. ; Xu L. Q. ; Ma Y. F. ; Chen Y. S. J. Mater. Chem. A 2019, 7, 5712.
doi: 10.1039/c8ta12064a |
88 |
Huang Z. J. ; Zhang C. ; Lv W. ; Zhou G. M. ; Zhang Y. B. ; Deng Y. Q. ; Wu H. L. ; Kang F. Y. ; Yang Q. H. J. Mater. Chem. A 2019, 7, 727.
doi: 10.1039/c8ta10341k |
89 |
Yang G. H. ; Chen J. D. ; Xiao P. T. ; Agboola P. O. ; Shakir I. ; Xu Y. X. J. Mater. Chem. A 2018, 6, 9899.
doi: 10.1039/c8ta02810a |
90 |
Yue X. Y. ; Wang W. W. ; Wang Q. C. ; Meng J. K. ; Wang X. X. ; Song Y. ; Fu Z. W. ; Wu X. J. ; Zhou Y. N. Energy Storage Mater. 2019, 21, 180.
doi: 10.1016/j.ensm.2018.12.007 |
91 |
Yue X. Y. ; Wang W. W. ; Wang Q. C. ; Meng J. K. ; Zhang Z. Q. ; Wu X. J. ; Yang X. Q. ; Zhou Y. N. Energy Storage Mater. 2018, 14, 335.
doi: 10.1016/j.ensm.2018.05.017 |
92 |
Ke X. ; Liang Y. H. ; Ou L. H. ; Liu H. D. ; Chen Y. M. ; Wu W. L. ; Cheng Y. F. ; Guo Z. P. ; Lai Y. Q. ; Liu P. ; et al Energy Storage Mater. 2019, 23, 547.
doi: 10.1016/j.ensm.2019.04.003 |
93 |
Ren F. H. ; Lu Z. Y. ; Zhang H. ; Huai L. Y. ; Chen X. C. ; Wu S. D. ; Peng Z. ; Wang D. Y. ; Ye J. C. Adv. Funct. Mater. 2018, 28, 1805638.
doi: 10.1002/adfm.201805638 |
94 |
Lu Z. Y. ; Liang Q. H. ; Wang B. ; Tao Y. ; Zhao Y. F. ; Lv W. ; Liu D. H. ; Zhang C. ; Weng Z. ; Liang J. C. ; et al Adv. Energy Mater. 2019, 9, 1803186.
doi: 10.1002/aenm.201803186 |
95 |
Yang C. P. ; Yin Y. X. ; Zhang S. F. ; Li N. W. ; Guo Y. G. Nat. Commun. 2015, 6, 8058.
doi: 10.1038/ncomms9058 |
96 |
Wang S. H. ; Yin Y. X. ; Zuo T. T. ; Dong W. ; Li J. Y. ; Shi J. L. ; Zhang C. H. ; Li N. W. ; Li C. J. ; Guo Y. G. Adv. Mater. 2017, 29, 1703729.
doi: 10.1002/adma.201703729 |
97 |
Wu S. L. ; Zhang Z. Y. ; Lan M. H. ; Yang S. R. ; Cheng J. Y. ; Cai J. J. ; Shen J. H. ; Zhu Y. ; Zhang K. L. ; Zhang W. J. Adv. Mater. 2018, 30, 1705830.
doi: 10.1002/adma.201705830 |
98 |
An Y. L.. ; Fei H. F. ; Zeng G. F. ; Xu X. Y. ; Ci L. J. ; Xi B. J. ; Xiong S. L. ; Feng J. K. ; Qian Y. T. Nano Energy 2018, 47, 503.
doi: 10.1016/j.nanoen.2018.03.036 |
99 |
Ye H. ; Zheng Z. J. ; Yao H. R. ; Liu S. C. ; Zuo T. T. ; Wu X. W. ; Yin Y. X. ; Li N. W. ; Gu J. J. ; Cao F. F. ; et al Angew. Chem. Int. Ed. 2019, 58, 1094.
doi: 10.1002/anie.201811955 |
100 |
Xu T. H. ; Gao P. ; Li P. R. ; Xia K. ; Han N. ; Deng J. ; Li Y. G. ; Lu J. Adv. Energy Mater. 2020, 10, 1902343.
doi: 10.1002/aenm.201902343 |
101 |
Ouyang Y. ; Cui C. ; Guo Y. P. ; Wei Y. Q. ; Zhai T. Y. ; Li H. Q. ACS Appl. Mater. Interfaces 2020, 12, 25818.
doi: 10.1021/acsami.0c04092 |
102 |
Tu Z. ; Choudhury S. ; Zachman M. J. ; Wei S. ; Zhang K. ; Kourkoutis L. F. ; Archer L. A. Nat. Energy 2018, 3, 310.
doi: 10.1038/s41560-018-0096-1 |
103 |
Wang Y. L. ; Shen Y. B. ; Du Z. L. ; Zhang X. F. ; Wang K. ; Zhang H. Y. ; Kang T. ; Guo F. ; Liu C. H. ; Wu X. D. ; et al J. Mater. Chem. A 2017, 5, 23434.
doi: 10.1039/c7ta08531a |
104 |
Xia W. ; Mahmood A. ; Zou R. Q. ; Xu Q. Energy Environ. Sci. 2015, 8, 1837.
doi: 10.1039/c5ee00762c |
105 |
Li W. H. ; Hu S. H. ; Luo X. Y. ; Li Z. L. ; Sun X. Z. ; Li M. S. ; Liu F. F. ; Yu Y. Adv. Mater. 2017, 29, 1605820.
doi: 10.1002/adma.201605820 |
106 |
Zhu M. Q. ; Li B. ; Li S. M. ; Du Z. G. ; Gong Y. J. ; Yang S. B. Adv. Energy Mater. 2018, 8, 1703505.
doi: 10.1002/aenm.201703505 |
107 |
Wang T. S. ; Liu X. ; Zhao X. ; He P. ; Nan C. W. ; Fan L. Z. Adv. Funct. Mater. 2020, 30, 2000786.
doi: 10.1002/adfm.202000786 |
108 |
Qian J. ; Li Y. ; Zhang M. L. ; Luo R. ; Wang F. J. ; Ye Y. S. ; Xing Y. ; Li W. L. ; Qu W. J. ; Wang L. L. ; et al Nano Energy 2019, 60, 866.
doi: 10.1016/j.nanoen.2019.04.030 |
109 |
Zhang T. ; Lu H. C. ; Yang J. ; Xu Z. X. ; Wang J. L. ; Hirano S. I. ; Guo Y. S. ; Liang C. D. ACS Nano 2020, 14, 5618.
doi: 10.1021/acsnano.9b10083 |
110 |
Zhao L. F. ; Wang W. H. ; Zhao X. X. ; Hou Z. ; Fan X. K. ; Liu Y. L. ; Quan Z. W. ACS Appl. Energy Mater. 2019, 2, 2692.
doi: 10.1021/acsaem.9b00014 |
111 |
Jin S. ; Sun Z. W. ; Guo Y. L. ; Qi Z. K. ; Guo C. K. ; Kong X. H. ; Zhu Y. W. ; Ji H. X. Adv. Mater. 2017, 29, 1700783.
doi: 10.1002/adma.201700783 |
112 |
Jiang G. Y. ; Jiang N. ; Zheng N. ; Chen X. ; Mao J. Y. ; Ding G. Y. ; Li Y. H. ; Sun F. G. ; Li Y. S. Energy Storage Mater. 2019, 23, 181.
doi: 10.1016/j.ensm.2019.05.014 |
113 |
Li Q. ; Zhu S. P. ; Lu Y. Y. Adv. Funct. Mater. 2017, 27, 1606422.
doi: 10.1002/adfm.201606422 |
114 |
Guo F. ; Wang Y. L. ; Kang T. ; Liu C. H. ; Shen Y. B. ; Lu W. ; Wu X. D. ; Chen L. W. Energy Storage Mater. 2018, 15, 116.
doi: 10.1016/j.ensm.2018.03.018 |
115 |
Qiu H. L. ; Tang T. Y. ; Asif M. ; Li W. ; Zhang T. ; Hou Y. L. Nano Energy 2019, 65, 103989.
doi: 10.1016/j.nanoen.2019.103989 |
116 |
Jie Y. L. ; Ren X. D. ; Cao R. G. ; Cai W. B. ; Jiao S. H. Adv. Funct. Mater. 2020, 30, 1910777.
doi: 10.1002/adfm.201910777 |
117 |
Xu K. Chem. Rev. 2004, 104, 4303.
doi: 10.1021/cr030203g |
118 |
Wang S. M. ; Qu J. Y. ; Wu F. ; Yan K. ; Zhang C. Z. ACS Appl. Mater. Interfaces 2020, 12, 8366.
doi: 10.1021/acsami.9b23251 |
119 |
Xiao L. F. ; Zeng Z. Q. ; Liu X. W. ; Fang Y. J. ; Jiang X. Y. ; Shao Y. Y. ; Zhuang L. ; Ai X. P. ; Yang H. X. ; Cao Y. L. ; et al ACS Energy Lett. 2019, 4, 483.
doi: 10.1021/acsenergylett.8b02527 |
120 |
Liu B. ; Xu W. ; Yan P. F. ; Kim S. T. ; Engelhard M. H. ; Sun X. L. ; Mei D. H. ; Cho J. ; Wang C. M. ; Zhang J. G. Adv. Energy Mater. 2017, 7, 1770074.
doi: 10.1002/aenm.201770074 |
121 |
Chen W. J. ; Li B. Q. ; Zhao C. X. ; Zhao M. ; Yuan T. Q. ; Sun R. C. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2020, 59, 1912701.
doi: 10.1002/anie.201912701 |
122 |
Li X. ; Zheng J. M. ; Ren X. D. ; Engelhard M. H. ; Zhao W. G. ; Li Q. Y. ; Zhang J. G. ; Xu W. Adv. Energy Mater. 2018, 8, 1703022.
doi: 10.1002/aenm.201703022 |
123 |
Zhang H. ; Gebresilassie Eshetu G. ; Judez X. ; Li C. M. ; Rodriguez-Martinez L. M. ; Armand M. Angew. Chem. Int. Ed. 2018, 57, 15002.
doi: 10.1002/anie.201712702 |
124 | Ran Q. ; Sun T. Y. ; Han C. Y. ; Zhang H. N. ; Yan J. ; Wang J. L. Acta Phys. -Chim. Sin. 2020, 36, 1912068. |
冉琴; 孙天霷; 韩冲宇; 张浩楠; 颜剑; 汪靖伦. 物理化学学报, 2020, 36, 1912068.
doi: 10.3866/PKU.WHXB201912068 |
|
125 |
Yamada Y. ; Wang J. H. ; Ko S. ; Watanabe E. ; Yamada A. Nat. Energy 2019, 4, 269.
doi: 10.1038/s41560-019-0336-z |
126 |
Fan X. L. ; Chen L. ; Ji X. ; Deng T. ; Hou S. Y. ; Chen J. ; Zheng J. ; Wang F. ; Jiang J. J. ; Xu K. ; et al Chem 2018, 4, 174.
doi: 10.1016/j.chempr.2017.10.017 |
127 |
Zheng J. ; Lochala J. A. ; Kwok A. ; Deng Z. D. ; Xiao J. Adv. Sci. 2017, 4, 1700032.
doi: 10.1002/advs.201700032 |
128 |
Liu B. ; Xu W. ; Yan P. F. ; Sun X. L. ; Bowden M. E. ; Read J. ; Qian J. F. ; Mei D. H. ; Wang C. M. ; Zhang J. G. Adv. Funct. Mater. 2016, 26, 605.
doi: 10.1002/adfm.201503697 |
129 |
Yu L. ; Chen S. R. ; Lee H. ; Zhang L. C. ; Engelhard M. H. ; Li Q. Y. ; Jiao S. H. ; Liu J. ; Xu W. ; Zhang J. G. ACS Energy Lett. 2018, 3, 2059.
doi: 10.1021/acsenergylett.8b00935 |
130 |
Zhang X. Q. ; Chen X. ; Hou L. P. ; Li B. Q. ; Cheng X. B. ; Huang J. Q. ; Zhang Q. ACS Energy Lett. 2019, 4, 411.
doi: 10.1021/acsenergylett.8b02376 |
131 |
Xu K. ; Lam Y. ; Zhang S. S. ; Jow T. R. ; Curtis T. B. J. Phys. Chem. C 2007, 111, 7411.
doi: 10.1021/jp068691u |
132 |
Wang Z. X. ; Sun C. G. ; Shi Y. ; Qi F. L. ; Wei Q. W. ; Li X. ; Sun Z. H. ; An B. ; Li F. J. Power Sources 2019, 439, 227073.
doi: 10.1016/j.jpowsour.2019.227073 |
133 |
Qian J. F. ; Henderson W. A. ; Xu W. ; Bhattacharya P. ; Engelhard M. ; Borodin O. ; Zhang J. G. Nat. Commun. 2015, 6, 6362.
doi: 10.1038/ncomms7362 |
134 |
Qiu F. ; Li X. ; Deng H. ; Wang D. ; Mu X. ; He P. ; Zhou H. Adv. Energy Mater. 2019, 9, 1803372.
doi: 10.1002/aenm.201803372 |
135 |
Haregewoin A. M. ; Wotango A. S. ; Hwang B. J. Energy Environ. Sci. 2016, 9, 1955.
doi: 10.1039/c6ee00123h |
136 |
Zhao H. J. ; Yu X. Q. ; Li J. D. ; Li B. ; Shao H. Y. ; Li L. ; Deng Y. H. J. Mater. Chem. A 2019, 7, 8700.
doi: 10.1039/c9ta00126c |
137 |
McMillan R. ; Slegr H. ; Shu Z. X. ; Wang W. D. J. Power Sources 1999, 81, 20.
doi: 10.1016/s0378-7753(98)00201-8 |
138 |
Profatilova I. A. ; Kim S. S. ; Choi N. S. Electrochim. Acta 2009, 54, 4445.
doi: 10.1016/j.electacta.2009.03.032 |
139 |
Schiele A. ; Breitung B. ; Hatsukade T. ; Berkes B. B. ; Hartmann P. ; Janek J. ; Brezesinski T. ACS Energy Lett. 2017, 2, 2228.
doi: 10.1021/acsenergylett.7b00619 |
140 |
Rezqita A. ; Sauer M. ; Foelske A. ; Kronberger H. ; Trifonova A. Electrochim. Acta 2017, 247, 600.
doi: 10.1016/j.electacta.2017.06.128 |
141 |
Matsuoka O. ; Hiwara A. ; Omi T. ; Toriida M. ; Hayashi T. ; Tanaka C. ; Saito Y. ; Ishida T. ; Tan H. ; Ono S. S. ; et al J. Power Sources 2002, 108, 128.
doi: 10.1016/s0378-7753(02)00012-5 |
142 |
Leggesse E. G. ; Jiang J. C. J. Phys. Chem. A 2012, 116, 11025.
doi: 10.1021/jp3081996 |
143 |
Ren F. ; Zuo W. ; Yang X. ; Lin M. ; Xu L. ; Zhao W. ; Zheng S. ; Yang Y. J. Phys. Chem. C 2019, 123, 5871.
doi: 10.1021/acs.jpcc.8b12000 |
144 |
Sun H. H. ; Dolocan A. ; Weeks J. A. ; Rodriguez R. ; Heller A. ; Mullins C. B. J. Mater. Chem. A 2019, 7, 17782.
doi: 10.1039/c9ta05063a |
145 |
Li C. ; Gu L. ; Maier J. Adv. Funct. Mater. 2012, 22, 1145.
doi: 10.1002/adfm.201101798 |
146 |
Cui C. ; Yang C. ; Eidson N. ; Chen J. ; Han F. ; Chen L. ; Luo C. ; Wang P. F. ; Fan X. ; Wang C. Adv. Mater. 2020, 32, 1906427.
doi: 10.1002/adma.201906427 |
147 |
Zhang X. Q. ; Cheng X. B. ; Chen X. ; Yan C. ; Zhang Q. Adv. Funct. Mater. 2017, 27, 1605989.
doi: 10.1002/adfm.201605989 |
148 |
Adams B. D. ; Carino E. V. ; Connell J. G. ; Han K. S. ; Cao R. ; Chen J. ; Zheng J. ; Li Q. ; Mueller K. T. ; Henderson W. A. ; et al Nano Energy 2017, 40, 607.
doi: 10.1016/j.nanoen.2017.09.015 |
149 |
Zhang S. S. Electrochim. Acta 2012, 70, 344.
doi: 10.1016/j.electacta.2012.03.081 |
150 |
Zhang S. S. J. Power Sources 2016, 322, 99.
doi: 10.1016/j.jpowsour.2016.05.009 |
151 |
Shi Q. ; Zhong Y. ; Wu M. ; Wang H. ; Wang H. Proc. Natl. Acad. Sci. U S A 2018, 115, 5676.
doi: 10.1073/pnas.1803634115 |
152 |
Yan C. ; Yao Y. X. ; Chen X. ; Cheng X. B. ; Zhang X. Q. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2018, 57, 14055.
doi: 10.1002/anie.201807034 |
153 |
Zhang X. Q. ; Chen X. ; Cheng X. B. ; Li B. Q. ; Shen X. ; Yan C. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2018, 57, 5301.
doi: 10.1002/anie.201801513 |
154 |
Ren X. D. ; Zhang Y. H. ; Engelhard M. H. ; Li Q. Y. ; Zhang J. G. ; Xu W. ACS Energy Lett. 2018, 3, 14.
doi: 10.1021/acsenergylett.7b00982 |
155 |
Xiang H. ; Shi P. ; Bhattacharya P. ; Chen X. ; Mei D. ; Bowden M. E. ; Zheng J. ; Zhang J. G. ; Xu W. J. Power Sources 2016, 318, 170.
doi: 10.1016/j.jpowsour.2016.04.017 |
156 |
Li S. Y. ; Zhao D. N. ; Wang P. ; Cui X. L. ; Tang F. J. Electrochim. Acta 2016, 222, 668.
doi: 10.1016/j.electacta.2016.11.022 |
157 |
Yan C. ; Cheng X. B. ; Zhao C. Z. ; Huang J. Q. ; Yang S. T. ; Zhang Q. J. Power Sources 2016, 327, 212.
doi: 10.1016/j.jpowsour.2016.07.056 |
158 |
Huang Z. M. ; Ren J. ; Zhang W. ; Xie M. L. ; Li Y. K.. ; Sun D. ; Shen Y. ; Huang Y. H. Adv. Mater. 2018, 30, 1803270.
doi: 10.1002/adma.201803270 |
159 |
Zhang Y. H. ; Qian J. F. ; Xu W. ; Russell S. M. ; Chen X. L. ; Nasybulin E. ; Bhattacharya P. ; Engelhard M. H. ; Mei D. ; Cao R. G. ; et al Nano Lett. 2014, 14, 6889.
doi: 10.1021/nl5039117 |
160 |
Xiao L. ; Chen X. L. ; Cao R. G. ; Qian J. F. ; Xiang H. F. ; Zheng J. M. ; Zhang J. G. ; Xu W. J. Power Sources 2015, 293, 1062.
doi: 10.1016/j.jpowsour.2015.06.044 |
161 |
Ye H. ; Yin Y. X. ; Zhang S. F. ; Shi Y. ; Liu L. ; Zeng X. X. ; Wen R. ; Guo Y. G. ; Wan L. J. Nano Energy 2017, 36, 411.
doi: 10.1016/j.nanoen.2017.04.056 |
162 |
Cheng X. B. ; Zhao M. Q. ; Chen C. ; Pentecost A. ; Maleski K. ; Mathis T. ; Zhang X. Q. ; Zhang Q. ; Jiang J. ; Gogotsi Y. Nat. Commun. 2017, 8, 336.
doi: 10.1038/s41467-017-00519-2 |
163 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Wei F. ; Zhang J. G. ; Zhang Q. Adv. Sci. 2016, 3, 1500213.
doi: 10.1002/advs.201500213 |
164 |
Chen Y. Q. ; Luo Y. ; Zhang H. Z. ; Qu C. ; Zhang H. M. ; Li X. F. Small Methods 2019, 3, 1800551.
doi: 10.1002/smtd.201800551 |
165 |
Liu Q. C. ; Xu J. J. ; Yuan S. ; Chang Z. W. ; Xu D. ; Yin Y. B. ; Li L. ; Zhong H. X. ; Jiang Y. S. ; Yan J. M. ; et al Adv. Mater. 2015, 27, 6089.
doi: 10.1002/adma.201504429 |
166 |
Kozen A. C. ; Lin C. F. ; Zhao O. ; Lee S. B. ; Rubloff G. W. ; Noked M. Chem. Mater. 2017, 29, 6298.
doi: 10.1021/acs.chemmater.7b01496 |
167 |
Shi L. ; Xu A. ; Zhao T. ACS Appl. Mater. Interfaces 2017, 9, 1987.
doi: 10.1021/acsami.6b14560 |
168 |
Zhang X. Q. ; Cheng X. B. ; Zhang Q. Adv. Mater. Interfaces 2018, 5, 1701097.
doi: 10.1002/admi.201701097 |
169 |
Xu R. ; Cheng X. B. ; Yan C. ; Zhang X. Q. ; Xiao Y. ; Zhao C. Z. ; Huang J. Q. ; Zhang Q. Matter 2019, 1, 317.
doi: 10.1016/j.matt.2019.05.016 |
170 |
Zhao J. ; Liao L. ; Shi F. F. ; Lei T. ; Chen G. X. ; Pei A. ; Sun J. ; Yan K. ; Zhou G. M. ; Xie J. ; et al J. Am. Chem. Soc. 2017, 139, 11550.
doi: 10.1021/jacs.7b05251 |
171 |
Yan C. ; Cheng X. B. ; Yao Y. X. ; Shen X. ; Li B. Q. ; Li W. J. ; Zhang R. ; Huang J. Q. ; Li H. ; Zhang Q. Adv. Mater. 2018, 30, 1804461.
doi: 10.1002/adma.201804461 |
172 |
Wang L. ; Fu S. ; Zhao T. ; Qian J. ; Chen N. ; Li L. ; Wu F. ; Chen R. J. Mater. Chem. A 2020, 8, 1247.
doi: 10.1039/c9ta10965j |
173 |
Peng Z. ; Zhao N. ; Zhang Z. ; Wan H. ; Lin H. ; Liu M. ; Shen C. ; He H. ; Guo X. ; Zhang J. G. ; et al Nano Energy 2017, 39, 662.
doi: 10.1016/j.nanoen.2017.07.052 |
174 |
Zhang Y. ; Wang G. ; Tang L. ; Wu J. ; Guo B. ; Zhu M. ; Wu C. ; Dou S. X. ; Wu M. J. Mater. Chem. A 2019, 7, 25369.
doi: 10.1039/c9ta09523c |
175 |
Wang G. ; Xiong X. ; Xie D. ; Fu X. ; Lin Z. ; Yang C. ; Zhang K. ; Liu M. ACS Appl. Mater. Interfaces 2019, 11, 4962.
doi: 10.1021/acsami.8b18101 |
176 |
Liang X. ; Pang Q. ; Kochetkov I. R. ; Sempere M. S. ; Huang H. ; Sun X. ; Nazar L. F. Nat. Energy 2017, 2, 17119.
doi: 10.1038/nenergy.2017.119 |
177 |
Ren Y. ; Qi Z. ; Zhang C. ; Yang S. ; Ma X. ; Liu X. ; Tan X. ; Sun S. ; Cao Y. Comp. Mater. Sci. 2020, 176, 109535.
doi: 10.1016/j.commatsci.2020.109535 |
178 |
Lu Y. ; Tu Z. ; Archer L. A. Nat. Mater. 2014, 13, 961.
doi: 10.1038/nmat4041 |
179 |
Lu Y. ; Tu Z. ; Shu J. ; Archer L. A. J. Power Sources 2015, 279, 413.
doi: 10.1016/j.jpowsour.2015.01.030 |
180 |
Li G. ; Huang Q. ; He X. ; Gao Y. ; Wang D. ; Kim S. H. ; Wang D. ACS Nano 2018, 12, 1500.
doi: 10.1021/acsnano.7b08035 |
181 |
Li W. ; Yao H. ; Yan K. ; Zheng G. ; Liang Z. ; Chiang Y. M. ; Cui Y. Nat. Commun. 2015, 6, 7436.
doi: 10.1038/ncomms8436 |
182 |
Cheng X. B. ; Yan C. ; Peng H. J. ; Huang J. Q. ; Yang S. T. ; Zhang Q. Energy Storage Mater. 2018, 10, 199.
doi: 10.1016/j.ensm.2017.03.008 |
183 |
Chen H. ; Pei A. ; Lin D. ; Xie J. ; Yang A. ; Xu J. ; Lin K. ; Wang J. ; Wang H. ; Shi F. ; et al Adv. Energy Mater. 2019, 9, 1900858.
doi: 10.1002/aenm.201900858 |
184 |
Liu F. F. ; Wang L. F. ; Zhang Z. W. ; Shi P. C. ; Feng Y. Z. ; Yao Y. ; Ye S. F. ; Wang H. Y. ; Wu X. J. ; Yu Y. Adv. Funct. Mater. 2020, 30, 2001607.
doi: 10.1002/adfm.202001607 |
185 |
Liao K. ; Wu S. ; Mu X. ; Lu Q. ; Han M. ; He P. ; Shao Z. ; Zhou H. Adv. Mater. 2018, 30, 1705711.
doi: 10.1002/adma.201705711 |
186 |
Cha E. ; Patel M. D. ; Park J. ; Hwang J. ; Prasad V. ; Cho K. ; Choi W. Nat. Nanotech. 2018, 13, 521.
doi: 10.1038/s41565-018-0095-1 |
187 |
Jing H. K. ; Kong L. L. ; Liu S. ; Li G. R. ; Gao X. P. J. Mater. Chem. A 2015, 3, 12213.
doi: 10.1039/c5ta01490e |
188 |
Ren F. ; Li Z. ; Zhu Y. ; Huguet P. ; Deabate S. ; Wang D. ; Peng Z. Nano Energy 2020, 73, 104746.
doi: 10.1016/j.nanoen.2020.104746 |
189 |
Li N. W. ; Yin Y. X. ; Yang C. P. ; Guo Y. G. Adv. Mater. 2016, 28, 1853.
doi: 10.1002/adma.201504526 |
190 |
Tang W. ; Yin X. ; Kang S. ; Chen Z. ; Tian B. ; Teo S. L. ; Wang X. ; Chi X. ; Loh K. P. ; Lee H. W. ; et al Adv. Mater. 2018, 30, 1801745.
doi: 10.1002/adma.201801745 |
191 |
Chu F. ; Hu J. ; Tian J. ; Zhou X. ; Li Z. ; Li C. ACS Appl. Mater. Interfaces 2018, 10, 12678.
doi: 10.1021/acsami.8b00989 |
192 |
Liu Y. ; Xiong S. ; Wang J. ; Jiao X. ; Li S. ; Zhang C. ; Song Z. ; Song J. Energy Storage Mater. 2019, 19, 24.
doi: 10.1016/j.ensm.2018.10.015 |
193 |
Liu T. ; Hu J. ; Li C. ; Wang Y. ACS Appl. Energy Mater. 2019, 2, 4379.
doi: 10.1021/acsaem.9b00573 |
194 |
Li N. W. ; Shi Y. ; Yin Y. X. ; Zeng X. X. ; Li J. Y. ; Li C. J. ; Wan L. J. ; Wen R. ; Guo Y. G. Angew. Chem. Int. Ed. 2018, 57, 1505.
doi: 10.1002/anie.201710806 |
195 |
Xu R. ; Zhang X. Q. ; Cheng X. B. ; Peng H. J. ; Zhao C. Z. ; Yan C. ; Huang J. Q. Adv. Funct. Mater. 2018, 28, 1705838.
doi: 10.1002/adfm.201705838 |
196 |
Luo J. ; Fang C. C. ; Wu N. L. Adv. Energy Mater. 2018, 8, 1701482.
doi: 10.1002/aenm.201701482 |
197 |
Zhu B. ; Jin Y. ; Hu X. ; Zheng Q. ; Zhang S. ; Wang Q. ; Zhu J. Adv. Mater. 2017, 29, 1603755.
doi: 10.1002/adma.201603755 |
198 |
Wang G. ; Chen C. ; Chen Y. ; Kang X. ; Yang C. ; Wang F. ; Liu Y. ; Xiong X. Angew. Chem. Int. Ed. 2020, 59, 2055.
doi: 10.1002/anie.201913351 |
199 |
Liu Y. ; Lin D. ; Yuen P. Y. ; Liu K. ; Xie J. ; Dauskardt R. H. ; Cui Y. Adv. Mater. 2017, 29, 1605531.
doi: 10.1002/adma.201605531 |
200 |
Lee F. ; Tsai M. C. ; Lin M. H. ; Ni'mah Y. L. ; Hy S. ; Kuo C. Y. ; Cheng J. H. ; Rick J. ; Su W. N. ; Hwang B. J. J. Mater. Chem. A 2017, 5, 6708.
doi: 10.1039/c6ta10755a |
201 |
Liu W. ; Li W. ; Zhuo D. ; Zheng G. ; Lu Z. ; Liu K. ; Cui Y. ACS Cent. Sci. 2017, 3, 135.
doi: 10.1021/acscentsci.6b00389 |
202 |
Kim J. H. ; Woo H. S. ; Kung W. K. ; Ryu K. H. ; Kim D. W. ACS Appl. Mater. Interfaces 2016, 8, 32300.
doi: 10.1021/acsami.6b10419 |
203 |
Yuan Y. ; Wu F. ; Bai Y. ; Li Y. ; Chen G. ; Wang Z. ; Wu C. Energy Storage Mater. 2019, 16, 411.
doi: 10.1016/j.ensm.2018.06.022 |
204 |
Kim Y. ; Koo D. ; Ha S. ; Jun S. C. ; Yim T. ; Kim H. ; Oh S. K. ; Kim D. M. ; Choi A. ; Kang Y. ; et al ACS Nano 2018, 12, 4419.
doi: 10.1021/acsnano.8b00348 |
205 |
Lee J. I. ; Shin M. ; Hong D. ; Park S. Adv. Energy Mater. 2019, 9, 1803722.
doi: 10.1002/aenm.201803722 |
206 |
Park K. ; Goodenough J. B. Adv. Energy Mater. 2017, 7, 1700732.
doi: 10.1002/aenm.201700732 |
207 |
Chen K. ; Pathak R. ; Gurung A. ; Adhamash E. A. ; Bahrami B. ; He Q. ; Qiao H. ; Smirnova A. L. ; Wu J. J. ; Qiao Q. ; et al Energy Storage Mater. 2019, 18, 389.
doi: 10.1016/j.ensm.2019.02.006 |
208 |
Liu Y. ; Liu Q. ; Xin L. ; Liu Y. ; Yang F. ; Stach E. A. ; Xie J. Nat. Energy 2017, 2, 17083.
doi: 10.1038/nenergy.2017.83 |
209 |
Monroe C. ; Newman J. J. Electrochem. Soc. 2003, 150, A1377.
doi: 10.1149/1.1606686 |
210 |
Li C. ; Liu S. ; Shi C. ; Liang G. ; Lu Z. ; Fu R. ; Wu D. Nat. Commun. 2019, 10, 1363.
doi: 10.1038/s41467-019-09211-z |
211 |
Luo W. ; Zhou L. ; Fu K. ; Yang Z. ; Wan J. ; Manno M. ; Yao Y. ; Zhu H. ; Yang B. ; Hu L. Nano Lett. 2015, 15, 6149.
doi: 10.1021/acs.nanolett.5b02432 |
212 |
He Y. ; Chang Z. ; Wu S. ; Qiao Y. ; Bai S. ; Jiang K. ; He P. ; Zhou H. Adv. Energy Mater. 2018, 8, 1802130.
doi: 10.1002/aenm.201802130 |
213 |
Wu H. ; Huang Y. ; Xu S. ; Zhang W. ; Wang K. ; Zong M. Chem. Eng. J. 2017, 327, 855.
doi: 10.1016/j.cej.2017.06.164 |
214 |
Hu M. ; Ma Q. ; Yuan Y. ; Pan Y. ; Chen M. ; Zhang Y. ; Long D. Chem. Eng. J. 2020, 388, 124258.
doi: 10.1016/j.cej.2020.124258 |
215 |
Gao Z. ; Sun H. ; Fu L. ; Ye F. ; Zhang Y. ; Luo W. ; Huang Y. Adv. Mater. 2018, 30, 1870122.
doi: 10.1002/adma.201870122 |
216 |
Fan L. ; Wei S. ; Li S. ; Li Q. ; Lu Y. Adv. Energy Mater. 2018, 8, 1702657.
doi: 10.1002/aenm.201702657 |
217 |
Cheng X. B. ; Zhao C. Z. ; Yao Y. X. ; Liu H. ; Zhang Q. Chem 2019, 5, 74.
doi: 10.1016/j.chempr.2018.12.002 |
218 |
Han F. ; Westover A. S. ; Yue J. ; Fan X. ; Wang F. ; Chi M. ; Leonard D. N. ; Dudney N. J. ; Wang H. ; Wang C. Nat. Energy 2019, 4, 187.
doi: 10.1038/s41560-018-0312-z |
219 |
Mo F. ; Ruan J. ; Sun S. ; Lian Z. ; Yang S. ; Yue X. ; Song Y. ; Zhou Y. N. ; Fang F. ; Sun G. ; et al Adv. Energy Mater. 2019, 9, 1902123.
doi: 10.1002/aenm.201902123 |
220 |
Cui Y. ; Liang X. ; Chai J. ; Cui Z. ; Wang Q. ; He W. ; Liu X. ; Liu Z. ; Cui G. ; Feng J. Adv. Sci. 2017, 4, 1700174.
doi: 10.1002/advs.201700174 |
221 |
Zhang H. ; Li C. ; Piszcz M. ; Coya E. ; Rojo T. ; Rodriguez-Martinez L. M. ; Armand M. ; Zhou Z. Chem. Soc. Rev. 2017, 46, 797.
doi: 10.1039/c6cs00491a |
222 |
Duan H. ; Yin Y. X. ; Shi Y. ; Wang P. F. ; Zhang X. D. ; Yang C. P. ; Shi J. L. ; Wen R. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc. 2018, 140, 82.
doi: 10.1021/jacs.7b10864 |
223 |
Duan J. ; Wu W. Y. ; Nolan A. M. ; Wang T. R. ; Wen J. Y. ; Hu C. C. ; Mo Y. F. ; Luo W. ; Huang Y. H. Adv. Mater. 2019, 31, 1807243.
doi: 10.1002/adma.201807243 |
224 |
Zhao C. Z. ; Zhang X. Q. ; Cheng X. B. ; Zhang R. ; Xu R. ; Chen P. Y. ; Peng H. J. ; Huang J. Q. ; Zhang Q. Proc. Natl. Acad. Sci. U S A 2017, 114, 11069.
doi: 10.1073/pnas.1708489114 |
225 |
Yamamoto T. ; Iwasaki H. ; Suzuki Y. ; Sakakura M. ; Fujii Y. ; Motoyama M. ; Iriyama Y. Electrochem. Commun. 2019, 105, 106494.
doi: 10.1016/j.elecom.2019.106494 |
226 |
Hou Z. ; Yu Y. ; Wang W. ; Zhao X. ; Di Q. ; Chen Q. ; Chen W. ; Liu Y. ; Quan Z. ACS Appl. Mater. Interfaces 2019, 11, 8148.
doi: 10.1021/acsami.9b01521 |
227 |
Lee Y. G. ; Fujiki S. ; Jung C. ; Suzuki N. ; Yashiro N. ; Omoda R. ; Ko D. S. ; Shiratsuchi T. ; Sugimoto T. ; Ryu S. ; et al Nat. Energy 2020, 5, 348.
doi: 10.1038/s41560-020-0604-y |
228 |
Huang Y. ; Chen B. ; Duan J. ; Yang F. ; Wang T. ; Wang Z. ; Yang W. ; Hu C. ; Luo W. ; Huang Y. Angew. Chem. Int. Ed. 2020, 59, 3699.
doi: 10.1002/anie.201914417 |
229 |
Fu K. ; Gong Y. ; Fu Z. ; Xie H. ; Yao Y. ; Liu B. ; Carter M. ; Wachsman E. ; Hu L. Angew. Chem. Int. Ed. 2017, 56, 14942.
doi: 10.1002/anie.201708637 |
230 |
Yang C. ; Zhang L. ; Liu B. ; Xu S. ; Hamann T. ; McOwen D. ; Dai J. ; Luo W. ; Gong Y. ; Wachsman E. D. ; et al Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 3770.
doi: 10.1073/pnas.1719758115 |
231 |
Xu H. ; Li Y. ; Zhou A. ; Wu N. ; Xin S. ; Li Z. ; Goodenough J. B. Nano Lett. 2018, 18, 7414.
doi: 10.1021/acs.nanolett.8b03902 |
232 |
Yang X. ; Jiang M. ; Gao X. ; Bao D. ; Sun Q. ; Holmes N. ; Duan H. ; Mukherjee S. ; Adair K. ; Zhao C. ; et al Energy Environ. Sci. 2020, 13, 1318.
doi: 10.1039/D0EE00342E |
233 |
Yan M. ; Liang J. Y. ; Zuo T. T. ; Yin Y. X. ; Xin S. ; Tan S. J. ; Guo Y. G. ; Wan L. J. Adv. Funct. Mater. 2020, 30, 1908047.
doi: 10.1002/adfm.201908047 |
234 |
Li X. ; Wang D. ; Wang H. ; Yan H. ; Gong Z. ; Yang Y. ACS Appl. Mater. Interfaces 2019, 11, 22745.
doi: 10.1021/acsami.9b05212 |
235 |
Duan J. ; Huang L. ; Wang T. ; Huang Y. ; Fu H. ; Wu W. ; Luo W. ; Huang Y. Adv. Funct. Mater. 2020, 30, 1908701.
doi: 10.1002/adfm.201908701 |
236 |
Xie M. ; Lin X. ; Huang Z. ; Li Y. ; Zhong Y. ; Cheng Z. ; Yuan L. ; Shen Y. ; Lu X. ; Zhai T. ; et al Adv. Funct. Mater. 2020, 30, 1905949.
doi: 10.1002/adfm.201905949 |
237 |
Cheng Z. ; Xie M. ; Mao Y. ; Ou J. ; Zhang S. ; Zhao Z. ; Li J. ; Fu F. ; Wu J. ; Shen Y. ; et al Adv. Energy Mater. 2020, 10, 1904230.
doi: 10.1002/aenm.201904230 |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[3] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[4] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[5] | Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211034-0. |
[6] | Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2210027-0. |
[7] | Youwen Rong, Jiaqi Sang, Li Che, Dunfeng Gao, Guoxiong Wang. Designing Electrolytes for Aqueous Electrocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212027-0. |
[8] | Chenyang Chen, Yongzhi Zhao, Yuanyuan Li, Jinping Liu. Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211005-0. |
[9] | Mingli Xu, Mengchuang Liu, Zezhou Yang, Chen Wu, Jiangfeng Qian. Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210043-0. |
[10] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[11] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[12] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[13] | Kuangyu Wang, Kai Liu, Hui Wu. Molten Alkali Metal Batteries Based on Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301009-. |
[14] | Tao Zhang, Simin Gong, Ping Chen, Qi Chen, Liwei Chen. Incorporation of a Polyfluorinated Acrylate Additive for High-Performance Quasi-2D Perovskite Light-Emitting Diodes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301024-. |
[15] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
|