Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2009095.doi: 10.3866/PKU.WHXB202009095
Special Issue: Fuel Cells
• REVIEW • Previous Articles Next Articles
Runlin Fan1, Yuhang Peng1, Hao Tian1, Junsheng Zheng1,2,*(), Pingwen Ming1,2,*(), Cunman Zhang1,2
Received:
2020-09-29
Accepted:
2020-10-23
Published:
2020-11-09
Contact:
Junsheng Zheng,Pingwen Ming
E-mail:jszheng@tongji.edu.cn;pwming@tongji.edu.cn
About author:
Emails: pwming@tongji.edu.cn (P. M.)Supported by:
Runlin Fan, Yuhang Peng, Hao Tian, Junsheng Zheng, Pingwen Ming, Cunman Zhang. Graphite-Filled Composite Bipolar Plates for Fuel Cells: Material, Structure, and Performance[J]. Acta Phys. -Chim. Sin. 2021, 37(9), 2009095. doi: 10.3866/PKU.WHXB202009095
Table 1
DOE requirements for bipolar plate in 2020."
Properties of bipolar plate | Requirement values |
Cost | 3 $·kW-1 |
Weight | 0.4 kg·kW-1 |
Hydrogen permeation coefficient | < 1.3 × 10–14 cm3·s-1·cm-2·Pa-1 |
@80 ℃, 3.04 × 105 Pa, 100% RH | |
Electrical conductivity | > 100 S·cm-1 |
thermal conductivity | > 10 W·m-1·K-1 |
Cathode corrosion current density | < 1 μA·cm-2 |
Interfacial contact resistance | < 10 mΩ·cm2 |
Flexural strength | > 25 MPa |
Fig 3
The influence of electric filler structure (a) 40and content (b) 41 on in-plane electrical conductivity of composite material. DKD, Cytec thermal graphite fibers; Fiber AGM 99: Asbury Carbons PAN AGM 99 fiber; Synthetic graphite 4012: Synthetic graphite which diameter is 50-800 μm; Graphite flake 3763: natural flake which diameter is 8 μm; Synthetic TC 305: graphite powder. Adapted from Elsevier Publisher; Adapted from Sage Publisher."
Table 2
The properties of the commonly used thermoplastic polymers 73."
Polymer | Density/(g·cm-3) | Tg/℃ | Tm/℃ | Tprocess/℃ | HDT/℃ | Flexibility/GPa | Shrinkage/% |
LDPE | 0.917–0.94 | -110 | 115 | 180–240 | 40–50 | 0.245–0.33 | 2–4 |
HDPE | 0.94–0.97 | -110 | 135 | 200–300 | 60–90 | 0.75–1.575 | 1.5–4 |
PP | 0.9–0.91 | -10 | 170 | 180–300 | 100–120 | 1.2–1.6 | 1–3 |
PET | 1.3–1.4 | 73–78 | 260 | 270–290 | 75–115 | 2.8–3.5 | 0.2–3 |
PEI | 1.27–1.3 | 215 | 370 | 370–400 | 195–210 | 3–3.4 | 0.7–0.8 |
PEEK | 1.26–1.32 | 145 | 343 | 370–420 | 150–160 (@1.8 MPa) | 3.7–4 | 1.2–1.5 |
PVDF | 1.7–1.8 | -42 – -25 | 177 | 190–280 | 70–150 | 1.5–2 | 2–4 |
PPS | 1.35 | 88–93 | 280 | 300–350 | 140–160 | 3.8–4.2 | 0.6–1.4 |
1 |
Mah A. X. Y. ; Ho W. S. ; Bong C. P. C. ; Hassim M. H. ; Liew P. Y. ; Asli U. A. ; Kamaruddin M. J. ; Chemmangattuvalappil N. G. Int. J. Hydrogen Energ. 2019, 44, 5661.
doi: 10.1016/j.ijhydene.2019.01.077 |
2 |
Liu B. ; Liu S. ; Guo S. ; Zhang S. Int. J. Hydrogen Energ. 2020, 42, 1385.
doi: 10.1016/j.ijhydene.2019.11.056 |
3 |
Garcia D. A. ; Barbanera F. ; Cumo F. ; Matteo U. D. ; Nastasi B. Energies 2016, 9, 963.
doi: 10.3390/en9110963 |
4 |
Sinigaglia T. ; Lewiski F. ; Martins M. E. S. ; Siluk J. C. M. Int. J. Hydrogen Energ. 2017, 42, 24597.
doi: 10.1016/j.ijhydene.2017.08.063 |
5 | Liu J. ; Zhong C. F. Energy of China 2019, 41, 32. |
刘坚; 钟财富. 中国能源, 2019, 41, 32.
doi: 10.3969/j.issn.1003-2355.2019.02.007 |
|
6 |
Badea G. ; Naghiu G. S. ; Giurca I. ; Aşchilean I. ; Megyesi E. Energy Procedia 2017, 112, 418.
doi: 10.1016/j.egypro.2017.03.1097 |
7 |
Vincent I. ; Bessarabov D. Renew Sust. Energ. Rev. 2018, 81, 1690.
doi: 10.1016/j.rser.2017.05.258 |
8 |
Møllera K. T. ; Jensena T. R. ; Akibab E. ; Li H. W. Prog. Nat. Sci. Mater. 2017, 27, 34.
doi: 10.1016/j.pnsc.2016.12.014 |
9 |
Marchenko O. V. ; Solomin S. V. Int. J. Hydrogen Energ. 2017, 42, 9361.
doi: 10.1016/j.ijhydene.2017.02.076 |
10 |
Budak Y. ; Devrim Y. Energ. Convers. Manage 2018, 160, 486.
doi: 10.1016/j.enconman.2018.01.077 |
11 |
Li Y. ; Yang J. ; Song J. Renew. Sust. Energ. Rev. 2017, 67, 160.
doi: 10.1016/j.rser.2016.09.030 |
12 | Li J. C. ; Wang Q. ; Jiang R. ; Wu A. M. ; Lin G. Q. ; Dong C. Mater. Rev. 2018, 32, 2584. |
李俊超; 王清; 蒋锐; 吴爱民; 林国强; 董闯. 材料导报, 2018, 32, 2584.
doi: 10.11896/j.issn.1005-023X.2018.15.008 |
|
13 |
Dafalla A. M. ; Jiang F. Int. J. Hydrogen Energ. 2018, 43, 2327.
doi: 10.1016/j.ijhydene.2017.12.033 |
14 |
Radzuan N. A. M. ; Sulong A. B. ; Somalu M. R. Sains. Malays 2019, 48, 669.
doi: 10.17576/jsm-2019-4803-21 |
15 |
Leng Y. ; Ming P. ; Yang D. ; Zhang C. J. Power Sources 2020, 451, 227783.
doi: 10.1016/j.jpowsour.2020.227783 |
16 |
Liu F. ; Yi B. ; Xing D. ; Yu J. ; Zhang H. J. Membrane Sci. 2003, 212, 213.
doi: 10.1016/S0376-7388(02)00503-3 |
17 |
Kim M. ; Lim J. W. ; Kim K. H. ; Lee D. G. Compos. Struct. 2013, 96, 569.
doi: 10.1016/j.compstruct.2012.09.017 |
18 |
Singh R. S. ; Gautam A. ; Rai V. Front. Mater. Sci. 2019, 13, 217.
doi: 10.1007/s11706-019-0465-0 |
19 |
Stein T. ; Ein-Eli Y. Energy Technol. 2020, 8, 2000007.
doi: 10.1002/ente.202000007 |
20 |
Wang H. ; Turner J. A. Fuel Cells 2010, 10, 510.
doi: 10.1002/fuce.200900187 |
21 |
Hermann A. ; Chaudhuri T. ; Spagnol P. Int. J. Hydrogen Energ. 2005, 30, 1297.
doi: 10.1016/j.ijhydene.2005.04.016 |
22 |
Li Y. ; Jia X. ; Zhang W. ; Fang C. ; Wang X. ; Qin F. ; Yamaura S. ; Yokoyama Y. Metall. Mater. Trans. A 2013, 45, 2393.
doi: 10.1007/s11661-013-2071-6 |
23 | Liang P. ; Xu H. F. ; Liu M. ; Lu L. ; Fu J. Acta Phys. -Chim. Sin. 2010, 26, 595. |
梁鹏; 徐洪峰; 刘明; 卢璐; 傅杰. 物理化学学报, 2010, 26, 595.
doi: 10.3866/PKU.WHXB20100329 |
|
24 |
Wilberforce T. ; Ijaodola O. ; Ogungbemi E. ; Khatib F. N. ; Leslie T. ; El-Hassan Z. ; Thomposon J. ; Olabi A. G. Renew. Sust. Energ. Rev. 2019, 113, 109286.
doi: 10.1016/j.rser.2019.109286 |
25 |
Vlaskin M. S. ; Grigorenko A. V. ; Shkolnikov E. I. ; Ilyukhin A. S. Surf. Rev. Lett. 2019, 26, 1950038.
doi: 10.1142/S0218625X19500380 |
26 | Qian Y. ; Xu J. Acta Phys. -Chim. Sin. 2015, 31, 291. |
钱阳; 徐江. 物理化学学报, 2015, 31, 291.
doi: 10.3866/PKU.WHXB201411262 |
|
27 |
Kim M. ; Lim J. W. ; Lee D. G. Compos. Struct. 2015, 119, 630.
doi: 10.1016/j.compstruct.2014.09.010 |
28 |
Ji S. ; Hwang Y. S. ; Park T. ; Lee Y. H. ; Paek J. Y. ; Chang I. ; Lee M. H. ; Cha S. W. Int. J. Precis. Eng. Man. 2012, 13, 2183.
doi: 10.1007/s12541-012-0289-7 |
29 |
Tripathi B. P. ; Shahi V. K. Prog. Polym. Sci. 2011, 36, 945.
doi: 10.1016/j.progpolymsci.2010.12.005 |
30 |
Clingerman M. L. ; King J. A. ; Schulz K. H. ; Meyers J. D. J. Appl. Polym. Sci. 2002, 83, 1341.
doi: 10.1002/app.10014 |
31 |
Zakaria M. Y. ; Sulong A. B. ; Sahari J. ; Suherman H. Compos. Pt. B-Eng. 2015, 83, 75.
doi: 10.1016/j.compositesb.2015.08.034 |
32 |
Phuangngamphan M. ; Okhawilai M. ; Hiziroglu S. ; Rimdusit S. J. Appl. Polym. Sci. 2019, 136, 47183.
doi: 10.1002/app.47183 |
33 |
Kim M. ; Lim J. W. ; Lee D. G. Compos. Struct. 2018, 189, 79.
doi: 10.1016/j.compstruct.2018.01.067 |
34 |
Dweiri R. ; Suherman H. ; Sulong A. B. ; Al-Sharab J. F. Sci. Eng. Compos. Mater. 2018, 25, 1177.
doi: 10.1515/secm-2017-0122 |
35 |
Akhtar M. N. ; Sulong A. B. ; Umer A. ; Yousaf A. B. ; Khan M. A. Ceram. Int. 2018, 44, 14457.
doi: 10.1016/j.ceramint.2018.05.059 |
36 |
Radzuan N. A. M. ; Zakaria M. Y. ; Sulong A. B. ; Sahari J. Compos. Pt. B-Eng. 2017, 110, 153.
doi: 10.1016/j.compositesb.2016.11.021 |
37 | Chen H. ; Liu H. B. ; Xia X. H. ; Yang L. ; He Y. D. Acta Mater. Compos. Sin. 2015, 32, 744. |
陈慧; 刘洪波; 夏笑虹; 杨丽; 何月德. 复合材料学报, 2015, 32, 744.
doi: 10.13801/j.cnki.fhclxb.201503.008 |
|
38 |
Suherman H. ; Sulong A. B. ; Sahari J. Ceram. Int. 2013, 39, 1277.
doi: 10.1016/j.ceramint.2012.07.059 |
39 |
Antunes R. A. ; Oliveira M. C. L. D. ; Ett G. ; Ett V. J.Power Sources 2011, 196, 2945.
doi: 10.1016/j.jpowsour.2010.12.041 |
40 |
Petrach E. ; Abu-Isa I. ; Xia W. J. Compos. Mater. 2010, 44, 1665.
doi: 10.1177/0021998309357088 |
41 |
Diaz J. ; Rigail-Cedeño A. ; Barzola-Monteses J. ; Espinoza-Andaluz M. Energy Procedia 2019, 158, 1502.
doi: 10.1016/j.egypro.2019.01.358 |
42 |
Jiang X. ; Drzal L. T. J. Power Sources 2012, 218, 297.
doi: 10.1016/j.jpowsour.2012.07.001 |
43 |
Fukushima H. ; Drzal L. T. ; Rook B. P. ; Rich M. J. J. Therm. Anal. Calorim. 2006, 85, 235.
doi: 10.1007/s10973-005-7344-x |
44 |
Biswas S. ; Fukushima H. ; Drzal L. T. Compos. Pt. A-Appl. Sci. Manuf. 2011, 42, 371.
doi: 10.1016/j.compositesa.2010.12.006 |
45 |
Kim M. ; Yu H. N. ; Lim J. W. ; Lee D. G. Int. J. Hydrogen Energ. 2012, 37, 4300.
doi: 10.1016/j.ijhydene.2011.11.125 |
46 |
Lee H. E. ; Han S. H. ; Song S. A. ; Kim S. S. Compos. Struct. 2015, 134, 44.
doi: 10.1016/j.compstruct.2015.08.037 |
47 |
Naji A. ; Krause B. ; Pötschke P. ; Ameli A. Smart Mater. Struct. 2019, 28, 064004.
doi: 10.1088/1361-665X/ab19cb |
48 |
Wei T. ; Song L. ; Zheng C. ; Wang K. ; Yan J. ; Shao B. ; Fan Z. J. Mater. Lett. 2010, 64, 2376.
doi: 10.1016/j.matlet.2010.07.061 |
49 |
Yu H. N. ; Lim J. W. ; Suh J. D. ; Lee D. G. J. Power Sources 2011, 196, 9868.
doi: 10.1016/j.jpowsour.2011.06.102 |
50 |
Hwang I. U. ; Yu H. N. ; Kim S. S. ; Lee D. G. ; Suh J. D. ; Lee S. H. ; Ahn B. K. ; Kim S. H. ; Lim T. W. J. Power Sources 2008, 184, 90.
doi: 10.1016/j.jpowsour.2008.05.088 |
51 |
Kang K. ; Park S. ; Jo A. ; Lee K. ; Ju H. Int. J. Hydrogen Energ. 2017, 42, 1691.
doi: 10.1016/j.ijhydene.2016.05.027 |
52 |
Yao K; Adams. ; D. L. ; Hao A. ; Zheng J. P. ; Liang R. ECS Trans. 2017, 77, 1303.
doi: 10.1149/07711.1303ecst |
53 |
Kim J. W. ; Kim N. H. ; Kuilla T. ; Kim T. J. ; Rhee K. Y. ; Lee J. H. J. Power Sources 2010, 195, 5474.
doi: 10.1016/j.jpowsour.2010.03.083 |
54 |
Kim K. H. ; Lim J. W. ; Kim M. ; Lee D. G. Compos. Struct. 2013, 98, 103.
doi: 10.1016/j.compstruct.2012.10.043 |
55 |
Di J. T. ; Hu D. M. ; Chen H. Y. ; Yong Z. Z. ; Chen M. H. ; Feng Z. H. ; Zhu Y. T. ; Li Q. W. ACS Nano 2012, 6, 5457.
doi: 10.1021/nn301321j |
56 |
Yao K. ; Adams D. ; Hao A. ; Zheng J. P. ; Liang Z. Y. ; Nguyen N. Energ. Fuel 2017, 31, 14320.
doi: 10.1021/acs.energyfuels.7b02678 |
57 |
Fiedler B. ; Gojny F. H. ; Wichmann M. H. G. ; Nolte M. C. M. ; Schulte K. J. Compos. Sci. Technol. 2006, 66, 3115.
doi: 10.1016/j.compscitech.2005.01.014 |
58 |
Sham M. L. ; Kim J. K. Carbon 2006, 44, 768.
doi: 10.1016/j.carbon.2005.09.013 |
59 |
Yin Q. ; Sun K. N. ; Li A. J. ; Shao L. ; Liu S. M. ; Sun C. J Power Sources 2008, 175, 861.
doi: 10.1016/j.jpowsour.2007.10.013 |
60 |
Athmouni N. ; Mighri F. ; Elkoun S. Polym. Advan. Technol. 2018, 29, 294.
doi: 10.1002/pat.4114 |
61 |
Lee M. H. ; Kim H. Y. ; Kim J. ; Han J. T. ; Lee Y. S. ; Woo J. S. Carbon Lett. 2019, 30, 345.
doi: 10.1007/s42823-019-00103-2 |
62 |
Liao S. H. ; Weng C. C. ; Yen C. Y. ; Hsiao M. C. ; Ma C. C. M. ; Tsai M. C. ; Su A. ; Yen M. Y. ; Lin Y. F. ; Liu P. L. J. Power Sources 2010, 195, 263.
doi: 10.1016/j.jpowsour.2009.06.064 |
63 |
Li J. ; Vaisman L. ; Marom G. ; Kim J. K. Carbon 2007, 45, 744.
doi: 10.1016/j.carbon.2006.11.031 |
64 |
Matsumoto R. ; Okabe Y. Synthetic Met. 2016, 222, 351.
doi: 10.1016/j.synthmet.2016.11.020 |
65 |
Kalaitzidou K. ; Fukushima H. ; Drzal L. Materials 2010, 3, 1089.
doi: 10.3390/ma3021089 |
66 |
Taherian R. Compos. Sci. Technol. 2016, 123, 17.
doi: 10.1016/j.compscitech.2015.11.029 |
67 |
Radzuan M. ; Afiqah N. ; Sulong A. B. ; Sahari J. Int. J. Hydrogen Energ. 2017, 42, 9262.
doi: 10.1016/j.ijhydene.2016.03.045 |
68 |
Mclachlan D. S. ; Blaszkiewicz M. ; Newnham R. E. J. Am. Ceram. Soc. 1990, 73, 2187.
doi: 10.1111/j.1151-2916.1990.tb07576.x |
69 |
Mamunya E. P. ; Davidenko V. V. ; Lebedev E. V. Compos. Interface 2012, 4, 169.
doi: 10.1163/156855497x00145 |
70 |
Nielsen L. E. J. Ind. Eng. Chem. 1974, 13, 17.
doi: 10.1021/i160049a004 |
71 |
Lee D. ; Lee D. G. J. Power Sources 2016, 327, 119.
doi: 10.1016/j.jpowsour.2016.07.045 |
72 | Ouyang T. ; Yin S. F. ; Xie Z. Y. ; Gao P. P. ; Tao T. ; Huang Q. Z. Acta Mater. Compos. Sin. 2018, 35, 2950. |
欧阳涛; 尹绍峰; 谢志勇; 高平平; 陶韬; 黄启忠. 复合材料学报, 2018, 35, 2950.
doi: 10.13801/j.cnki.fhclxb.20180316.002 |
|
73 |
San F. G. B. ; Tekin G. Int. J. Energ. Res. 2013, 37, 283.
doi: 10.1002/er.3005 |
74 |
Dweiri R. ; Sahari J. J. Power Sources 2007, 171, 424.
doi: 10.1016/j.jpowsour.2007.05.106 |
75 |
Mahyoedin Y. ; Sahari J. ; Mukhtar A. ; Mohammad N. Suryadimal. MATEC Web of Conferences 2018, 248, 01007.
doi: 10.1051/matecconf/201824801007 |
76 |
Lim J. W. ; Kim M. ; Yu Y. H. ; Lee D. G. Compos. Struct 2014, 118, 519.
doi: 10.1016/j.compstruct.2014.08.011 |
77 |
Martins J. N. ; Kersch M. ; Altstädt V. ; Oliveira R. V. B. Polym. Test. 2013, 32, 1511.
doi: 10.1016/j.polymertesting.2013.10.001 |
78 |
Ansari S. ; Giannelis E. P. J. Polym. Sci. Pol. Phy. 2009, 47, 888.
doi: 10.1002/polb.21695 |
79 |
Liao S. H. ; Yen C. Y. ; Weng C. C. ; Lin Y. F. ; Ma C. C. M. ; Yang C. H. ; Tsai M. C. ; Yen M. Y. ; Hsiao M. C. ; Lee S.J. J. Power Sources 2008, 185, 1225.
doi: 10.1016/j.jpowsour.2008.06.097 |
80 |
Adloo A. ; Sadeghi M. ; Masoomi M. ; Pazhooh H. N. Renew. Energ. 2016, 99, 867.
doi: 10.1016/j.renene.2016.07.062 |
81 |
Caglar B. ; Fischer P. ; Kauranen P. ; Karttunen M. ; Elsner P. J. Power Sources 2014, 256, 88.
doi: 10.1016/j.jpowsour.2014.01.060 |
82 |
Lee M. H. ; Kim H. Y. ; Oh S. M. ; Kim B. C. ; Bang D. ; Han J. T. ; Woo J. S. Int. J. Hydrogen Energ. 2018, 43, 21918.
doi: 10.1016/j.ijhydene.2018.09.104 |
83 |
Hopmann C. ; Windeck C. ; Cohnen A. ; Onken J. ; Krause B. ; Pötschke P. ; Hickmann T. AIP Conference Proceedings 2016, 1779, 030017.
doi: 10.1063/1.4965487 |
84 |
Yeetsorn R. ; Fowler M. ; Tzoganakis C. ; Yuhua W. ; Taylor M. Macromol. Symp. 2008, 264, 34.
doi: 10.1002/masy.200850406 |
85 |
Alo O. A. ; Otunniyi I. O. ; Pienaar H. Polym. Compos. 2020, 41, 3364.
doi: 10.1002/pc.25625 |
86 |
Simaafrookhteh S. ; Khorshidian M. ; Momenifar M. Int. J. Hydrogen Energ. 2020, 45, 14119.
doi: 10.1016/j.ijhydene.2020.03.105 |
87 |
Park H. J. ; Woo J. S. ; Kim S. H. ; Park K. S. ; Park S. H. ; Park S. Y. Macromol. Res. 2019, 27, 1161.
doi: 10.1007/s13233-019-7156-7 |
88 |
Liao W. ; Jiang F. ; Zhang Y. ; Zhou X. ; He Z. Renew. Energ. 2020, 152, 1310.
doi: 10.1016/j.renene.2020.01.155 |
89 |
Kim S. H. ; Woo J. S. ; Park S. Y. Macromol. Res. 2020,
doi: 10.1007/s13233-020-8140-y |
90 |
Radzuan M. ; Afiqah N. ; Sulong A. B. ; Somalu M. R. ; Abdullah A. T. ; Husaini T. ; Rosli R. E. ; Majlan E. H. ; Rosli M. I. Int. J. Hydrogen Energ. 2019, 44, 30618.
doi: 10.1016/j.ijhydene.2019.01.063 |
91 |
Huang J. ; Rodrigue D. Mater. Design 2014, 55, 653.
doi: 10.1016/j.matdes.2013.10.039 |
92 |
Martin C. A. ; Sandler J. K. W. ; Windle A. H. ; Schwarz M. K. ; Bauhofer W. ; Schulte K. ; Shaffer M. S. P. Polymer 2005, 46, 877.
doi: 10.1016/j.polymer.2004.11.081 |
93 |
Senis E. C. ; Golosnoy I. O. ; Andritsch T. ; Dulieu-Barton J. M. ; Thomsen O. T. Polym. Compos. 2020, 41, 3510.
doi: 10.1002/pc.25637 |
94 |
Gupta P. ; Rajput M. ; Singla N. ; Kumar V. ; Lahiri D. Polymer 2016, 89, 119.
doi: 10.1016/j.polymer.2016.02.025 |
95 |
Wang Q. ; Dai J. ; Li W. ; Wei Z. ; Jiang J. Compos. Sci. Technol. 2008, 68, 1644.
doi: 10.1016/j.compscitech.2008.02.024 |
96 |
Ma C. G. ; Liu H. Y. ; Du X. S. ; Mach L. T. ; Xu F. ; Mai Y. W. Compos. Sci. Technol. 2015, 114, 126.
doi: 10.1016/j.compscitech.2015.04.007 |
97 |
Tanabi H. ; Erdal M. Results Phys. 2019, 12, 486.
doi: 10.1016/j.rinp.2018.11.081 |
98 |
Liu N. ; Liu Y. Z. ; Zhao Y. L. ; Liu Y. T. ; Lan Q. ; Qin J. ; Song Z. P. ; Zhan H. ACS Appl. Mater. Inter. 2019, 11, 467264.
doi: 10.1021/acsami.9b15462 |
99 |
Zabihi O. ; Shafei S. ; Fakhrhoseini S. M. ; Ahmadi M. ; Nazarloo H. A. ; Stanger R. ; Tran Q. A. ; Lucas J. ; Wall T. ; Naebe M. Materials 2019, 12, 1281.
doi: 10.3390/ma12081281 |
100 |
Sen R. ; Zhao B. ; Perea D. ; Itkis M. E. ; Hu H. ; Love J. ; Bekyarova E. ; Haddon R. C. Nano Lett. 2004, 4, 459.
doi: 10.1021/nl035135s |
101 |
Avasarala B. ; Haldar P. J. Power Sources 2009, 188, 225.
doi: 10.1016/j.jpowsour.2008.11.063 |
102 |
Lee D. ; Lee D. G. Compos. Struct. 2016, 140, 77.
doi: 10.1016/j.compstruct.2015.12.066 |
103 |
Lee D. ; Lee D. G. ; Lim J. W. J. Intel. Mat. Syst. Str. 2017, 29, 3386.
doi: 10.1177/1045389x17708345 |
104 |
Yu H. N. ; Lim J. W. ; Kim M. K. ; Lee D. G. Compos. Struct. 2012, 94, 1911.
doi: 10.1016/j.compstruct.2011.12.024 |
105 |
Li B. ; Liu D. ; Li G. ; Yang X. J. Mater. Sci. 2018, 53, 15939.
doi: 10.1007/s10853-018-2753-y |
106 |
Ang K. K. ; Ahmed K. S. Compos. Pt. B-Eng. 2013, 50, 7.
doi: 10.1016/j.compositesb.2013.01.016 |
107 |
Xu F. ; Liu H. Y. ; Du X. Polumers 2018, 10, 863.
doi: 10.3390/polym10060683 |
108 |
Naya F. ; Molina-Aldareguia J. ; Lopes C. S. ; González C. ; Llorca J. J. Miner. Met. Mater. Soc. 2016, 69, 13.
doi: 10.1007/s11837-016-2128-2 |
109 |
Paul R. ; Dai L. Compos. Interface 2018, 25, 539.
doi: 10.1080/09276440.2018.1439632 |
110 | Xiong Y. H. ; Wu H. ; Gao J. S. ; Chen W. ; Zhang J. C. ; Yue Y. N. Acta Phys. -Chim. Sin. 2019, 35, 1150. |
熊扬恒; 吴昊; 高建树; 陈文; 张景超; 岳亚楠. 物理化学学报, 2019, 35, 1150.
doi: 10.3866/PKU.WHXB201901002 |
|
111 |
Wang Y. ; Zhan H. F. ; Xiang Y. ; Yang C. ; Wang C. M. ; Zhang Y. Y. J. Phys. Chem. C 2015, 119, 12731.
doi: 10.1021/acs.jpcc.5b02920 |
112 |
Jia M. D. ; Pememann K. V. ; Behlmg R. D. J. Membrane Sci. 1992, 73, 199.
doi: 10.1016/0376-7388(92)80122-Z |
113 |
Takahashi S. ; Paul D. R. Polyer 2006, 47, 7519.
doi: 10.1016/j.polymer.2006.08.029 |
114 |
Wang M. ; Wang Z. ; Li N. ; Liao J. Y. ; Zhao S. ; Wang J. X. ; Wang S. C. J. Membrane Sci. 2015, 495, 252.
doi: 10.1016/j.memsci.2015.08.019 |
115 |
Du C. ; Ming P. ; Hou M. ; Fu J. ; Fu Y. ; Luo X. ; Shen Q. ; Shao Z. ; Yi B. J. Power Sources 2010, 195, 5312.
doi: 10.1016/j.jpowsour.2010.03.005 |
116 |
Kim M. Y. ; Choi S. W. ; Boo S. J. ; Lee J. H. ; Noh H. S. ; Kim H. S. J. Nanosci. Nanotechnol. 2015, 15, 8055.
doi: 10.1166/jnn.2015.11245 |
117 |
Guo J. ; Zhang Q. J. ; Gao L. ; Zhong W. H. ; Sui G. ; Yang X. P. Compos. Pt. A-Appl. Sci. Manuf. 2017, 95, 294.
doi: 10.1016/j.compositesa.2017.01.021 |
[1] | Chengcheng Zhang, Zhiyi Wu, Jiahui Shen, Le He, Wei Sun. Silicon Nanostructure Arrays: An Emerging Platform for Photothermal CO2 Catalysis [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304004-. |
[2] | Lianlian Ji, Xianpeng Wang, Yingying Zhang, Xueli Shen, Di Xue, Lu Wang, Zi Wang, Wenchong Wang, Lizhen Huang, Lifeng Chi. In situ and Ex situ Investigation of the Organic-Organic Interface Effect [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304002-. |
[3] | Muhammad Faizan, Guoqi Zhao, Tianxu Zhang, Xiaoyu Wang, Xin He, Lijun Zhang. Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303004-. |
[4] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[5] | Yaowu Luo, Dingsheng Wang. Enhancing Heterogeneous Catalysis by Electronic Property Regulation of Single Atom Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212020-0. |
[6] | Fengyu Gao, Hengheng Liu, Xiaolong Yao, Zaharaddeen Sani, Xiaolong Tang, Ning Luo, Honghong Yi, Shunzheng Zhao, Qingjun Yu, Yuansong Zhou. Spherical MnxCo3−xO4−ƞ Spinel with Mn-Enriched Surface as High-Efficiency Catalysts for Low-Temperature Selective Catalytic Reduction of NOx by NH3 [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212003-0. |
[7] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[8] | Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211010-0. |
[9] | Tianmi Tang, Zhenlu Wang, Jingqi Guan. Electronic Structure Regulation of Single-Site M-N-C Electrocatalysts for Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2208033-0. |
[10] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[11] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[12] | Zhen Liu, Xiangfu Meng, Wanmiao Gu, Jun Zha, Nan Yan, Qing You, Nan Xia, Hui Wang, Zhikun Wu. Introducing Novel, Multiple Cd Coordination Modes into Gold Nanoclusters by Combined Doping for Enhancing Electrocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212064-. |
[13] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[14] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
[15] | Lijun Zhang, Youlin Wu, Noritatsu Tsubaki, Zhiliang Jin. 2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302051-. |
|