Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2009098.doi: 10.3866/PKU.WHXB202009098
Special Issue: CO2 Reduction
• REVIEW • Previous Articles Next Articles
Kaimin Hua1,2, Xiaofang Liu1, Baiyin Wei1,3, Shunan Zhang1,2, Hui Wang1,*(), Yuhan Sun1,3,4,*()
Received:
2020-09-29
Accepted:
2020-10-20
Published:
2020-10-23
Contact:
Hui Wang,Yuhan Sun
E-mail:wanghh@sari.ac.cn;sunyh@sari.ac.cn
About author:
Email: sunyh@sari.ac.cn (S.Y.); Tel.: +86-21-20325009 (S.Y.)Supported by:
Kaimin Hua, Xiaofang Liu, Baiyin Wei, Shunan Zhang, Hui Wang, Yuhan Sun. Research Progress Regarding Transition Metal-Catalyzed Carbonylations with CO2/H2[J]. Acta Phys. -Chim. Sin. 2021, 37(5), 2009098. doi: 10.3866/PKU.WHXB202009098
Table 1
Performance comparison for hydroformylation of ethylene with CO2/H2 catalyzed by Au-based heterogeneous catalysts."
Entry | Catalyst | P (MPa)/T (℃) | Promoter (w, %) | X(CO2) (%) | S(CO) (%) | Y(propanol) (%) |
1 | Au/TiO2 | 2/200 | 0 | 3.6 | 83 | 0.7 |
2 | K-Au/TiO2-a | 2/200 | 2.1 | 1.2 | 0 | 2.4 |
3 | K–Au/TiO2-r | 2/250 | 2.8 | 4.6 | 35 | 3.1 |
4 | Cs–Au/TiO2 | 2/250 | 4 | 5.3 | 42 | 2.9 |
5 | K−Au/SiO2 | 2/200 | 1 | 3.3 | 0 | 2.0 |
1 |
Aresta M. ; Dibenedetto A. Dalton Trans. 2007, 2975.
doi: 10.1039/b700658f |
2 |
Doney S. C. ; Fabry V. J. ; Feely R. A. ; Kleypas J. A. Ann. Rev. Mar. Sci. 2009, 1, 169.
doi: 10.1146/annurev.marine.010908.163834 |
3 |
Alberico E. ; Nielsen M. Chem. Commun. 2015, 51, 6714.
doi: 10.1039/c4cc09471a |
4 |
Porosoff M. D. ; Yan B. ; Chen J. G. Energy Environ. Sci. 2016, 9, 62.
doi: 10.1039/c5ee02657a |
5 |
Abanades J. C. ; Rubin E. S. ; Mazzotti M. ; Herzog H. J. Energy Environ. Sci. 2017, 10, 2491.
doi: 10.1039/C7EE02819A |
6 |
Klankermayer J. ; Wesselbaum S. ; Beydoun K. ; Leitner W. Angew. Chem. Int. Ed. 2016, 55, 7296.
doi: 10.1002/anie.201507458 |
7 |
Jessop P. G. ; Ikariya T. ; Noyor R. Chem. Rev. 1995, 95, 259.
doi: 10.1021/cr00034a001 |
8 |
Leitner W. Coord. Chem. Rev. 1996, 153, 257.
doi: 10.1016/0010-8545(95)01226-5 |
9 |
Song Q. -W. ; Zhou Z. -H. ; He L. -N. Green Chem. 2017, 19, 3707.
doi: 10.1039/c7gc00199a |
10 | Zhou W. ; Guo J. -K. ; Shen S. ; Pan J. ; Tang J. ; Chen L. ; Au C. -T. ; Yin S. -F. Acta Phys. -Chim. Sin. 2020, 36, 1906048. |
周威; 郭君康; 申升; 潘金波; 唐杰; 陈浪; 区泽堂; 尹双凤. 物理化学学报, 2020, 36, 1906048.
doi: 10.3866/PKU.WHXB201906048 |
|
11 | Bai X. -F. ; Chen W. ; Wang B. -Y. ; Feng G. -H. ; Wei W. ; Jiao Z. ; Sun Y. Acta Phys.-Chim. Sin. 2017, 33, 2388. |
白晓芳; 陈为; 王白银; 冯光辉; 魏伟; 焦正; 孙予罕. 物理化学学报, 2017, 33, 2388.
doi: 10.3866/PKU.WHXB201706131 |
|
12 |
Wang X. ; Xia C. ; Wu L. Green Chem. 2018, 20, 5415.
doi: 10.1039/c8gc03022g |
13 |
Alvarez A. ; Bansode A. ; Urakawa A. ; Bavykina A. V. ; Wezendonk T. A. ; Makkee M. ; Gascon J. ; Kapteijn F. Chem. Rev. 2017, 117, 9804.
doi: 10.1021/acs.chemrev.6b00816 |
14 |
Li X. ; He X. ; Liu X. ; He L. -N. Sci. China Chem. 2017, 60, 841.
doi: 10.1007/s11426-016-0473-5 |
15 |
Gao P. ; Dang S. ; Li S. ; Bu X. ; Liu Z. ; Qiu M. ; Yang C. ; Wang H. ; Zhong L. ; Han Y. ; et al ACS Catal. 2017, 8, 571.
doi: 10.1021/acscatal.7b02649 |
16 |
Gao P. ; Li S. ; Bu X. ; Dang S. ; Liu Z. ; Wang H. ; Zhong L. ; Qiu M. ; Yang C. ; Cai J. ; et al Nat. Chem. 2017, 9, 1019.
doi: 10.1038/nchem.2794 |
17 |
Liao P. ; Zhang C. ; Zhang L. ; Yang Y. ; Zhong L. ; Wang H. ; Sun Y. Catal. Today 2018, 311, 56.
doi: 10.1016/j.cattod.2017.09.022 |
18 |
Yang H. ; Zhang C. ; Gao P. ; Wang H. ; Li X. ; Zhong L. ; Wei W. ; Sun Y. Catal. Sci. Technol. 2017, 7, 4580.
doi: 10.1039/c7cy01403a |
19 | Cui X. ; Shi F. Acta Phys. -Chim. Sin. 2021, 37, 2006080. |
崔新江; 石峰. 物理化学学报, 2021, 37, 2006080.
doi: 10.3866/PKU.WHXB202006080 |
|
20 |
Zhong L. ; Yu F. ; An Y. ; Zhao Y. ; Sun Y. ; Li Z. ; Lin T. ; Lin Y. ; Qi X. ; Dai Y. ; et al Nature 2016, 538, 84.
doi: 10.1038/nature19786 |
21 |
Kar S. ; Goeppert A. ; Prakash G. K. S. Acc. Chem. Res. 2019, 52, 2892.
doi: 10.1021/acs.accounts.9b00324 |
22 |
Beller M. ; Cornils B. ; Frohning C. D. ; Kohlpaintner C. W. J. Mol. Catal. A: Chem. 1995, 104, 17.
doi: 10.1016/1381-1169(95)00130-1 |
23 | Zhang X. ; Cao Y. ; Chen Q. ; Shen C. ; He L. Acta Phys. -Chim. Sin. 2021, 37, 2007052. |
张雪华; 曹彦伟; 陈琼遥; 沈超仁; 何林. 物理化学学报, 2021, 37, 2007052.
doi: 10.3866/PKU.WHXB202007052 |
|
24 |
Klankermayer J. ; Leitner W. Science 2015, 350, 629.
doi: 10.1126/science.aac7997 |
25 |
Morimoto T. ; Kakiuchi K. Angew. Chem. Int. Ed. 2004, 43, 5580.
doi: 10.1002/anie.200301736 |
26 |
Gual A. ; Godard C. ; Castillón S. ; Claver C. Tetra. Asymm. 2010, 21, 1135.
doi: 10.1016/j.tetasy.2010.05.037 |
27 |
Wang L. ; Sun W. ; Liu C. Chin. J. Chem. 2018, 36, 353.
doi: 10.1002/cjoc.201700746 |
28 |
Wu L. ; Liu Q. ; Jackstell R. ; Beller M. Angew. Chem. Int. Ed. 2014, 53, 6310.
doi: 10.1002/anie.201400793 |
29 |
Tominaga K. ; Sasaki Y. ; Kawai M. ; Watanabe T. ; Saito M. J. Chem. Soc. Chem. Commun. 1993, 7, 629.
doi: 10.1039/c39930000629 |
30 |
Tominaga K. ; Sasaki Y. ; Hagihara K. ; Watanabe T. ; Saito M. Chem. Lett. 1994, 23, 1391.
doi: 10.1246/cl.1994.1391 |
31 |
Tominaga K. ; Sasaki Y. Catal. Commun. 2000, 1, 1.
doi: 10.1016/S1566-7367(00)00006-6 |
32 |
Jööskelöinen S. ; Haukka M. Appl. Catal. A: Gen. 2003, 247, 95.
doi: 10.1016/s0926-860x(03)00063-2 |
33 |
Kontkanen M. -L. ; Oresmaa L. ; Moreno M. A. ; Jönis J. ; Laurila E. ; Haukka M. Appl. Catal. A: Gen. 2009, 365, 130.
doi: 10.1016/j.apcata.2009.06.006 |
34 |
Tominaga K. ; Sasaki Y. J. Mol. Catal. A: Chem. 2004, 220, 159.
doi: 10.1016/j.molcata.2004.06.009 |
35 |
Tominaga K. Catal. Today 2006, 115, 70.
doi: 10.1016/j.cattod.2006.02.019 |
36 |
Ali M. ; Gual A. ; Ebeling G. ; Dupont J. ChemCatChem 2014, 6, 2224.
doi: 10.1002/cctc.201402226 |
37 |
Liu Q. ; Wu L. ; Fleischer I. ; Selent D. ; Franke R. ; Jackstell R. ; Beller M. Chem 2014, 20, 6888.
doi: 10.1002/chem.201400358 |
38 |
Zhang X. ; Tian X. ; Shen C. ; Xia C. ; He L. ChemCatChem 2019, 11, 1986.
doi: 10.1002/cctc.201802091 |
39 |
Ahlers S. J. ; Bentrup U. ; Linke D. ; Kondratenko E. V. ChemSusChem 2014, 7, 2631.
doi: 10.1002/cssc.201402212 |
40 |
Ahlers S. J. ; Kraehnert R. ; Kreyenschulte C. ; Pohl M. -M. ; Linke D. ; Kondratenko E. V. Catal. Today 2015, 258, 684.
doi: 10.1016/j.cattod.2015.04.006 |
41 |
Ahlers S. J. ; Pohl M. -M. ; Radnik J. ; Linke D. ; Kondratenko E. V. Appl. Catal. B: Environ. 2015, 176-177, 570.
doi: 10.1016/j.apcatb.2015.04.034 |
42 |
Mavlyankariev S. A. ; Ahlers S. J. ; Kondratenko V. A. ; Linke D. ; Kondratenko E. V. ACS Catal. 2016, 6, 3317.
doi: 10.1021/acscatal.6b00590 |
43 |
Heyl D. ; Kreyenschulte C. ; Kondratenko V. A. ; Bentrup U. ; Kondratenko E. V. ; Bruckner A. ChemSusChem 2019, 12, 651.
doi: 10.1002/cssc.201801937 |
44 |
Greenhalgh M. D. ; Thomas S. P. J. Am. Chem. Soc. 2012, 134, 11900.
doi: 10.1021/ja3045053 |
45 |
Gaydou M. ; Moragas T. ; Julia-Hernandez F. ; Martin R. J. Am. Chem. Soc. 2017, 139, 12161.
doi: 10.1021/jacs.7b07637 |
46 |
Gui Y. Y. ; Hu N. ; Chen X. W. ; Liao L. L. ; Ju T. ; Ye J. H. ; Zhang Z. ; Li J. ; Yu D. G. J. Am. Chem. Soc. 2017, 139, 17011.
doi: 10.1021/jacs.7b10149 |
47 |
Wu X. F. ; Zheng F. Top Curr. Chem. 2017, 375, 4.
doi: 10.1007/s41061-016-0091-6 |
48 |
Ostapowicz T. G. ; Schmitz M. ; Krystof M. ; Klankermayer J. ; Leitner W. Angew. Chem. Int. Ed. 2013, 52, 12119.
doi: 10.1002/anie.201304529 |
49 |
Wang Y. ; Qian Q. ; Zhang J. ; Bediako B. B. A. ; Wang Z. ; Liu H. ; Han B. Nat. Commun. 2019, 10, 5395.
doi: 10.1038/s41467-019-13463-0 |
50 |
Pugh R. I. ; Pringle P. G. ; Drent E. Chem. Commun. 2001, 1476.
doi: 10.1039/b103754b |
51 |
Jimenez Rodriguez C. ; Foster D. F. ; Eastham G. R. ; Cole-Hamilton D. J. Chem. Commun. 2004, 1720.
doi: 10.1039/b404783d |
52 |
Konrad T. M. ; Fuentes J. A. ; Slawin A. M. Z. ; Clarke M. L. Angew. Chem. Int. Ed. 2010, 49, 9197.
doi: 10.1002/anie.201004415 |
53 |
Wu L. ; Liu Q. ; Fleischer I. ; Jackstell R. ; Beller M. Nat. Commun. 2014, 5, 3091.
doi: 10.1038/ncomms4091 |
54 |
Zhang X. ; Shen C. ; Xia C. ; Tian X. ; He L. Green Chem. 2018, 20, 5533.
doi: 10.1039/c8gc02289e |
55 | Zhang Y. ; Dai X. ; Wang H. ; Shi F. Acta Phys. -Chim. Sin. 2018, 34, 845. |
张玉景; 代兴超; 王红利; 石峰. 物理化学学报, 2018, 34, 845.
doi: 10.3866/PKU.WHXB201701081 |
|
56 |
Li R. ; Zhao Y. ; Wang H. ; Xiang J. ; Wu Y. ; Yu B. ; Han B. ; Liu Z. Chem. Sci. 2019, 10, 9822.
doi: 10.1039/c9sc03242h |
57 |
Srivastava V. K. ; Eilbracht P. Catal. Commun. 2009, 10, 1791.
doi: 10.1016/j.catcom.2009.05.019 |
58 |
Ali M. ; Gual A. ; Ebeling G. ; Dupont J. ChemSusChem. 2016, 9, 2129.
doi: 10.1002/cssc.201600385 |
59 |
Ren X. ; Zheng Z. ; Zhang L. ; Wang Z. ; Xia C. ; Ding K. Angew. Chem. Int. Ed. 2017, 56, 310.
doi: 10.1002/anie.201608628 |
60 |
Xie Z. ; Xu Y. ; Xie M. ; Chen X. ; Lee J. H. ; Stavitski E. ; Kattel S. ; Chen J. G. Nat. Commun. 2020, 11, 1887.
doi: 10.1038/s41467-020-15849-x |
61 |
Kantlehner W. Eur. J. Org. Chem. 2003, 2003, 2530.
doi: 10.1002/ejoc.200200653 |
62 | Crawford, L. P.; Richardson, S. K. General and Synthetic Methods; Royal Society of Chemistry Publ: London, UK, 1994; p. 37. doi: 10.1039/9781847556288-00037 |
63 |
Sergeev A. G. ; Spannenberg A. ; Beller M. J. Am. Chem. Soc. 2008, 130, 15549.
doi: 10.1021/ja804997z |
64 |
Natte K. ; Dumrath A. ; Neumann H. ; Beller M. Angew. Chem. Int. Ed. 2014, 53, 10090.
doi: 10.1002/anie.201404833 |
65 |
Sun G. ; Lv X. ; Zhang Y. ; Lei M. ; Hu L. Org. Lett. 2017, 19, 4235.
doi: 10.1021/acs.orglett.7b01882 |
66 |
Yu B. ; Zhao Y. ; Zhang H. ; Xu J. ; Hao L. ; Gao X. ; Liu Z. Chem. Commun. 2014, 50, 2330.
doi: 10.1039/c3cc49365b |
67 |
Yu B. ; Yang Z. ; Zhao Y. ; Hao L. ; Zhang H. ; Gao X. ; Han B. ; Liu Z. Chem 2016, 22, 1097.
doi: 10.1002/chem.201504320 |
68 |
Liu Z. ; Yang Z. ; Yu B. ; Yu X. ; Zhang H. ; Zhao Y. ; Yang P. ; Liu Z. Org. Lett. 2018, 20, 5130.
doi: 10.1021/acs.orglett.8b02027 |
69 | Shao Z. ; Liu X. ; Zhang S. ; Wang H. ; Sun Y. Acta Phys. -Chim. Sin. 2021, 37, 1911053. |
邵自龙; 刘晓放; 张书南; 王慧; 孙予罕. 物理化学学报, 2021, 37, 1911053.
doi: 10.3866/PKU.WHXB201911053 |
|
70 |
Maitlis P. ; Haynes A. ; Sunley G. J. ; Howard M. J. J. Chem. Soc. Dalton. 1996, 11, 2187.
doi: 10.1039/dt9960002187 |
71 |
Budiman A. W. ; Nam J. S. ; Park J. H. ; Mukti R. I. ; Chang T. S. ; Bae J. W. ; Choi M. J. Catal. Surv. Asia 2016, 20, 173.
doi: 10.1007/s10563-016-9215-9 |
72 |
Peng J. -B. ; Wu F. -P. ; Wu X. -F. Chem. Rev. 2018, 119, 2090.
doi: 10.1021/acs.chemrev.8b00068 |
73 |
Li J. ; Wang L. ; Cao Y. ; Zhang C. ; He P. ; Li H. Chin. J. Chem. Eng. 2018, 26, 2266.
doi: 10.1016/j.cjche.2018.07.008 |
74 |
Chen C. ; Yan X. ; Liu S. ; Wu Y. ; Wan Q. ; Sun X. ; Zhu Q. ; Liu H. ; Ma J. ; Zheng L. ;et al Angew. Chem. Int. Ed. 2020, 59, 16459.
doi: 10.1002/anie.202006847 |
75 |
Prieto G. ChemSusChem 2016, 10, 1056.
doi: 10.1002/cssc.v10.6 |
76 |
Luk H. T. ; Mondelli C. ; Ferre D. C. ; Stewart J. A. ; Perez-Ramirez J. Chem. Soc. Rev. 2017, 46, 1358.
doi: 10.1039/c6cs00324a |
77 |
Wu J. F. ; Yu S. M. ; Wang W. D. ; Fan Y. X. ; Bai S. ; Zhang C. W. ; Gao Q. ; Huang J. ; Wang W. J. Am. Chem. Soc. 2013, 135, 13567.
doi: 10.1021/ja406978q |
78 |
Fukuoka A. ; Gotoh N. ; Kobayashi N. ; Hirano M. ; Komiya S. Chem. Lett. 1995, 24, 567.
doi: 10.1246/cl.1995.567 |
79 |
Qian Q. ; Zhang J. ; Cui M. ; Han B. Nat. Commun. 2016, 7, 11481.
doi: 10.1038/ncomms11481 |
80 |
Cui M. ; Qian Q. ; Zhang J. ; Chen C. ; Han B. Green Chem. 2017, 19, 3558.
doi: 10.1039/c7gc01391d |
81 |
Wang H. ; Zhao Y. ; Ke Z. ; Yu B. ; Li R. ; Wu Y. ; Wang Z. ; Han J. ; Liu Z. Chem. Commun. 2019, 55, 3069.
doi: 10.1039/c9cc00819e |
82 |
Shen X. ; Meng Q. ; Dong M. ; Xiang J. ; Li S. ; Liu H. ; Han B. ChemSusChem 2019, 12, 5149.
doi: 10.1002/cssc.201902404 |
83 | Gao Y. ; Liu S. ; Zhao Z. ; Tao H. ; Sun Z. Acta Phys. -Chim. Sin. 2018, 34, 858. |
高云楠; 刘世桢; 赵振清; 陶亨聪; 孙振宇. 物理化学学报, 2018, 34, 858.
doi: 10.3866/PKU.WHXB201802061 |
|
84 |
Schmitz M. ; Erken C. ; Ohligschlöger A. ; Schnoor J. K. ; Westhues N. F. ; Klankermayer J. ; Leitner W. ; Liauw M. A. Chem. Ing. Tech. 2018, 90, 1476.
doi: 10.1002/cite.201800053 |
85 |
Wang H. ; Zhao Y. ; Wu Y. ; Li R. ; Zhang H. ; Yu B. ; Zhang F. ; Xiang J. ; Wang Z. ; Liu Z. ChemSusChem. 2019, 12, 4390.
doi: 10.1002/cssc.201901820 |
86 |
Zhang S. ; Liu X. ; Shao Z. ; Wang H. ; Sun Y. J. Catal. 2020, 382, 86.
doi: 10.1016/j.jcat.2019.11.038 |
87 | Tominaga, K.; Sasaki, Y.; Watanabe, T.; Saito, M. Advances in Chemical Conversions for Mitigating Carbon Dioxide. In Studies in Surface Science and Catalysis; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T. Eds.; Elsevier Science Publ: Amsterdam, Japan, 1998; Vol. 114, pp. 495–498. |
88 |
Zhang J. ; Qian Q. ; Cui M. ; Chen C. ; Liu S. ; Han B. Green Chem. 2017, 19, 4396.
doi: 10.1039/c7gc01887h |
89 |
Qian Q. ; Cui M. ; Zhang J. ; Xiang J. ; Song J. ; Yang G. ; Han B. Green Chem. 2018, 20, 206.
doi: 10.1039/c7gc02807e |
90 |
Asare Bediako B. B. ; Qian Q. ; Zhang J. ; Wang Y. ; Shen X. ; Shi J. ; Cui M. ; Yang G. ; Wang Z. ; Tong S. ;et al Green Chem. 2019, 21, 4152.
doi: 10.1039/c9gc01185d |
91 |
Wang Y. ; Zhang J. ; Qian Q. ; Asare Bediako B. B. ; Cui M. ; Yang G. ; Yan J. ; Han B. Green Chem. 2019, 21, 589.
doi: 10.1039/c8gc03320j |
92 |
Zhang J. ; Qian Q. ; Wang Y. ; Asare Bediako B. B. ; Yan J. ; Han B. Chem Sci. 2019, 10, 10640.
doi: 10.1039/c9sc03386f |
[1] | Meng Li, Fulin Yang, Jinfa Chang, Alex Schechter, Ligang Feng. MoP-NC Nanosphere Supported Pt Nanoparticles for Efficient Methanol Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2301005-0. |
[2] | Zhenzhong Liu, Siwen Wan, Yang Wu, Boyan Wang, Hongliang Ji. Highly Efficient Degradation of Sulfamethoxazole Using Activating Peracetic Acid with CoFe2O4/CuO [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211019-0. |
[3] | Yonggang Lei, Tianyu Zhao, Kim Hoong Ng, Yingzhen Zhang, Xuerui Zang, Xiao Li, Weilong Cai, Jianying Huang, Jun Hu, Yuekun Lai. Metallic Tungsten Carbide Coupled with Liquid-Phase Dye Photosensitizer for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2206006-0. |
[4] | Jie Wang, Guigao Liu, Qinbai Yun, Xichen Zhou, Xiaozhi Liu, Ye Chen, Hongfei Cheng, Yiyao Ge, Jingtao Huang, Zhaoning Hu, Bo Chen, Zhanxi Fan, Lin Gu, Hua Zhang. Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2305034-. |
[5] | Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002017-. |
[6] | Lin Lv, Liyang Zhang, Xuebing He, Hong Yuan, Shuxin Ouyang, Tierui Zhang. Energy-Efficient Hydrogen Production via Electrochemical Methanol Oxidation Using a Bifunctional Nickel Nanoparticle-Embedded Carbon Prism-Like Microrod Electrode [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007079-. |
[7] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-. |
[8] | Yanqiu Wang, Zixin Zhong, Tangkang Liu, Guoliang Liu, Xinlin Hong. Cu@UiO-66 Derived Cu+-ZrO2 Interfacial Sites for Efficient CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2007089-. |
[9] | Xuehua Zhang, Yanwei Cao, Qiongyao Chen, Chaoren Shen, Lin He. Recent Progress in Homogeneous Reductive Carbonylation of Carbon Dioxide with Hydrogen [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2007052-. |
[10] | Congming Li, Kuo Chen, Xiaoyue Wang, Nan Xue, Hengquan Yang. Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2009101-. |
[11] | Zilong Shao, Xiaofang Liu, Shunan Zhang, Hui Wang, Yuhan Sun. CO Hydrogenation to Ethanol over Supported Rh-Based Catalyst: Effect of the Support [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1911053-. |
[12] | Menggang Li, Zhonghong Xia, Yarong Huang, Lu Tao, Yuguang Chao, Kun Yin, Wenxiu Yang, Weiwei Yang, Yongsheng Yu, Shaojun Guo. Rh-Doped PdCu Ordered Intermetallics for Enhanced Oxygen Reduction Electrocatalysis with Superior Methanol Tolerance [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912049-. |
[13] | Kunfang Tu, Guang Li, Yanxia Jiang. Effect of Temperature on the Electrocatalytic Oxidation of Ethanol [J]. Acta Phys. -Chim. Sin., 2020, 36(8): 1906026-. |
[14] | Bo Fang, Ligang Feng. PtCo-NC Catalyst Derived from the Pyrolysis of Pt-Incorporated ZIF-67 for Alcohols Fuel Electrooxidation [J]. Acta Phys. -Chim. Sin., 2020, 36(7): 1905023-0. |
[15] | Zhenmin Xu, Zhenfeng Bian. Photocatalytic Methane Conversion [J]. Acta Phys. -Chim. Sin., 2020, 36(3): 1907013-. |
|