Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (1): 2012047.doi: 10.3866/PKU.WHXB202012047
Special Issue: Graphene: Functions and Applications
• REVIEW • Previous Articles Next Articles
Xiaoting Liu1,2,3, Jincan Zhang1,2,3, Heng Chen1,3, Zhongfan Liu1,3,*()
Received:
2020-12-17
Accepted:
2021-01-05
Published:
2021-01-12
Contact:
Zhongfan Liu
E-mail:zfliu@pku.edu.cn
About author:
Zhongfan Liu, E-mail: zfliu@pku.edu.cnSupported by:
Xiaoting Liu, Jincan Zhang, Heng Chen, Zhongfan Liu. Synthesis of Superclean Graphene[J]. Acta Phys. -Chim. Sin. 2022, 38(1), 2012047. doi: 10.3866/PKU.WHXB202012047
Fig 1
Contamination on the surface of CVD-derived graphene 56, 58. (a) Schematic of the formation of contamination on the surface of graphene during the high-temperature CVD growth; (b) AFM image of freshly prepared graphene grown on Cu foil; (c) TEM image of unclean graphene. Inset: High-resolution transmission electron microscopy (HRTEM) image of unclean graphene film; (d, e) High angle annular dark field (HAADF)-scanning TEM (STEM) (d) and HAADF-STEM plus energy-dispersive X-ray (EDX) map of C element (e) of graphene transferred onto TEM grid; (f, g) HRTEM image of unclean graphene (f) and structure of amorphous carbon contamination after removing graphene lattice beneath based on fast Fourier transform mask filter (g). (a–c) Adapted with permission from Ref. 56. Copyright 2019, Springer Nature. (d–g) Adapted with permission from Ref. 58. Copyright 2019, Wiley-VCH."
Fig 3
Formation of contamination during CVD growth of graphene 56. (a) TERS spectra of clean (red) and unclean (blue) graphene regions, and in-situ far-field Raman spectrum (dark cyan) of the unclean graphene at the same region. Inset: TERS mapping of D band intensity of unclean graphene; (b) Statistics of the D and G band positions of graphene grown by 12CH4 and 13CH4; Inset: typical TERS spectra of 13C-labelled unclean graphene; (c) ToF−SIMS spectra of 12C-labelled (blue) and 13C-labelled (red) graphene. Adapted with permission from Ref. 56. Copyright 2019, Springer Nature."
Fig 5
Reduced polymer residues on clean graphene surface after transfer 26, 56. (a) Schematic of contamination on the surface of graphene after transfer; (b, c) AFM images of unclean (b) and clean (c) graphene transferred onto SiO2/Si substrates; (d) ToF-SIMS spectra of transferred unclean graphene (blue) and clean graphene (red) on SiO2/Si substrates with the assistance of 2H-labelled PMMA. Inset: Structure of 2H-labelled PMMA. (a) Adapted with permission from Ref. 26. Copyright 2020, American Chemical Society. (b–d) Adapted with permission from Ref. 56. Copyright 2019, Springer Nature."
Fig 6
Growth of superclean graphene with the assistance of Cu foam 56. (a) Schematic of the Cu foil-foam stacked structure for the growth of superclean graphene; (b) AFM image of the freshly prepared clean graphene grown on Cu; (c) TEM image of the superclean graphene. Inset: HRTEM image of clean graphene with atomic-scale resolution; (d) Photograph of the quartz substrates before and after collecting the species in the boundary layer during high-temperature graphene growth with and without Cu foam; (e) Scanning electron microscopy (SEM) image of the Cu nanoparticles collected by quartz substrate; (f) Raman spectra of the carbon species formed during graphene growth with (red) and without (blue) Cu foam. Adapted with permission from Ref. 56. Copyright 2019, Springer Nature."
Fig 7
Growth of superclean graphene using Cu(OAc)2 as carbon source 78. (a) Schematic diagram for the growth of graphene using CH4 and Cu(OAc)2 as the carbon sources; (b, c) TEM images of unclean graphene (b) and clean graphene (c). Inset of (b): FFT image of the region marked in white square; Inset of (c): FFT image of the region marked in white square (top) and TEM image with atomic resolution (bottom); (d) Theoretical calculation of hydrogenation barrier of CH4 with (red) and without (blue) Cu catalyst; (e) Raman spectra of the carbon species formed in the boundary layer during graphene growth using CH4 (blue) and Cu(OAc)2 (red). Adapted with permission from Ref. 78. Copyright 2019, American Chemical Society."
Fig 8
Growth of superclean graphene by cold-wall CVD 79. (a) Schematic diagram of growth of the superclean graphene in cold-wall CVD (CW-CVD) system; (b) Computational fluid dynamics simulation result of the temperature distribution in CW-CVD system; (c) Profiles of distance change between carbon atoms during the formation of C4H10; (d) The formation of carbon clusters by capturing carbon species at low temperature (up) and high temperature (down). Adapted with permission from Ref. 79. Copyright 2020, Wiley-VCH."
Fig 9
Preparation of superclean graphene via selective of etching amorphous carbon with CO2 58. (a) Schematic diagram of the formation and elimination of amorphous carbon on CVD-grown graphene surface; (b) The reaction barriers of CO2 etching graphene (blue) and amorphous carbon (red); (c) The reaction barriers of CO2 etching amorphous carbon (red) and graphene (blue); (d) Reaction rates of CO2 etching amorphous carbon (red) and graphene (blue). Note that in this work, 5-8-5, 555-777, and 55-77 topological defects are used as the simplified model structures of the amorphous carbon contamination on graphene surface. Adapted with permission from Ref. 58. Copyright 2019, Wiley-VCH."
Fig 10
Preparation of superclean graphene with the assistance of activated carbon-coated lint roller 80. (a) Schematic of the activated carbon-coated lint roller for the cleaning of amorphous carbon on graphene surface; (b) Cross-sectional EDX mapping result of the contact region between graphene and activated carbon; (c) TEM image of superclean graphene. Inset: HRTEM image of graphene lattice; (d) Statistics of the adhesion force of Camorphous-Grapehene (blue) and Camorphous-Cactivated (red). Adapted with permission from Ref. 80. Copyright 2019, Wiley-VCH."
Fig 11
The superior properties of superclean graphene 56, 58. (a) Measured resistance of superclean graphene as a function of the gate voltage at 1.9 K (red) and room temperature (blue); (b) Measured contact resistance of superclean graphene as a function of gate bias; Inset: False-colored SEM image of the TLM device; (c) UV-Vis spectra of monolayer (red), bilayer (orange) and trilayer (blue) superclean graphene; Inset: Photograph of clean (left) and unclean (right) graphene transferred onto quartz substrates. (d) Statistics of the measured thermal conductivity of clean and unclean graphene. (a, b, d) Adapted with permission from Ref. 56. Copyright 2019, Springer Nature. (c) Adapted with permission from Ref. 58. Copyright 2019, Wiley-VCH."
1 |
Neto A. C. ; Guinea F. ; Peres N. M. ; Novoselov K. S. ; Geim A. K. Rev. Mod. Phys. 2009, 81, 109.
doi: 10.1103/RevModPhys.81.109 |
2 |
Du X. ; Skachko I. ; Barker A. ; Andrei E. Y. Nat. Nanotechnol. 2008, 3, 491.
doi: 10.1038/nnano.2008.199 |
3 |
Balandin A. A. ; Ghosh S. ; Bao W. ; Calizo I. ; Teweldebrhan D. ; Miao F. ; Lau C. N. Nano Lett. 2008, 8, 902.
doi: 10.1021/nl0731872 |
4 |
Nair R. R. ; Blake P. ; Grigorenko A. N. ; Novoselov K. S. ; Booth T. J. ; Stauber T. ; Peres N. M. ; Geim A. K. Science 2008, 320, 1308.
doi: 10.1126/science.1156965 |
5 |
Lee C. ; Wei X. ; Kysar J. W. ; Hone J. Science 2008, 321, 385.
doi: 10.1126/science.1157996 |
6 |
Novoselov K. S. ; Fal'ko V. I. ; Colombo L. ; Gellert P. R. ; Schwab M. G. ; Kim K. Nature 2012, 490, 192.
doi: 10.1038/nature11458 |
7 |
Ferrari A. C. ; Bonaccorso F. ; Fal'ko V. ; Novoselov K. S. ; Roche S. ; Boggild P. ; Borini S. ; Koppens F. H. L. ; Palermo V. ; Pugno N. ; et al Nanoscale 2015, 7, 4598.
doi: 10.1039/c4nr01600a |
8 |
Bonaccorso F. ; Colombo L. ; Yu G. ; Stoller M. ; Tozzini V. ; Ferrari A. C. ; Ruoff R. S. ; Pellegrini V. Science 2015, 347, 1246501.
doi: 10.1126/science.1246501 |
9 |
Neumaier D. ; Pindl S. ; Lemme M. C. Nat. Mater. 2019, 18, 525.
doi: 10.1038/s41563-019-0359-7 |
10 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
11 |
Voiry D. ; Yang J. ; Kupferberg J. ; Fullon R. ; Lee C. ; Jeong H. Y. ; Shin H. S. ; Chhowalla M. Science 2016, 353, 1413.
doi: 10.1126/science.aah3398 |
12 |
Hernandez Y. ; Nicolosi V. ; Lotya M. ; Blighe F. M. ; Sun Z. ; De S. ; McGovern I. T. ; Holland B. ; Byrne M. ; Gun'ko Y. K. ; et al Nat. Nanotechnol 2008, 3, 563.
doi: 10.1038/nnano.2008.215 |
13 |
Huang H. ; Chen W. ; Chen S. ; Wee A. T. S. ACS Nano 2008, 2, 2513.
doi: 10.1021/nn800711v |
14 |
Berger C. ; Song Z. ; Li X. ; Wu X. ; Brown N. ; Naud C. ; Mayou D. ; Li T. ; Hass J. ; Marchenkov A. N. ; et al Science 2006, 312, 1191.
doi: 10.1126/science.1125925 |
15 |
Li X. ; Cai W. ; An J. ; Kim S. ; Nah J. ; Yang D. ; Piner R. ; Velamakanni A. ; Jung I. ; Tutuc E. ; et al Science 2009, 324, 1312.
doi: 10.1126/science.1171245 |
16 |
Kim K. S. ; Zhao Y. ; Jang H. ; Lee S. Y. ; Kim J. M. ; Kim K. S. ; Ahn J.-H. ; Kim P. ; Choi J.-Y. ; Hong B. H. Nature 2009, 457, 706.
doi: 10.1038/nature07719 |
17 |
Lin L. ; Peng H. ; Liu Z. F. Nat. Mater. 2019, 18, 520.
doi: 10.1038/s41563-019-0341-4 |
18 |
Kong W. ; Kum H. ; Bae S.-H. ; Shim J. ; Kim H. ; Kong L. ; Meng Y. ; Wang K. ; Kim C. ; Kim J. Nat. Nanotechnol 2019, 14, 927.
doi: 10.1038/s41565-019-0555-2 |
19 |
Pulizzi F. ; Bubnova O. ; Milana S. ; Schilter D. ; Abergel D. ; Moscatelli A. Nat. Nanotechnol 2019, 14, 914.
doi: 10.1038/s41565-019-0552-5 |
20 |
Kim H. ; Song I. ; Park C. ; Son M. ; Hong M. ; Kim Y. ; Kim J. S. ; Shin H.-J. ; Baik J. ; Choi H. C. ACS Nano 2013, 7, 6575.
doi: 10.1021/nn402847w |
21 |
Huang P. ; Ruiz-Vargas C. ; Zande A. ; Whitney W. ; Levendorf M. ; Kevek J. ; Garg S. ; Alden J. ; Hustedt C. ; Zhu Y. ; et al Nature 2011, 469, 389.
doi: 10.1038/nature09718 |
22 |
Yu Q. ; Jauregui L. ; Wu W. ; Colby R. ; Tian J. ; Su Z. ; Cao H. ; Liu Z. ; Pandey D. ; Wei D. ; et al Nat. Mater. 2011, 10, 443.
doi: 10.1038/nmat3010 |
23 |
Ni G.-X. ; Zheng Y. ; Bae S. ; Kim H. R. ; Pachoud A. ; Kim Y. S. ; Tan C.-L. ; Im D. ; Ahn J.-H. ; Hong B. H. ; et al ACS Nano 2012, 6, 1158.
doi: 10.1021/nn203775x |
24 |
Deng B. ; Hou Y. ; Liu Y. ; Khodkov T. ; Goossens S. ; Tang J. ; Wang Y. ; Yan R. ; Du Y. ; Koppens F. H. ; et al Nano Lett. 2020, 20, 6798.
doi: 10.1021/acs.nanolett.0c02785 |
25 |
Lin L. ; Deng B. ; Sun J. Y. ; Peng H. L. ; Liu Z. F. Chem. Rev. 2018, 118, 9281.
doi: 10.1021/acs.chemrev.8b00325 |
26 |
Zhang J. ; Sun L. ; Jia K. ; Liu X. ; Cheng T. ; Peng H. ; Lin L. ; Liu Z. F. ACS Nano 2020, 14, 10796.
doi: 10.1021/acsnano.0c06141 |
27 |
Fang W. ; Hsu A. L. ; Song Y. ; Kong J. Nanoscale 2015, 7, 20335.
doi: 10.1039/c5nr04756k |
28 |
Huang M. ; Bakharev P. V. ; Wang Z.-J. ; Biswal M. ; Yang Z. ; Jin S. ; Wang B. ; Park H. J. ; Li Y. ; Qu D. ; et al Nat. Nanotechnol. 2020, 15, 289.
doi: 10.1038/s41565-019-0622-8 |
29 |
Xue Y. ; Wu B. ; Jiang L. ; Guo Y. ; Huang L. ; Chen J. ; Tan J. ; Geng D. ; Luo B. ; Hu W. ; et al J. Am. Chem. Soc. 2012, 134, 11060.
doi: 10.1021/ja302483t |
30 | Lin, L.; Li, J.; Yuan, Q.; Li, Q.; Zhang, J.; Sun, L.; Rui, D.; Chen, Z.; Jia, K.; Wang, M.; et al. Sci. Adv. 2019, 5, eaaw8337. doi: 10.1126/sciadv.aaw8337 |
31 |
Vlassiouk I. V. ; Stehle Y. ; Pudasaini P. R. ; Unocic R. R. ; Rack P. D. ; Baddorf A. P. ; Ivanov I. N. ; Lavrik N. V. ; List F. ; Gupta N. ; et al Nat. Mater. 2018, 17, 318.
doi: 10.1038/s41563-018-0019-3 |
32 |
Xu X. ; Zhang Z. ; Dong J. ; Yi D. ; Niu J. ; Wu M. ; Lin L. ; Yin R. ; Li M. ; Zhou J. ; et al Sci. Bull. 2017, 62, 1074.
doi: 10.1016/j.scib.2017.07.005 |
33 |
Hao Y. ; Bharathi M. S. ; Wang L. ; Liu Y. ; Chen H. ; Nie S. ; Wang X. ; Chou H. ; Tan C. ; Fallahazad B. ; et al Science 2013, 342, 720.
doi: 10.1126/science.1243879 |
34 |
Zhou H. ; Yu W. J. ; Liu L. ; Cheng R. ; Chen Y. ; Huang X. ; Liu Y. ; Wang Y. ; Huang Y. ; Duan X. Nat. Commun. 2013, 4, 2096.
doi: 10.1038/ncomms3096 |
35 | Jiang B. ; Sun J. ; Liu Z. F. Acta Phys. -Chim. Sin. 2021, 37, 2007068. |
姜蓓; 孙靖宇; 刘忠范. 物理化学学报, 2021, 37, 2007068.
doi: 10.3866/PKU.WHXB202007068 |
|
36 |
Deng B. ; Pang Z. ; Chen S. ; Li X. ; Meng C. ; Li J. ; Liu M. ; Wu J. ; Qi Y. ; Dang W. ; et al ACS Nano 2017, 11, 12337.
doi: 10.1021/acsnano.7b06196 |
37 |
Li B.-W. ; Luo D. ; Zhu L. ; Zhang X. ; Jin S. ; Huang M. ; Ding F. ; Ruoff R. S. Adv. Mater. 2018, 30, 1706504.
doi: 10.1002/adma.201706504 |
38 |
Yuan G. ; Lin D. ; Wang Y. ; Huang X. ; Chen W. ; Xie X. ; Zong J. ; Yuan Q.-Q. ; Zheng H. ; Wang D. ; et al Nature 2020, 577, 204.
doi: 10.1038/s41586-019-1870-3 |
39 |
Jia Y. ; Gong X. ; Peng P. ; Wang Z. ; Tian Z. ; Ren L. ; Fu Y. ; Zhang H. Nano-Micro Lett. 2016, 8, 336.
doi: 10.1007/s40820-016-0093-5 |
40 |
Zhang Z. ; Du J. ; Zhang D. ; Sun H. ; Yin L. ; Ma L. ; Chen J. ; Ma D. ; Cheng H.-M. ; Ren W. Nat. Commun. 2017, 8, 14560.
doi: 10.1038/ncomms14560 |
41 |
Pettes M. T. ; Jo I. ; Yao Z. ; Shi L. Nano Lett. 2011, 11, 1195.
doi: 10.1021/nl104156y |
42 |
Matković A. ; Ralević U. ; Chhikara M. ; Jakovljević M. M. ; Jovanović D. ; Bratina G. ; Gajić R. J. Appl. Phys. 2013, 114, 093505.
doi: 10.1063/1.4819967 |
43 |
Li Z. ; Wang Y. ; Kozbial A. ; Shenoy G. ; Zhou F. ; McGinley R. ; Ireland P. ; Morganstein B. ; Kunkel A. ; Surwade S. P. ; et al Nat. Mater. 2013, 12, 925.
doi: 10.1038/nmat3709 |
44 |
Kim Y. ; Cruz S. S. ; Lee K. ; Alawode B. O. ; Choi C. ; Song Y. ; Johnson J. M. ; Heidelberger C. ; Kong W. ; Choi S. ; et al Nature 2017, 544, 340.
doi: 10.1038/nature22053 |
45 |
Zheng L. ; Chen Y. ; Li N. ; Zhang J. ; Liu N. ; Liu J. ; Dang W. ; Deng B. ; Li Y. ; Gao X. ; et al Nat. Commun. 2020, 11, 541.
doi: 10.1038/s41467-020-14359-0 |
46 |
Han Y. ; Fan X. ; Wang H. ; Zhao F. ; Tully C. G. ; Kong J. ; Yao N. ; Yan N. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 1009.
doi: 10.1073/pnas.1919114117 |
47 |
Hong H. ; Zhang J. ; Zhang J. ; Qiao R. ; Yao F. ; Cheng Y. ; Wu C. ; Lin L. ; Jia K. ; Zhao Y. ; et al J. Am. Chem. Soc. 2018, 140, 14952.
doi: 10.1021/jacs.8b09353 |
48 |
Lin Y.-C. ; Lu C.-C. ; Yeh C.-H. ; Jin C. ; Suenaga K. ; Chiu P.-W. Nano Lett. 2012, 12, 414.
doi: 10.1021/nl203733r |
49 |
Leong W. S. ; Wang H. ; Yeo J. ; Martin-Martinez F. J. ; Zubair A. ; Shen P.-C. ; Mao Y. ; Palacios T. ; Buehler M. J. ; Hong J.-Y. ; et al Nat. Commun. 2019, 10, 867.
doi: 10.1038/s41467-019-08813-x |
50 |
Lin Y.-C. ; Jin C. ; Lee J.-C. ; Jen S.-F. ; Suenaga K. ; Chiu P.-W. ACS Nano 2011, 5, 2362.
doi: 10.1021/nn200105j |
51 |
Wang X. ; Dolocan A. ; Chou H. ; Tao L. ; Dick A. ; Akinwande D. ; Wilison C. G. Chem. Mat. 2017, 29, 2033.
doi: 10.1021/acs.chemmater.6b03875 |
52 |
Li W. ; Liang Y. ; Yu D. ; Peng L. ; Pernstich K. P. ; Shen T. ; Walker A. R. H. ; Cheng G. ; Hacker C. A. ; Richter C. A. ; et al Appl. Phys. Lett. 2013, 102, 183110.
doi: 10.1063/1.4804643 |
53 |
Moser J. ; Barreiro A. ; Bachtold A. Appl. Phys. Lett. 2007, 91, 163513.
doi: 10.1063/1.2789673 |
54 | Cheng H. Acta Phys. -Chim. Sin. 2020, 36, 1909042. |
成会明. 物理化学学报, 2020, 36, 1909042.
doi: 10.3866/PKU.WHXB201909042 |
|
55 |
Schuenemann C. ; Schaeffel F. ; Bachmatiuk A. ; Queitsch U. ; Sparing M. ; Rellinghaus B. ; Lafdi K. ; Schultz L. ; Buechner B. ; Ruemmeli M. H. ACS Nano 2011, 5, 8928.
doi: 10.1021/nn2031066 |
56 |
Lin L. ; Zhang J. ; Su H. ; Li J. ; Sun L. ; Wang Z. ; Xu F. ; Liu C. ; Lopatin S. ; Zhu Y. ; et al Nat. Commun 2019, 10, 1912.
doi: 10.1038/s41467-019-09565-4 |
57 |
Zhang J. ; Lin L. ; Sun L. ; Huang Y. ; Koh A. L. ; Dang W. ; Yin J. ; Wang M. ; Tan C. ; Li T. ; et al Adv. Mater. 2017, 29, 1700639.
doi: 10.1002/adma.201700639 |
58 |
Zhang J. ; Jia K. ; Lin L. ; Zhao W. ; Quang H. T. ; Sun L. ; Li T. ; Li Z. ; Liu X. ; Zheng L. ; et al Angew. Chem. Int. Ed. 2019, 58, 14446.
doi: 10.1002/anie.201905672 |
59 |
Su W. ; Kumar N. ; Dai N. ; Roy D. Chem. Commun. 2016, 52, 8227.
doi: 10.1039/C6CC01990K |
60 |
Li X. ; Cai W. ; Colombo L. ; Ruoff R. S. Nano Lett. 2009, 9, 4268.
doi: 10.1021/nl902515k |
61 |
Zhang X. ; Li H. ; Ding F. Adv. Mater. 2014, 26, 5488.
doi: 10.1002/adma.201305922 |
62 |
Gao J. ; Yuan Q. ; Hu H. ; Zhao J. ; Ding F. J. Phys. Chem. C 2011, 115, 17695.
doi: 10.1021/jp2051454 |
63 |
Zhong L. ; Li J. ; Li Y. ; Lu H. ; Du H. ; Gan L. ; Xu C. ; Chiang S. W. ; Kang F. J. Phys. Chem. C 2016, 120, 23239.
doi: 10.1021/acs.jpcc.6b06750 |
64 |
Zhang W. ; Wu P. ; Li Z. ; Yang J. J. Phys. Chem. C 2011, 115, 17782.
doi: 10.1021/jp2006827 |
65 |
Li Z. ; Zhang W. ; Fan X. ; Wu P. ; Zeng C. ; Li Z. ; Zhai X. ; Yang J. ; Hou J. J. Phys. Chem. C 2012, 116, 10557.
doi: 10.1021/jp210814j |
66 |
Kim H. ; Mattevi C. ; Calvo M. R. ; Oberg J. C. ; Artiglia L. ; Agnoli S. ; Hirjibehedin C. F. ; Chhowalla M. ; Saiz E. ACS Nano 2012, 6, 3614.
doi: 10.1021/nn3008965 |
67 |
Muñoz R. ; Gómez-Aleixandre C. Chem. Vapor Depos. 2013, 19, 297.
doi: 10.1002/cvde.201300051 |
68 |
Qing F. ; Jia R. ; Li B.-W. ; Liu C. ; Li C. ; Peng B. ; Deng L. ; Zhang W. ; Li Y. ; Ruoff R. S. ; et al 2D Mater 2017, 4, 025089.
doi: 10.1088/2053-1583/aa6da5 |
69 |
Hu C. ; Li H. ; Zhang S. ; Li W. J. Mater. Sci. 2016, 51, 3897.
doi: 10.1007/s10853-015-9709-2 |
70 |
Qiu Z. ; Li P. ; Li Z. ; Yang J. Acc. Chem. Res. 2018, 51, 728.
doi: 10.1021/acs.accounts.7b00592 |
71 |
Shivayogimath A. ; Mackenzie D. ; Luo B. ; Hansen O. ; Bøggild P. ; Booth T. J. Sci. Rep. 2017, 7, 6183.
doi: 10.1038/s41598-017-06276-y |
72 |
Lewis A. M. ; Derby B. ; Kinloch I. A. ACS Nano 2013, 7, 3104.
doi: 10.1021/nn305223y |
73 |
Wang X. ; Yuan Q. ; Li J. ; Ding F. Nanoscale 2017, 9, 11584.
doi: 10.1039/c7nr02743e |
74 |
Seah C.-M. ; Chai S.-P. ; Mohamed A. R. Carbon 2014, 70, 1.
doi: 10.1016/j.carbon.2013.12.073 |
75 |
Sun J. ; Gao T. ; Song X. ; Zhao Y. ; Lin Y. ; Wang H. ; Ma D. ; Chen Y. ; Xiang W. ; Wing J. ; et al J. Am. Chem. Soc. 2014, 136, 6574.
doi: 10.1021/ja5022602 |
76 |
Zheng S. ; Zhong G. ; Wu X. ; D'Arsie L. ; Robertson J. RSC Adv. 2017, 7, 33185.
doi: 10.1039/c7ra04162d |
77 |
Teng P.-Y. ; Lu C.-C. ; Akiyama-Hasegawa K. ; Lin Y.-C. ; Yeh C.-H. ; Suenaga K. ; Chiu P. -W. Nano Lett. 2012, 12, 1379.
doi: 10.1021/nl204024k |
78 |
Jia K. ; Zhang J. ; Lin L. ; Li Z. ; Gao J. ; Sun L. ; Xue R. ; Li J. ; Kang N. ; Luo Z. ; et al J. Am. Chem. Soc. 2019, 58, 14446.
doi: 10.1002/anie.201905672 |
79 |
Jia K. ; Ci H. ; Zhang J. ; Sun Z. ; Ma Z. ; Zhu Y. ; Liu S. ; Liu J. ; Sun L. ; Liu X. ; et al Angew. Chem. Int. Ed. 2020, 59, 17214.
doi: 10.1002/anie.202005406 |
80 |
Sun L. ; Lin L. ; Wang Z. ; Rui D. ; Yu Z. ; Zhang J. ; Li Y. ; Liu X. ; Jia K. ; Wang K. ; et al Adv. Mater. 2019, 31, 1902978.
doi: 10.1002/adma.201902978 |
81 |
Cai W. ; Moore A. L. ; Zhu Y. ; Li X. ; Chen S. ; Shi L. ; Ruoff R. S. Nano Lett. 2010, 10, 1645.
doi: 10.1021/nl9041966 |
[1] | Mengshi Yu, Congwei Tan, Xiaoyin Gao, Junchuan Tang, Hailin Peng. Chemical Vapor Deposition Growth of High-Mobility 2D Semiconductor Bi2O2Se: Controllability and Material Quality [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306043-. |
[2] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[3] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[4] | Zeyao Zhang, Yixi Yao, Yan Li. Modulating the Diameter of Bulk Single-Walled Carbon Nanotubes Grown by FeCo/MgO Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2101055-. |
[5] | Yi Cheng, Kun Wang, Yue Qi, Zhongfan Liu. Chemical Vapor Deposition Method for Graphene Fiber Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2006046-. |
[6] | Bei Jiang, Jingyu Sun, Zhongfan Liu. Synthesis of Graphene Wafers: from Lab to Fab [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2007068-. |
[7] | Ting Cheng, Luzhao Sun, Zhirong Liu, Feng Ding, Zhongfan Liu. Roles of Transition Metal Substrates in Graphene Chemical Vapor Deposition Growth [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012006-. |
[8] | Heng Chen, Jincan Zhang, Xiaoting Liu, Zhongfan Liu. Effect of Gas-Phase Reaction on the CVD Growth of Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101053-. |
[9] | Fei Wang, Zhaolong Chen, Jiawei Yang, Hao Li, Jingyuan Shan, Feng Zhang, Baolu Guan, Zhongfan Liu. Heating Characteristics of Graphene Glass Transparent Films [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2001024-. |
[10] | Zhaolong Chen, Peng Gao, Zhongfan Liu. Graphene-Based LED: from Principle to Devices [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907004-. |
[11] | Fang LIU,Lufeng ZHANG,Qian DONG,Zhuo CHEN. Synthesis and Characterization of Small Size Gold-Graphitic Nanocapsules [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 651-656. |
[12] | Qin WANG,Minmin XUE,Zhuhua ZHANG. Chemical Synthesis of Borophene: Progress and Prospective [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 565-571. |
[13] | Shuai CHEN,Junfeng GAO,Bharathi M. SRINIVASAN,Yong-Wei ZHANG. A Kinetic Monte Carlo Study for Mono- and Bi-layer Growth of MoS2 during Chemical Vapor Deposition [J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1119-1127. |
[14] | Kexin WANG,Liurong SHI,Mingzhan WANG,Hao YANG,Zhongfan LIU,Hailin PENG. Biomass Hydroxyapatite-templated Synthesis of 3D Graphene [J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1112-1118. |
[15] | Qing-Bin LIU,Cui YU,Ze-Zhao HE,Jing-Jing WANG,Jia LI,Wei-Li LU,Zhi-Hong FENG. Epitaxial Graphene on Sapphire Substrate by Chemical Vapor Deposition [J]. Acta Phys. -Chim. Sin., 2016, 32(3): 787-792. |
|