Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (2): 2101009.doi: 10.3866/PKU.WHXB202101009
Special Issue: Graphene: Functions and Applications
• REVIEW • Previous Articles Next Articles
Yadong Du1, Xiangtong Meng1,3,*(), Zhen Wang1, Xin Zhao1, Jieshan Qiu1,2,*()
Received:
2021-01-05
Accepted:
2021-02-18
Published:
2021-02-26
Contact:
Xiangtong Meng,Jieshan Qiu
E-mail:mengxt@mail.buct.edu.cn;qiujs@mail.buct.edu.cn
About author:
Email: qiujs@mail.buct.edu.cn (J.Q.)Supported by:
Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction[J]. Acta Phys. -Chim. Sin. 2022, 38(2), 2101009. doi: 10.3866/PKU.WHXB202101009
Table 1
Standard redox potentials for ECR products."
Reaction | Eθ/V (vs. SHE) | |
1 | CO2+ 2H+ + 2e- → HCOOH | -0.610 |
2 | CO2 + 2H+ + 2e- → CO + H2O | -0.520 |
3 | CO2 + 4H+ + 4e- → CH2O + H2O | -0.510 |
4 | CO2 + 6H+ + 6e- → CH3OH + H2O | -0.380 |
5 | CO2 + 8H+ + 8e- → CH4 + 2H2O | -0.240 |
6 | 2CO2 + 12H+ + 12e- → C2H4 + 4H2O | -0.349 |
7 | 2CO2 + 12H+ + 12e- → C2H5OH + 3H2O | -0.329 |
8 | 2CO2 + 14H+ + 14e- → C2H6 + 4H2O | -0.270 |
9 | CO2 + e- → CO2·- | -1.900 |
10 | 2H+ + 2e- → H2 | -0.420 |
Table 2
Summary of graphene-based catalysts for ECR."
Catalysts | Electrolyte | Products & FE | Stability | E | Ref. |
DG | 0.1 mol·L-1 KHCO3 | CO (84%) | 10 h (> 70%) | -0.60 V vs. RHE | |
DPC-NH3-950 | 0.5 mol·L-1 NaHCO3 | CO (81%) | 27 h (75%) | -0.90 V vs. RHE | |
GNDs-160 | 0.5 mol·L-1 KHCO3 | HCOO- (86%) | -0.68 V vs. RHE | ||
NG-800 | 0.1 mol·L-1 KHCO3 | CO (85%) | 5 h (80%) | -0.58 V vs. RHE | |
NGQDs | 1 mol·L-1 KOH | C2H4 (31%) | -0.75 V vs. RHE | ||
NGQDs | 1 mol·L-1 KOH | C2H5OH (16%) | -0.78 V vs. RHE | ||
N-graphene | 0.5 mol·L-1 KHCO3 | HCOO- (73%) | 12 h (63–70%) | -0.84 V vs. RHE | |
Ni-N-Gr | 0.1 mol·L-1 KHCO3 | CO (> 90%) | 5 h (> 70%) | -0.70– -0.90 V vs. RHE | |
Ni-NG | 0.5 mol·L-1 KHCO3 | CO (95%) | 20 h (90%) | -0.72 V vs. RHE | |
Ni2+@NG | 0.5 mol·L-1 KHCO3 | CO (92%) | -0.68 V vs. RHE | ||
Ni-N-MEGO | 0.5 mol·L-1 KHCO3 | CO (92.1%) | 21 h (~89%) | -0.70 V vs. RHE | |
Fe/NG-750 | 0.1 mol·L-1 KHCO3 | CO (80%) | 10 h (~70%) | -0.60 V vs. RHE | |
FeN5 | 0.1 mol·L-1 KHCO3 | CO (97%) | 24 h (~97%) | -0.46 V vs. RHE | |
Fe-N-G-p | 0.1 mol·L-1 KHCO3 | CO (94%) | 9 h (> 90%) | -0.58 V vs. RHE | |
Single-atom Snδ+ on N-doped graphene | 0.25 mol·L-1 KHCO3 | HCOO- (74.3%) | 200 h (> 70%) | -1.60 V vs SCE | |
Zn-N-G-800 | 0.5 mol·L-1 KHCO3 | CO (90.8%) | 15 h (> 80%) | -0.50 V vs. RHE | |
Bi-MOF | 0.1 mol·L-1 NaHCO3 | CO (97%) | 4 h (> 80%) | -0.50 V vs. RHE | |
Cu0.5NC | 0.1 mol·L-1 CsHCO3 | CO (74%) | -0.60 V vs. RHE | ||
(Cl, N)-Mn/G | 0.5 mol·L-1 KHCO3 | CO (97%) | -0.60 V vs. RHE | ||
In-SAs/NC | 0.5 mol·L-1 KHCO3 | HCOO- (96%) | -0.65 V vs. RHE | ||
Au-OLA | 0.1 mol·L-1 KHCO3 | CO (75%) | 10 h (64–68%) | -0.70 V vs. RHE | |
AuNP | 0.5 mol·L-1 KHCO3 | CO (92%) | 24 h (67%) | -0.66 V vs. RHE | |
NGQDs-SCAu NPs | 0.5 mol·L-1 KHCO3 | CO (93%) | 24 h (~90%) | -0.25 V vs. RHE | |
R-ZnO/rGO | 0.5 mol·L-1 KHCO3 | CO (94.3%) | 21 h (~80%) | -1.00 V vs. RHE | |
Bi/rGO | 0.1 mol·L-1 KHCO3 | HCOO- (98%) | 15 h (> 90%) | -0.80 V vs. RHE | |
p-NG-Cu-7 | 0.5 mol·L-1 KHCO3 | C2H4 (19%) | 12 h (~60%) | -0.90 V vs. RHE | |
NGQ/Cu-nr | 1 mol·L-1 KOH | C2+ alcohols (52.4%) | 100 h (~52.4%) | -0.90 V vs. RHE | |
PO-5 nm Co/SL-NG | 0.1 mol·L-1 NaHCO3 | CH3OH (71.4%) | 10 h | -0.90 V vs. SCE | |
G-CuxO-2 h | 0.5 mol·L-1 KHCO3 | HCOO- (81%) | 9 h (87.2%) | -0.80 V vs. RHE | |
Cu/VG-Ar | 0.1 mol·L-1 KHCO3 | Total gas and liquid products (60.6%) | -1.20V vs. RHE | ||
In2O3-rGO | 0.1 mol·L-1 KHCO3 | HCOO- (84.6%) | 10 h (> 80%) | -1.20 V vs. RHE | |
Bi2O3-NGQDs | 0.5 mol·L-1 KHCO3 | HCOO- (~100%) | 15 h (> 90%) | -0.90 V vs. RHE | |
NapCo@SNG | 0.1 mol·L-1 KHCO3 | CO (97%) | 8000 s (> 95%) | -0.80 V vs. RHE | |
phen-Cu/G | 0.1 mol·L-1 KHCO3 | CO + HCOO- (~90%) | -0.60 V vs. RHE | ||
CCG/CoPc-A | 0.1 mol·L-1 KHCO3 | CO (77%) | 30 h (75%) | -0.59 V vs. RHE |
Fig 6
(a) An SEM image of graphene foam and Electrocatalytic activity of NGs towards CO2 reduction 52, (b) Electrocatalytic activity of NGQDs and GQDs towards CO2 reduction 53. (a) Adapted with permission from Ref. 52, Copyright 2016 American Chemical Society. (b) Adapted with permission from Ref. 53, Copyright 2016 Nature Publishing group."
Fig 7
(a) Surface immobilization of Ni Ions on N-doped graphene 66, (b) Anchored Fe single atoms on N-doped graphene 68, (c) Hosting atomically dispersed N-coordinated Fe sites on graphene 70. (a) Adapted with permission from Ref. 66, Copyright 2018 John Wiley and Sons. (b) Adapted with permission from Ref. 68, Copyright 2020 American Chemical Society. (c) Adapted with permission from Ref. 70, Copyright 2021 John Wiley and Sons."
Fig 9
Computed local pH and reduced GO coverage effects. (a) Schematic of computational fluid dynamics simulation domain, (b) Plots of CO FE and H2 FE as a function of coverage level, Contour plots of (c) pH and (d) pCO2 under a steady state at different coverage levels of 0, 50%, and 97.5%, respectively 33. (a–d) Adapted with permission from Ref. 33, Copyright 2020 American Chemical Society."
1 |
Singh G. ; Lee J. ; Karakoti A. ; Bahadur R. ; Yi J. ; Zhao D. ; AlBahily K. ; Vinu A Chem. Soc. Rev. 2020, 49, 4360.
doi: 10.1039/D0CS00075B |
2 |
Panda D. ; Kumar E. A. ; Singh S. K Ind. Eng. Chem. Res. 2019, 58, 5301.
doi: 10.1021/acs.iecr.8b03958 |
3 |
Ye L. ; Ying Y. ; Sun D. ; Zhang Z. ; Fei L. ; Wen Z. ; Qiao J. ; Huang H Angew. Chem. Int. Ed. 2019, 59, 3244.
doi: 10.1002/anie.201912751 |
4 |
Yang C. ; Liu S. ; Wang Y. ; Song J. ; Wang G. ; Wang S. ; Zhao Z. J. ; Mu R. ; Gong J Angew. Chem. Int. Ed. 2019, 58, 11242.
doi: 10.1002/anie.201904649 |
5 |
Graciani J. ; Mudiyanselage K. ; Xu F. ; Baber A. E. ; Evans J. ; Senanayake S. D. ; Stacchiola D. J. ; Liu P. ; Hrbek J. ; Sanz J. F. ;et al Science 2014, 345, 546.
doi: 10.1126/science.1253057 |
6 |
Bie C. ; Zhu B. ; Xu F. ; Zhang L. ; Yu J Adv. Mater. 2019, 31, 1902868.
doi: 10.1002/adma.201902868 |
7 |
Ouyang T. ; Huang H. H. ; Wang J. W. ; Zhong D. C. ; Lu T. B Angew. Chem. Int. Ed. 2017, 56, 738.
doi: 10.1002/anie.201610607 |
8 |
Chang X. ; Wang T. ; Zhang P. ; Wei Y. ; Zhao J. ; Gong J Angew. Chem. Int. Ed. 2016, 55, 8840.
doi: 10.1002/anie.201602973 |
9 |
Liu T. ; Ali S. ; Lian Z. ; Li B. ; Su D. S J. Mater. Chem. A 2017, 5, 21596.
doi: 10.1039/C7TA06674K |
10 |
Cui H. ; Guo Y. ; Guo L. ; Wang L. ; Zhou Z. ; Peng Z J. Mater. Chem. A 2018, 6, 18782.
doi: 10.1039/C8TA07430E |
11 |
Hu C. ; Bai S. ; Gao L. ; Liang S. ; Yang J. ; Cheng S. D. ; Mi S. B. ; Qiu J ACS Catal. 2019, 9, 11579.
doi: 10.1021/acscatal.9b03175 |
12 |
Hu C. ; Mu Y. ; Bai S. ; Yang J. ; Gao L. ; Cheng S. D. ; Mi S. B. ; Qiu J Carbon 2019, 153, 609.
doi: 10.1016/j.carbon.2019.07.071 |
13 |
Guo Z. ; Xiao N. ; Li H. ; Wang Y. ; Li C. ; Liu C. ; Xiao J. ; Bai J. ; Zhao S. ; Qiu J J. CO2 Util. 2020, 38, 212.
doi: 10.1016/j.jcou.2020.01.020 |
14 |
Li H. ; Xiao N. ; Wang Y. ; Liu C. ; Zhang S. ; Zhang H. ; Bai J. ; Xiao J. ; Li C. ; Guo Z. ; et al J. Mater. Chem. A 2020, 8, 1779.
doi: 10.1039/C9TA12401B |
15 |
Tan X. ; Yu C. ; Ren Y. ; Cui S. ; Li W. ; Qiu J Energy Environ. Sci. 2021, 14, 765.
doi: 10.1039/D0EE02981E |
16 |
Schuchmann K. ; Müller V Science 2013, 342, 1382.
doi: 10.1126/science.1244758 |
17 |
Zhang E. ; Wang T. ; Yu K. ; Liu J. ; Chen W. ; Li A. ; Rong H. ; Lin R. ; Ji S. ; Zheng X. ; et al J. Am. Chem. Soc 2019, 141, 16569.
doi: 10.1021/jacs.9b08259 |
18 |
Kortlever R. ; Shen J. ; Schouten K. J. P. ; Calle-Vallejo F. ; Koper M. T. M J. Phys. Chem. Lett. 2015, 6, 4073.
doi: 10.1021/acs.jpclett.5b01559 |
19 |
Han N. ; Ding P. ; He L. ; Li Y. ; Li Y Adv. Energy Mater. 2020, 10, 1902338.
doi: 10.1002/aenm.201902338 |
20 |
Weng Z. ; Zhang X. ; Wu Y. ; Huo S. ; Jiang J. ; Liu W. ; He G. ; Liang Y. ; Wang H Angew. Chem. Int. Ed. 2017, 56, 13135.
doi: 10.1002/anie.201707478 |
21 |
Zhu D. D. ; Liu J. L. ; Qiao S. Z Adv. Mater. 2016, 28, 3423.
doi: 10.1002/adma.201504766 |
22 |
Mou S. ; Wu T. ; Xie J. ; Zhang Y. ; Ji L. ; Huang H. ; Wang T. ; Luo Y. ; Xiong X. ; Tang B. ; et al Adv. Mater. 2019, 31, 1903499.
doi: 10.1002/adma.201903499 |
23 |
Ma T. ; Fan Q. ; Li X. ; Qiu J. ; Wu T. ; Sun Z J. CO2 Util. 2019, 30, 168.
doi: 10.1016/j.jcou.2019.02.001 |
24 |
Wei X. ; Li Y. ; Chen L. ; Shi J Angew. Chem. Int. Ed. 2021, 60, 3148.
doi: 10.1002/anie.202012066 |
25 |
Verma S. ; Lu S. ; Kenis P. J. A Nat. Energy 2019, 4, 466.
doi: 10.1038/s41560-019-0374-6 |
26 |
Nitopi S. ; Bertheussen E. ; Scott S. B. ; Liu X. ; Engstfeld A. K. ; Horch S. ; Seger B. ; Stephens I. E. L. ; Chan K. ; Hahn C. ;et al Chem. Rev. 2019, 119, 7610.
doi: 10.1021/acs.chemrev.8b00705 |
27 |
Handoko A. D. ; Wei F. ; Jenndy; Yeo B. S. ; Seh Z. W Nat. Catal. 2018, 1, 922.
doi: 10.1038/s41929-018-0182-6 |
28 |
Lum Y. ; Cheng T. ; Goddard W. A. ; Ager J. W J. Am. Chem. Soc. 2018, 140, 9337.
doi: 10.1021/jacs.8b03986 |
29 | Gao D. ; Wei P. ; Li H. ; Lin L. ; Wang G. ; Bao X Acta Phys. -Chim. Sin. 2021, 37, 2009021. |
高敦峰; 魏鹏飞; 李合肥; 林龙; 汪国雄; 包信和. 物理化学学报, 2021, 37, 2009021.
doi: 10.3866/PKU.WHXB202009021 |
|
30 |
Resasco J. ; Chen L. D. ; Clark E. ; Tsai C. ; Hahn C. ; Jaramillo T. F. ; Chan K. ; Bell A. T J. Am. Chem. Soc. 2017, 139, 11277.
doi: 10.1021/jacs.7b06765 |
31 |
Dong Q. ; Zhang X. ; He D. ; Lang C. ; Wang D ACS Cent. Sci. 2019, 5, 1461.
doi: 10.1021/acscentsci.9b00519 |
32 |
Zhong Y. ; Xu Y. ; Ma J. ; Wang C. ; Sheng S. ; Cheng C. ; Li M. ; Han L. ; Zhou L. ; Cai Z. ; et al Angew. Chem. Int. Ed. 2020, 59, 19095.
doi: 10.1002/anie.202005522 |
33 |
Nguyen D. L. T. ; Lee C. W. ; Na J. ; Kim M. C. ; Tu N. D. K. ; Lee S. Y. ; Sa Y. J. ; Won D. H. ; Oh H. S. ; Kim H. ;et al ACS Catal. 2020, 10, 3222.
doi: 10.1021/acscatal.9b05096 |
34 |
Dong H. ; Zhang L. ; Li L. ; Deng W. ; Hu C. ; Zhao Z. J. ; Gong J Small 2019, 15, 1900289.
doi: 10.1002/smll.201900289 |
35 |
Luo W. ; Zhang J. ; Li M. ; Züttel A ACS Catal. 2019, 9, 3783.
doi: 10.1021/acscatal.8b05109 |
36 | Zhou Y. ; Han N. ; Li Y Acta Phys. -Chim. Sin. 2020, 36, 2001041. |
周远; 韩娜; 李彦光. 物理化学学报, 2020, 36, 2001041.
doi: 10.3866/PKU.WHXB202001041 |
|
37 |
Zhu Q. ; Ma J. ; Kang X. ; Sun X. ; Liu H. ; Hu J. ; Liu Z. ; Han B Angew. Chem. Int. Ed. 2016, 55, 9012.
doi: 10.1002/anie.201601974 |
38 |
Bai X. ; Chen W. ; Zhao C. ; Li S. ; Song Y. ; Ge R. ; Wei W. ; Sun Y Angew. Chem. Int. Ed. 2017, 56, 12219.
doi: 10.1002/anie.201707098 |
39 |
Yang H. ; Han N. ; Deng J. ; Wu J. ; Wang Y. ; Hu Y. ; Ding P. ; Li Y. ; Li Y. ; Lu J Adv. Energy Mater. 2018, 8, 1801536.
doi: 10.1002/aenm.201801536 |
40 |
Lai Q. ; Yang N. ; Yuan G Electrochem. Commun. 2017, 83, 24.
doi: 10.1016/j.elecom.2017.08.015 |
41 |
Zhu Q. ; Sun X. ; Yang D. ; Ma J. ; Kang X. ; Zheng L. ; Zhang J. ; Wu Z. ; Han B Nat. Commun. 2019, 10, 3851.
doi: 10.1038/s41467-019-11599-7 |
42 |
Dinh C. ; Burdyny T. ; Kibria M. G. ; Seifitokaldani A. ; Gabardo C. M. ; García de Arquer F. P. ; Kiani A. ; Edwards J. P. ; De Luna P. ; Bushuyev O. S. ;et al Science 2018, 360, 783.
doi: 10.1126/science.aas9100 |
43 | Meng Y. ; Kuang S. ; Liu H. ; Fan Q. ; Ma X. ; Zhang S Acta Phys. -Chim. Sin. 2021, 37, 2006034. |
孟怡辰; 况思宇; 刘海; 范群; 马新宾; 张生. 物理化学学报, 2021, 37, 2006034.
doi: 10.3866/PKU.WHXB202006034 |
|
44 |
Tan X. ; Yu C. ; Zhao C. ; Huang H. ; Yao X. ; Han X. ; Guo W. ; Cui S. ; Huang H. ; Qiu J ACS Appl. Mater. Interfaces 2019, 11, 9904.
doi: 10.1021/acsami.8b19111 |
45 |
Li Y. ; Sun Q Adv. Energy Mater. 2016, 6, 1600463.
doi: 10.1002/aenm.201600463 |
46 |
Liu X. ; Xiao J. ; Peng H. ; Hong X. ; Chan K. ; Nørskov J. K Nat. Commun. 2017, 8, 15438.
doi: 10.1038/ncomms15438 |
47 |
Wang H. ; Jia J. ; Song P. ; Wang Q. ; Li D. ; Min S. ; Qian C. ; Wang L. ; Li Y. F. ;et al Angew. Chem. Int. Ed. 2017, 56, 7847.
doi: 10.1002/anie.201703720 |
48 |
Ma C. ; Hou P. ; Wang X. ; Wang Z. ; Li W. ; Kang P Appl. Catal. B 2019, 250, 347.
doi: 10.1016/j.apcatb.2019.03.041 |
49 |
Kumar B. ; Asadi M. ; Pisasale D. ; Sinha-Ray S. ; Rosen B. A. ; Haasch R. ; Abiade J. ; Yarin A. L. ; Salehi-Khojin A Nat. Commun. 2013, 4, 2819.
doi: 10.1038/ncomms3819 |
50 |
Han P. ; Yu X. ; Yuan D. ; Kuang M. ; Wang Y. ; Al-Enizi A. M. ; Zheng G J. Colloid Interface Sci. 2019, 534, 332.
doi: 10.1016/j.jcis.2018.09.036 |
51 |
Yang F. ; Ma X. ; Cai W. B. ; Song P. ; Xu W J. Am. Chem. Soc. 2019, 141, 20451.
doi: 10.1021/jacs.9b11123 |
52 |
Wu J. ; Liu M. ; Sharma P. P. ; Yadav R. M. ; Ma L. ; Yang Y. ; Zou X. ; Zhou X. D. ; Vajtai R. ; Yakobson B. I. ;et al Nano Lett. 2016, 16, 466.
doi: 10.1021/acs.nanolett.5b04123 |
53 |
Wu J. ; Ma S. ; Sun J. ; Gold J. I. ; Tiwary C. ; Kim B. ; Zhu L. ; Chopra N. ; Vajtai R. ;et al Nat. Commun. 2016, 7, 13869.
doi: 10.1038/ncomms13869 |
54 |
Chen Z. ; Mou K. ; Yao S. ; Liu L J. Mater. Chem. A 2018, 6, 11236.
doi: 10.1039/C8TA03328E |
55 |
Yao P. ; Qiu Y. ; Zhang T. ; Su P. ; Li X. ; Zhang H ACS Sustainable Chem. Eng. 2019, 7, 5249.
doi: 10.1021/acssuschemeng.8b06160 |
56 |
Wang R. ; Sun X. ; Ould-Chikh S. ; Osadchii D. ; Bai F. ; Kapteijn F. ; Gascon J ACS Appl. Mater. Interfaces 2018, 10, 14751.
doi: 10.1021/acsami.8b02226 |
57 |
Kuang M. ; Guan A. ; Gu Z. ; Han P. ; Qian L. ; Zheng G Nano Res. 2019, 12, 2324.
doi: 10.1007/s12274-019-2396-6 |
58 |
Li C. ; Wang Y. ; Xiao N. ; Li H. ; Ji Y. ; Guo Z. ; Liu C. ; Qiu J Carbon 2019, 151, 46.
doi: 10.1016/j.carbon.2019.05.042 |
59 |
Li H. ; Xiao N. ; Wang Y. ; Li C. ; Ye X. ; Guo Z. ; Pan X. ; Liu C. ; Bai J. ; Xiao J. ; et al J. Mater. Chem. A 2019, 7, 18852.
doi: 10.1039/C9TA05904K |
60 |
Rao C. N. R. ; Sood A. K. ; Voggu R. ; Subrahmanyam K. S J. Phys. Chem. Lett. 2010, 1, 572.
doi: 10.1021/jz9004174 |
61 |
Geim A. K. ; Novoselov K. S Nat. Mater. 2007, 6, 183.
doi: 10.1038/nmat1849 |
62 |
Dong Y. ; Zhang Q. ; Tian Z. ; Li B. ; Yan W. ; Wang S. ; Jiang K. ; Su J. ; Oloman C. W. ; Gyenge E. L. ;et al Adv. Mater. 2020, 32, 2001300.
doi: 10.1002/adma.202001300 |
63 |
Wang H. ; Chen Y. ; Hou X. ; Ma C. ; Tan T Green Chem. 2016, 18, 3250.
doi: 10.1039/C6GC00410E |
64 |
Su P. ; Iwase K. ; Nakanishi S. ; Hashimoto K. ; Kamiya K Small 2016, 12, 6083.
doi: 10.1002/smll.201602158 |
65 |
Jiang K. ; Siahrostami S. ; Zheng T. ; Hu Y. ; Hwang S. ; Stavitski E. ; Peng Y. ; Dynes J. ; Gangisetty M. ; Su D. ; et al Energy Environ. Sci 2018, 11, 893.
doi: 10.1039/C7EE03245E |
66 |
Bi W. ; Li X. ; You R. ; Chen M. ; Yuan R. ; Huang W. ; Wu X. ; Chu W. ; Wu C. ; Xie Y Adv. Mater. 2018, 30, 1706617.
doi: 10.1002/adma.201706617 |
67 |
Cheng Y. ; Zhao S. ; Li H. ; He S. ; Veder J. P. ; Johannessen B. ; Xiao J. ; Lu S. ; Pan J. ; Chisholm M. F. ;et al Appl. Catal. B 2019, 243, 294.
doi: 10.1016/j.apcatb.2018.10.046 |
68 |
Zhang C. ; Yang S. ; Wu J. ; Liu M. ; Yazdi S. ; Ren M. ; Sha J. ; Zhong J. ; Nie K. ; Jalilov A. S. ;et al Adv. Energy Mater. 2018, 8, 1703487.
doi: 10.1002/aenm.201703487 |
69 |
Zhang H. ; Li J. ; Xi S. ; Du Y. ; Hai X. ; Wang J. ; Xu H. ; Wu G. ; Zhang J. ; Lu J. ; et al Angew. Chem. Int. Ed 2019, 58, 14871.
doi: 10.1002/anie.201906079 |
70 |
Pan F. ; Li B. ; Sarnello E. ; Fei Y. ; Feng X. ; Gang Y. ; Xiang X. ; Fang L. ; Li T. ; Hu Y. H. ;et al ACS Catal. 2020, 10, 10803.
doi: 10.1021/acscatal.0c02499 |
71 |
Zu X. ; Li X. ; Liu W. ; Sun Y. ; Xu J. ; Yao T. ; Yan W. ; Gao S. ; Wang C. ; Wei S. ; et al Adv. Mater. 2019, 31, 1808135.
doi: 10.1002/adma.201808135 |
72 |
Chen Z. ; Mou K. ; Yao S. ; Liu L ChemSusChem 2018, 11, 2944.
doi: 10.1002/cssc.201800925 |
73 |
Karapinar D. ; Huan N. T. ; Ranjbar Sahraie N. ; Li J. ; Wakerley D. ; Touati N. ; Zanna S. ; Taverna D. ; Galvão Tizei L.H. ; Zitolo A. ;et al Angew. Chem. Int. Ed. 2019, 58, 15098.
doi: 10.1002/anie.201907994 |
74 |
Zhang B. ; Zhang J. ; Shi J. ; Tan D. ; Liu L. ; Zhang F. ; Lu C. ; Su Z. ; Tan X. ; Cheng X. ; et al Nat. Commun. 2019, 10, 2980.
doi: 10.1038/s41467-019-10854-1 |
75 |
Shang H. ; Wang T. ; Pei J. ; Jiang Z. ; Zhou D. ; Wang Y. ; Li H. ; Dong J. ; Zhuang Z. ; Chen W. ; et al Angew. Chem. Int. Ed 2020, 59, 22465.
doi: 10.1002/anie.202010903 |
76 |
Zhao Y. ; Wang C. ; Liu Y. ; MacFarlane D. R. ; Wallace G. G Adv. Energy Mater. 2018, 8, 1801400.
doi: 10.1002/aenm.201801400 |
77 |
Rogers C. ; Perkins W. S. ; Veber G. ; Williams T. E. ; Cloke R. R. ; Fischer F. R J. Am. Chem. Soc. 2017, 139, 4052.
doi: 10.1021/jacs.6b12217 |
78 |
Fu J. ; Wang Y. ; Liu J. ; Huang K. ; Chen Y. ; Li Y. ; Zhu J. J ACS Energy Lett. 2018, 3, 946.
doi: 10.1021/acsenergylett.8b00261 |
79 |
Duan Y. X. ; Liu K. H. ; Zhang Q. ; Yan J. M. ; Jiang Q Small Methods 2020, 4, 1900846.
doi: 10.1002/smtd.201900846 |
80 |
Li Q. ; Zhu W. ; Fu J. ; Zhang H. ; Wu G. ; Sun S Nano Energy 2016, 24, 1.
doi: 10.1016/j.nanoen.2016.03.024 |
81 |
Chen C. ; Yan X. ; Liu S. ; Wu Y. ; Wan Q. ; Sun X. ; Zhu Q. ; Liu H. ; Ma J. ; Zheng L. ; et al Angew. Chem. Int. Ed 2020, 59, 16459.
doi: 10.1002/anie.202006847 |
82 |
Huang J. ; Guo X. ; Yue G. ; Hu Q. ; Wang L ACS Appl. Mater. Interfaces 2018, 10, 44403.
doi: 10.1021/acsami.8b14822 |
83 |
Ni W. ; Li C. ; Zang X. ; Xu M. ; Huo S. ; Liu M. ; Yang Z. ; Yan Y. M Appl. Catal. B 2019, 259, 118044.
doi: 10.1016/j.apcatb.2019.118044 |
84 |
Ma Z. ; Tsounis C. ; Kumar P. V. ; Han Z. ; Wong R. J. ; Toe C. Y. ; Zhou S. ; Bedford N. M. ; Thomsen L. ; Ng Y. H. ;et al Adv. Funct. Mater. 2020, 30, 1910118.
doi: 10.1002/adfm.201910118 |
85 |
Zhang Z. ; Ahmad F. ; Zhao W. ; Yan W. ; Zhang W. ; Huang H. ; Ma C. ; Zeng J Nano Lett. 2019, 19, 4029.
doi: 10.1021/acs.nanolett.9b01393 |
86 |
Chen Z. ; Mou K. ; Wang X. ; Liu L Angew. Chem. Int. Ed. 2018, 57, 12790.
doi: 10.1002/anie.201807643 |
87 |
Wang J. ; Huang X. ; Xi S. ; Lee J.M. ; Wang C. ; Du Y. ; Wang X Angew. Chem. Int. Ed. 2019, 58, 13532.
doi: 10.1002/anie.201906475 |
88 |
Wang J. ; Gan L. ; Zhang Q. ; Reddu V. ; Peng Y. ; Liu Z. ; Xia X. ; Wang C. ; Wang X Adv. Energy Mater. 2019, 9, 1803151.
doi: 10.1002/aenm.201803151 |
89 |
Choi J. ; Wagner P. ; Gambhir S. ; Jalili R. ; MacFarlane D. R. ; Wallace G. G. ; Officer D. L ACS Energy Lett. 2019, 4, 666.
doi: 10.1021/acsenergylett.8b02355 |
90 |
Li L. ; Huang Y. ; Li Y EnergyChem 2020, 2, 100024.
doi: 10.1016/j.enchem.2019.100024 |
91 |
Tang C. ; Zhang Q Adv. Mater. 2017, 29, 1604103.
doi: 10.1002/adma.201604103 |
92 |
Yuan W. ; Zhou Y. ; Li Y. ; Li C. ; Peng H. ; Zhang J. ; Liu Z. ; Dai L. ; Shi G Sci. Rep. 2013, 3, 2248.
doi: 10.1038/srep02248 |
93 |
Banhart F. ; Kotakoski J. ; Krasheninnikov A. V ACS Nano 2011, 5, 26.
doi: 10.1021/nn102598m |
94 |
Lu J. ; Bao Y. ; Su C. L. ; Loh K. P ACS Nano 2013, 7, 8350.
doi: 10.1021/nn4051248 |
95 |
Zhu Y. ; Lv K. ; Wang X. ; Yang H. ; Xiao G. ; Zhu Y J. Mater. Chem. A 2019, 7, 14895.
doi: 10.1039/C9TA02353D |
96 |
Meng X. ; Yu C. ; Song X. ; Iocozzia J. ; Hong J. ; Rager M. ; Jin H. ; Wang S. ; Huang L. ; Qiu J. ; et al Angew. Chem. Int. Ed 2018, 57, 4682.
doi: 10.1002/anie.201801337 |
97 |
Zou X. ; Liu M. ; Wu J. ; Ajayan P. M. ; Li J. ; Liu B. ; Yakobson B. I ACS Catal. 2017, 7, 6245.
doi: 10.1021/acscatal.7b01839 |
98 |
Hori Y. ; Wakebe H. ; Tsukamoto T. ; Koga O Electrochim. Acta 1994, 39, 1833.
doi: 10.1016/0013-4686(94]85172-7 |
99 |
Zhang S. ; Kang P. ; Meyer T. J J. Am. Chem. Soc. 2014, 136, 1734.
doi: 10.1021/ja4113885 |
100 |
Sreekanth N. ; Nazrulla M.A. ; Vineesh T. V. ; Sailaja K. ; Phani K. L Chem. Commun. 2015, 51, 16061.
doi: 10.1039/c5cc06051f |
101 |
Qiao B. ; Wang A. ; Yang X. ; Allard L. F. ; Jiang Z. ; Cui Y. ; Liu J. ; Li J. ; Zhang T Nat. Chem. 2011, 3, 634.
doi: 10.1038/nchem.1095 |
102 |
Zhao D. ; Zhuang Z. ; Cao X. ; Zhang C. ; Peng Q. ; Chen C. ; Li Y Chem. Soc. Rev. 2020, 49, 2215.
doi: 10.1039/C9CS00869A |
103 | Cui X. ; Shi F Acta Phys. -Chim. Sin. 2021, 37, 2006080. |
崔新江; 石峰. 物理化学学报, 2021, 37, 2006080.
doi: 10.3866/PKU.WHXB202006080 |
|
104 |
Huang P. ; Cheng M. ; Zhang H. ; Zuo M. ; Xiao C. ; Xie Y Nano Energy 2019, 61, 428.
doi: 10.1016/j.nanoen.2019.05.003 |
105 |
Ning H. ; Wang X. ; Wang W. ; Mao Q. ; Yang Z. ; Zhao Q. ; Song Y. ; Wu M Carbon 2019, 146, 218.
doi: 10.1016/j.carbon.2019.02.010 |
106 |
Mistry H. ; Reske R. ; Zeng Z. ; Zhao Z. J. ; Greeley J. ; Strasser P. ; Cuenya B. R J. Am. Chem. Soc. 2014, 136, 16473.
doi: 10.1021/ja508879j |
107 |
Zhu W. ; Michalsky R. ; Metin Ö. ; Lv H. ; Guo S. ; Wright C. J. ; Sun X. ; Peterson A. A. ; Sun S J. Am. Chem. Soc. 2013, 135, 16833.
doi: 10.1021/ja409445p |
108 |
Daiyan R. ; Lovell E. C. ; Huang B. ; Zubair M. ; Leverett J. ; Zhang Q. ; Lim S. ; Horlyck J. ; Tang J. ; Lu X. ;et al Adv. Energy Mater. 2020, 10, 2001381.
doi: 10.1002/aenm.202001381 |
109 |
Feng Y. ; Cheng C. Q. ; Zou C. Q. ; Zheng X. L. ; Mao J. ; Liu H. ; Li Z. ; Dong C. K. ; Du X. W Angew. Chem. Int. Ed. 2020, 59, 19297.
doi: 10.1002/anie.202008852 |
110 |
Zheng T. ; Jiang K. ; Wang H Adv. Mater. 2018, 30, 1802066.
doi: 10.1002/adma.201802066 |
111 |
Yi J. D. ; Xie R. ; Xie Z. L. ; Chai G. L. ; Liu T. F. ; Chen R. P. ; Huang Y. B. ; Cao R Angew. Chem. Int. Ed. 2020, 59, 23641.
doi: 10.1002/anie.202010601 |
112 |
Yang F. ; Mao X. ; Ma M. ; Jiang C. ; Zhang P. ; Wang J. ; Deng Q. ; Zeng Z. ; Deng S Carbon 2020, 168, 528.
doi: 10.1016/j.carbon.2020.06.088 |
113 |
Azenha C. ; Mateos-Pedrero C. ; Alvarez-Guerra M. ; Irabien A. ; Mendes A Electrochim. Acta 2020, 363, 137207.
doi: 10.1016/j.electacta.2020.137207 |
114 |
Wang Y. ; Wang Z. ; Dinh C. T. ; Li J. ; Ozden A. ; Golam Kibria M. ; Seifitokaldani A. ; Tan C. S. ; Gabardo C. M. ; Luo M. ;et al Nat. Catal. 2020, 3, 98.
doi: 10.1038/s41929-019-0397-1 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[3] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[4] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[5] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[6] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[7] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[8] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[9] | Hangyu Lu, Ruilin Hou, Shiyong Chu, Haoshen Zhou, Shaohua Guo. Progress on Modification Strategies of Layered Lithium-Rich Cathode Materials for High Energy Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211057-0. |
[10] | Shuai Yang, Yuxin Xu, Zikun Hao, Shengjian Qin, Runpeng Zhang, Yu Han, Liwei Du, Ziyi Zhu, Anning Du, Xin Chen, Hao Wu, Bingbing Qiao, Jian Li, Yi Wang, Bingchen Sun, Rongrong Yan, Jinjin Zhao. Recent Advances in High-Efficiency Perovskite for Medical Sensors [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211025-0. |
[11] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[12] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[13] | Yifei Xu, Hanwen Yang, Xiaoxia Chang, Bingjun Xu. Introduction to Electrocatalytic Kinetics [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2210025-0. |
[14] | Haoliang Lv, Xuejie Wang, Yu Yang, Tao Liu, Liuyang Zhang. RGO-Coated MOF-Derived In2Se3 as a High-Performance Anode for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210014-0. |
[15] | Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209002-0. |
|