Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (1): 2101053.doi: 10.3866/PKU.WHXB202101053
Special Issue: Graphene: Functions and Applications
• REVIEW • Previous Articles Next Articles
Heng Chen1,3, Jincan Zhang1,2,3, Xiaoting Liu1,2,3, Zhongfan Liu1,3,*()
Received:
2021-01-27
Accepted:
2021-02-22
Published:
2021-03-01
Contact:
Zhongfan Liu
E-mail:zfliu@pku.edu.cn
About author:
Zhongfan Liu, Email: zfliu@pku.edu.cnSupported by:
Heng Chen, Jincan Zhang, Xiaoting Liu, Zhongfan Liu. Effect of Gas-Phase Reaction on the CVD Growth of Graphene[J]. Acta Phys. -Chim. Sin. 2022, 38(1), 2101053. doi: 10.3866/PKU.WHXB202101053
Fig 2
Mass transport in the gas phase during the CVD growth of graphene. (a) Schematic of the three flow regimes; (b) Molecular flow in the confined space based on the special stack configuration of growth substrates; (c) Schematic of laminar flow (top) and turbulent flow (bottom); (d) Schematic of the formation of boundary layer during the CVD growth of graphene."
Fig 3
Gas-phase reactions during the high-temperature CVD growth of graphene 62-64. (a) High-temperature reaction path of methane in the gas phase of CVD system, where the thickness of the arrow indicates the reaction probability; Adapted from Springer Nature publisher. (b) The concentrations of 15 species in the gas phase as a function of temperature; Adapted with permission from Ref. 63. Copyright 2012, American Chemical Society. (c) Illustration of the impact of pressure and temperature on the quality of graphene films deposited on the substrate; (d–e) Temperature-dependent composition variation of gas mixture under pressures of 100 mbar (d) and 1 mbar (e), respectively. Adapted with permission from Ref. 64. Copyright 2013, American Chemical Society."
Fig 4
Influence of gas-phase reactions on crystallinity of graphene 31, 78, 79. (a) Typical Raman spectra of graphene directly grown on quartz glass (red), borosilicate glass (blue) and sapphire glass (green) substrates; Adapted with permission from Ref. 78. Copyright 2015, American Chemical Society. (b) Schematic of graphene grown onto SiO2/Si substrates with the assistance of Cu vapor by placing the Cu foil in the upstream of the SiO2/Si substrates; (c) The Raman G peak intensity versus the distance between Cu foil and SiO2 substrates; Adapted with permission from Ref. 31. Copyright 2015, American Chemical Society. (d) Illustration of the graphene grown on solid glass with Cu foil placed on the top of the substrate; (e) Representative Raman spectrum of graphene grown on solid glass with the assistance of Cu vapor in the gas phase. Inset: the photograph of Cu foil-solid glass stacked structure for the growth of high-quality graphene. Adapted with permission from Ref. 79. Copyright 2019, Wiley-VCH."
Fig 5
Influence of gas-phase reactions on intrinsic cleanness of graphene 32, 55, 83. (a) Illustration of the superclean growth of graphene with the assistance of Cu foam; (b, c) Typical TEM image of unclean (b) and superclean (c) graphene. Inset: HRTEM image of the unclean (b) and superclean (c) graphene with atomic resolution; Adapted with permission from Ref. 32. Copyright 2019, Springer Nature. (d) Energy barriers of the decomposition of CH4 in the gas phase without (blue) and with (red) the participation of Cu vapor; (e) Schematic diagram of the growth of graphene with CH4 (left) and Cu(OAc)2 (right) as carbon source; (f) Representative Raman spectra of the carbon species formed during the growth of graphene using Cu(OAc)2 (red) and CH4 (blue). Adapted with permission from Ref. 55. Copyright 2019, American Chemical Society. (g) The simulated temperature distribution in cold-wall CVD (CW-CVD) system. (h, i) Schematic of reaction in the boundary layer in the hot-wall CVD (h) and CW-CVD (i) system. Adapted with permission from Ref. 83. Copyright 2020, Wiley-VCH."
Fig 6
Influence of gas-phase reactions on graphene layer 63, 89, 91. (a) Schematic diagram of the concentration distribution of the active carbon species when seven different positions independently (top) and seven separated Cu foils simultaneously (bottom) were placed along the tube; (b–c) UV-vis spectra of the graphene films grown on seven different positions independently (b) and seven separated Cu foils simultaneously (c). Note that samples 1 to 7 are placed along the direction of the gas flow. Adapted with permission from Ref. 63. Copyright 2012, American Chemical Society. (d) Distribution of the gas flow velocity in the CVD system with a single gas nozzle (left) and multiple gas nozzles (right) across the chamber; Adapted from Elsevier publisher. (e) Simulation of the gas density distribution in LPCVD with various intervals of quartz wafers; (f) Photograph of 30 pieces of graphene/quartz wafers grown in one batch.; (g) Average transmittance of 30 pieces of graphene/quartz wafers shown in (f). Inset: Transmittance mapping results. Adapted from Springer Nature publisher."
Fig 7
Influence of gas-phase reactions on domain size of graphene 34, 72, 96. (a) Schematic of single-crystal graphene growth on Cu85Ni15 alloy substrate by using the quartz with a tiny nozzle (top) and the typical photograph of graphene single crystal (bottom); (b) Schematic of graphene growth on Cu85Ni15 alloy substrate by introducing the carbon precursors homogeneously into the CVD system (top) and the corresponding photograph of graphene domains (bottom); Adapted from Springer Nature publisher. (c) Illustration of graphene growth on travelling (top, left) and stationary (top, right) substrate and the corresponding photograph of single-crystal graphene grown by evolutionary selection growth; Adapted from Springer Nature publisher. (d) Illustration of graphene growth on h-BN/Cu foils using nickelocene as the precursor; (e) Relationship between the domain size of graphene and growth time using nickelocene (red), benzoic acid (blue), and methane (black) as precursors, respectively. Adapted with permission from Ref. 72. Copyright 2017, Wiley-VCH."
Fig 8
Influence of gas-phase reactions on growth rate of graphene 35, 86, 97, 98. (a) Schematic of the fast growth of single-crystal graphene on roll of Cu foils under free molecular flow; (b) Photograph of the as-produced graphene domains grown on the inner surface of the Cu foils; Adapted with permission from Ref. 97. Copyright 2016, Wiley-VCH. (c) Growth rate of single-crystal graphene using ethane comparing with other previously reported works; Adapted with permission from Ref. 98. Copyright 2018, Wiley-VCH. (d) Coverage of graphene grown on glass as a function of the growth time using ethanol (red) and methane (blue) as carbon sources; Adapted with permission from Ref. 86. Copyright 2017, Wiley-VCH. (e) Illustration of the growth of graphene on h-BN with the gaseous catalyst-assisted method; (f) The growth duration versus the growth time of graphene with silane (black), germane (red), and no catalyst (green). Adapted with permission from Ref. 35. Copyright 2015, Springer Nature."
1 |
Du X. ; Skachko I. ; Barker A. ; Andrei E. Y. Nat. Nanotechnol. 2008, 3, 491.
doi: 10.1038/nnano.2008.199 |
2 |
Balandin A. A. ; Ghosh S. ; Bao W. Z. ; Calizo I. ; Teweldebrhan D. ; Miao F. ; Lau C. N. Nano Lett. 2008, 8, 902.
doi: 10.1021/nl0731872 |
3 |
Nair R. R. ; Blake P. ; Grigorenko A. N. ; Novoselov K. S. ; Booth T. J. ; Stauber T. ; Peres N. M. R. ; Geim A. K. Science 2008, 320, 1308.
doi: 10.1126/science.1156965 |
4 |
Lee C. ; Wei X. D. ; Kysar J. W. ; Hone J. Science 2008, 321, 385.
doi: 10.1126/science.1157996 |
5 |
Stoller M. D. ; Park S. ; Zhu Y. ; An J. ; Ruoff R. S. Nano Lett. 2008, 8, 3498.
doi: 10.1021/nl802558y |
6 |
Lozada-Hidalgo M. ; Zhang S. ; Hu S. ; Esfandiar A. ; Grigorieva I. V. ; Geim A. K. Nat. Commun. 2017, 8, 15215.
doi: 10.1038/ncomms15215 |
7 |
Kou L. ; Huang T. Q. ; Zheng B. N. ; Han Y. ; Zhao X. L. ; Gopalsamy K. ; Sun H. Y. ; Gao C. Nat. Commun. 2014, 5, 3754.
doi: 10.1038/ncomms4754 |
8 |
Liu C.-H. ; Chang Y.-C. ; Norris T. B. ; Zhong Z. H. Nat. Nanotechnol. 2014, 9, 273.
doi: 10.1038/nnano.2014.31 |
9 |
Tran Thanh T. ; Nine M. J. ; Krebsz M. ; Pasinszki T. ; Coghlan C. J. ; Tran D. N. H. ; Losic D. Adv. Funct. Mater. 2017, 27, 1702891.
doi: 10.1002/adfm.201702891 |
10 |
Han N. ; Cuong T. V. ; Han M. ; Ryu B. D. ; Chandramohan S. ; Park J. B. ; Kang J. H. ; Park Y. J. ; Ko K. B. ; Kim H. Y. ; et al Nat. Commun. 2013, 4, 1452.
doi: 10.1038/ncomms2448 |
11 |
Yan Z. ; Liu G. X. ; Khan J. M. ; Balandin A. A. Nat. Commun. 2012, 3, 827.
doi: 10.1038/ncomms1828 |
12 |
Bonaccorso F. ; Colombo L. ; Yu G. H. ; Stoller M. ; Tozzini V. ; Ferrari A. C. ; Ruoff R. S. ; Pellegrini V. Science 2015, 347, 1246501.
doi: 10.1126/science.1246501 |
13 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
14 |
Lu X. K. ; Yu M. F. ; Huang H. ; Ruoff R. S. Nanotechnology 1999, 10, 269.
doi: 10.1088/0957-4484/10/3/308 |
15 |
Blake P. ; Brimicombe P. D. ; Nair R. R. ; Booth T. J. ; Jiang D. ; Schedin F. ; Ponomarenko L. A. ; Morozov S. V. ; Gleeson H. F. ; Hill E. W. ; et al Nano Lett. 2008, 8, 1704.
doi: 10.1021/nl080649i |
16 |
Berger C. ; Song Z. M. ; Li X. B. ; Wu X. S. ; Brown N. ; Naud C. ; Mayou D. ; Li T. B. ; Hass J. ; Marchenkov A. N. ; et al Science 2006, 312, 1191.
doi: 10.1126/science.1125925 |
17 |
Park S. ; Ruoff R. S. Nat. Nanotechnol. 2009, 4, 217.
doi: 10.1038/nnano.2009.58 |
18 |
Li X. S. ; Cai W. W. ; An J. H. ; Kim S. ; Nah J. ; Yang D. X. ; Piner R. ; Velamakanni A. ; Jung I. ; Tutuc E. ; et al Science 2009, 324, 1312.
doi: 10.1126/science.1171245 |
19 |
Luong D. X. ; Bets K. V. ; Algozeeb W. A. ; Stanford M. G. ; Kittrell C. ; Chen W. Y. ; Salvatierra R. V. ; Ren M. Q. ; McHugh E. A. ; Advincula P. A. ; et al Nature 2020, 577, 647.
doi: 10.1038/s41586-020-1938-0 |
20 |
Lin L. ; Deng B. ; Sun J. Y. ; Peng H. L. ; Liu Z. F. Chem. Rev. 2018, 118, 9281.
doi: 10.1021/acs.chemrev.8b00325 |
21 |
Fiori G. ; Bonaccorso F. ; Iannaccone G. ; Palacios T. ; Neumaier D. ; Seabaugh A. ; Banerjee S. K. ; Colombo L. Nat. Nanotechnol. 2014, 9, 768.
doi: 10.1038/nnano.2014.207 |
22 |
Hamilton J. C. ; Blakely J. M. Surf. Sci. 1980, 91, 199.
doi: 10.1016/0039-6028(80)90080-1 |
23 |
Coraux J. ; N'Diaye A. T. ; Busse C. ; Michely T. Nano Lett. 2008, 8, 565.
doi: 10.1021/nl0728874 |
24 |
Sutter P. W. ; Flege J.-I. ; Sutter E. A. Nat. Mater. 2008, 7, 406.
doi: 10.1038/nmat2166 |
25 |
Kwon S.-Y. ; Ciobanu C. V. ; Petrova V. ; Shenoy V. B. ; Bareno J. ; Gambin V. ; Petrov I. ; Kodambaka S. Nano Lett. 2009, 9, 3985.
doi: 10.1021/nl902140j |
26 |
Reina A. ; Jia X. T. ; Ho J. ; Nezich D. ; Son H. ; Bulovic V. ; Dresselhaus M. S. ; Kong J. Nano Lett. 2009, 9, 30.
doi: 10.1021/nl801827v |
27 |
Wei D. C. ; Liu Y. Q. ; Wang Y. ; Zhang H. L. ; Huang L. P. ; Yu G. Nano Lett. 2009, 9, 1752.
doi: 10.1021/nl803279t |
28 |
Gao T. ; Xie S. B. ; Gao Y. B. ; Liu M. X. ; Chen Y. B. ; Zhang Y. F. ; Liu Z. F. ACS Nano 2011, 5, 9194.
doi: 10.1021/nn203440r |
29 |
Gao L. B. ; Ren W. C. ; Xu H. L. ; Jin L. ; Wang Z. X. ; Ma T. ; Ma L.-P. ; Zhang Z. Y. ; Fu Q. ; Peng L.-M. ; et al Nat. Commun. 2012, 3, 699.
doi: 10.1038/ncomms1702 |
30 |
Edwards R. S. ; Coleman K. S. Acc. Chem. Res. 2013, 46, 23.
doi: 10.1021/ar3001266 |
31 |
Teng P.-Y. ; Lu C.-C. ; Akiyama-Hasegawa K. ; Lin Y.-C. ; Yeh C.-H. ; Suenaga K. ; Chiu P.-W. Nano Lett. 2012, 12, 1379.
doi: 10.1021/nl204024k |
32 |
Lin L. ; Zhang J. C. ; Su H. S. ; Li J. Y. ; Sun L. Z. ; Wang Z. H. ; Xu F. ; Liu C. ; Lopatin S. ; Zhu Y. H. ; et al Nat. Commun. 2019, 10, 1912.
doi: 10.1038/s41467-019-09565-4 |
33 |
Yan K. ; Peng H. L. ; Zhou Y. ; Li H. ; Liu Z. F. Nano Lett. 2011, 11, 1106.
doi: 10.1021/nl104000b |
34 |
Wu T. R. ; Zhang X. F. ; Yuan Q. H. ; Xue J. C. ; Lu G. Y. ; Liu Z. H. ; Wang H. S. ; Wang H. M. ; Ding F. ; Yu Q. K. ; et al Nat. Mater. 2016, 15, 43.
doi: 10.1038/nmat4477 |
35 |
Tang S. J. ; Wang H. M. ; Wang H. S. ; Sun Q. J. ; Zhang X. Y. ; Cong C. X. ; Xie H. ; Liu X. Y. ; Zhou X. H. ; Huang F. Q. ; et al Nat. Commun. 2015, 6, 6499.
doi: 10.1038/ncomms7499 |
36 |
Bhaviripudi S. ; Jia X. T. ; Dresselhaus M. S. ; Kong J. Nano Lett. 2010, 10, 4128.
doi: 10.1021/nl102355e |
37 |
Qing F. Z. ; Jia R. T. ; Li B.-W. ; Liu C. L. ; Li C. Z. ; Peng B. ; Deng L. J. ; Zhang W. L. ; Li Y. R. ; Ruoff R. S. ; et al 2D Mater. 2017, 4, 025089.
doi: 10.1088/2053-1583/aa6da5 |
38 |
Li X. S. ; Cai W. W. ; Colombo L. ; Ruoff R. S. Nano Lett. 2009, 9, 4268.
doi: 10.1021/nl902515k |
39 |
Ago H. ; Ito Y. ; Mizuta N. ; Yoshida K. ; Hu B. S. ; Orofeo C. M. ; Tsuji M. ; Ikeda K.-I. ; Mizuno S. ACS Nano 2010, 4, 7407.
doi: 10.1021/nn102519b |
40 |
Ismach A. ; Druzgalski C. ; Penwell S. ; Schwartzberg A. ; Zheng M. ; Javey A. ; Bokor J. ; Zhang Y. G. Nano Lett. 2010, 10, 1542.
doi: 10.1021/nl9037714 |
41 |
Seah C.-M. ; Chai S.-P. ; Mohamed A. R. Carbon 2014, 70, 1.
doi: 10.1016/j.carbon.2013.12.073 |
42 |
Chen J. Y. ; Wen Y. G. ; Guo Y. L. ; Wu B. ; Huang L. P ; Xue Y. Z. ; Geng D. C. ; Wang D. ; Yu G. ; Liu Y. Q. J. Am. Chem. Soc. 2011, 133, 17548.
doi: 10.1021/ja2063633 |
43 |
Li P. ; Li Z. Y. ; Yang J. L. J. Phys. Chem. C 2017, 121, 25949.
doi: 10.1021/acs.jpcc.7b09622 |
44 |
Tan H. ; Wang D. G. ; Guo Y. B. Coatings 2018, 8, 40.
doi: 10.3390/coatings8010040 |
45 |
Shu H. ; Tao X.-M. ; Ding F. Nanoscale 2015, 7, 1627.
doi: 10.1039/c4nr05590j |
46 |
Wang X. L. ; Yuan Q. H. ; Li J. ; Ding F. Nanoscale 2017, 9, 11584.
doi: 10.1039/c7nr02743e |
47 |
Deng B. ; Liu Z. F. ; Peng H. L. Adv. Mater. 2019, 31, 1800996.
doi: 10.1002/adma.201800996 |
48 |
Gao J. F. ; Yip J. ; Zhao J. J. ; Yakobson B. I. ; Ding F. J. Am. Chem. Soc. 2011, 133, 5009.
doi: 10.1021/ja110927p |
49 |
Lin L. ; Sun L. Z. ; Zhang J. C. ; Sun J. Y. ; Koh A. L. ; Peng H. L. ; Liu Z. F. Adv. Mater. 2016, 28, 4671.
doi: 10.1002/adma.201600403 |
50 |
Zhang X. Y. ; Wang L. ; Xin J. ; Yakobson B. I. ; Ding F. J. Am. Chem. Soc. 2014, 136, 3040.
doi: 10.1021/ja405499x |
51 |
Li X. S. ; Magnuson C. W. ; Venugopal A. ; An J. ; Suk J. W. ; Han B. Y. ; Borysiak M. ; Cai W. W. ; Velamakanni A. ; Zhu Y. W. ; et al Nano Lett. 2010, 10, 4328.
doi: 10.1021/nl101629g |
52 |
Sun L. Z. ; Lin L. ; Zhang J. C. ; Wang H. ; Peng H. L. ; Liu Z. F. Nano Res. 2016, 10, 355.
doi: 10.1007/s12274-016-1297-1 |
53 |
Artyukhov V. I. ; Liu Y. Y. ; Yakobson B. I. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15136.
doi: 10.1073/pnas.1207519109 |
54 |
Chen Z. L. ; Qi Y. ; Chen X. D. ; Zhang Y. F. ; Liu Z. F. Adv. Mater. 2019, 31, 1803639.
doi: 10.1002/adma.201803639 |
55 |
Jia K. C. ; Zhang J. C. ; Lin L. ; Li Z. Z. ; Gao J. ; Sun L. Z. ; Xue R. W. ; Li J. Y. ; Kang N. ; Luo Z. T. ; et al J. Am. Chem. Soc. 2019, 141, 7670.
doi: 10.1021/jacs.9b02068 |
56 |
Köhler C. ; Hajnal Z. ; Deák P. ; Frauenheim T. ; Suhai S. Phys. Rev. B 2001, 64, 085333.
doi: 10.1103/PhysRevB.64.085333 |
57 | Chen X. D. ; Chen Z. L. ; Sun J. Y. ; Zhang Y. F. ; Liu Z. F. Acta Phys. -Chim. Sin. 2016, 32, 14. |
陈旭东; 陈召龙; 孙靖宇; 张艳峰; 刘忠范. 物理化学学报, 2016, 32, 14.
doi: 10.3866/PKU.WHXB201511133 |
|
58 | Wang, H. Controllable Method of Graphene Growth on Copper Foil by Chemical Vapor Deposition. Ph. D. Dissertation, Peking University, Beijing, 2015. |
王欢. 石墨烯在铜箔表面上的控制生长方法研究[D]. 北京: 北京大学, 2015. | |
59 |
Wang H. P. ; Xue X. D. ; Jiang Q. Q. ; Wang Y. L. ; Geng D. C. ; Cai L. ; Wang L. P. ; Xu Z. P. ; Yu G. J. Am. Chem. Soc. 2019, 141, 11004.
doi: 10.1021/jacs.9b05705 |
60 |
Chen S. S. ; Ji H. X. ; Chou H. ; Li Q. Y. ; Li H. Y. ; Suk J. W. ; Piner R. ; Liao L. ; Cai W. W. ; Ruoff R. S. Adv. Mater. 2013, 25, 2062.
doi: 10.1002/adma.201204000 |
61 |
Muñoz R. ; Gómez-Aleixandre C. Chem. Vapor Depos. 2013, 19, 297.
doi: 10.1002/cvde.201300051 |
62 |
Hu C. X. ; Li H. J. ; Zhang S. Y. ; Li W. J. Mater. Sci. 2016, 51, 3897.
doi: 10.1007/s10853-015-9709-2 |
63 |
Li Z. C. ; Zhang W. H. ; Fan X. D. ; Wu P. ; Zeng C. G. ; Li Z. Y. ; Zhai X. F. ; Yang J. L. ; Hou J. G. J. Phys. Chem. C 2012, 116, 10557.
doi: 10.1021/jp210814j |
64 |
Lewis A. M. ; Derby B. ; Kinloch I. A. ACS Nano 2013, 7, 3104.
doi: 10.1021/nn305223y |
65 |
Li G. ; Huang S. H. ; Li Z. Y. Phys. Chem. Chem. Phys. 2015, 17, 22832.
doi: 10.1039/c5cp02301g |
66 |
Shivayogimath A. ; Mackenzie D. ; Luo B. R. ; Hansen O. ; Boggild P. ; Booth T. J. Sci. Rep. 2017, 7, 6183.
doi: 10.1038/s41598-017-06276-y |
67 |
Öberg H. ; Nestsiarenka Y. ; Matsuda A. ; Gladh J. ; Hansson T. ; Pettersson L. G. M. ; Öström H. J. Phys. Chem. C 2012, 116, 9550.
doi: 10.1021/jp300514f |
68 |
Hao Y. F. ; Bharathi M. S. ; Wang L. ; Liu Y. Y. ; Chen H. ; Nie S. ; Wang X. H. ; Chou H. ; Tan C. ; Fallahazad B. ; et al Science 2013, 342, 720.
doi: 10.1126/science.1243879 |
69 |
Safron N. S. ; Arnold M. S. J. Mater. Chem. C 2014, 2, 744.
doi: 10.1039/c3tc31738b |
70 |
Xu X. Z. ; Zhang Z. H. ; Qiu L. ; Zhuang J. N. ; Zhang L. ; Wang H. ; Liao C. N. ; Song H. D. ; Qiao R. X. ; Gao P. ; et al Nat. Nanotechnol. 2016, 11, 930.
doi: 10.1038/nnano.2016.132 |
71 |
Liu C. ; Xu X. Z. ; Qiu L. ; Wu M. H. ; Qiao R. X. ; Wang L. ; Wang J. H. ; Niu J. J. ; Liang J. ; Zhou X. ; et al Nat. Chem. 2019, 11, 730.
doi: 10.1038/s41557-019-0290-1 |
72 |
Li Q. C. ; Zhao Z. F. ; Yan B. M. ; Song X. J. ; Zhang Z. P. ; Li J. ; Wu X. S. ; Bian Z. Q. ; Zou X. L. ; Zhang Y. F. ; et al Adv. Mater. 2017, 29, 1701325.
doi: 10.1002/adma.201701325 |
73 |
Yazyev O. V. ; Louie S. G. Nat. Mater. 2010, 9, 806.
doi: 10.1038/nmat2830 |
74 |
Pop E. ; Varshney V. ; Roy A. K. MRS Bull. 2012, 37, 1273.
doi: 10.1557/mrs.2012.203 |
75 |
Karoui S. ; Amara H. ; Bichara C. ; Ducastelle F. ACS Nano 2010, 4, 6114.
doi: 10.1021/nn101822s |
76 |
Zan R. ; Ramasse Q. M. ; Bangert U. ; Novoselov K. S. Nano Lett. 2012, 12, 3936.
doi: 10.1021/nl300985q |
77 |
Rümmeli M. H. ; Gorantla S. ; Bachmatiuk A. ; Phieler J. ; Geiẞler N. ; Ibrahim I. ; Pang J. ; Eckert J. Chem. Mater. 2013, 25, 4861.
doi: 10.1021/cm401669k |
78 |
Sun J. Y. ; Chen Y. B. ; Priydarshi M. K. ; Chen Z. ; Bachmatiuk A. ; Zou Z. Y. ; Chen Z. L. ; Song X. J. ; Gao Y. F. ; Rummeli M. H. ; et al Nano Lett. 2015, 15, 5846.
doi: 10.1021/acs.nanolett.5b01936 |
79 |
Chen Z. L. ; Qi Y. ; Chen X. D. ; Zhang Y. F. ; Liu Z. F. Adv. Mater. 2019, 31, 1803639.
doi: 10.1002/adma.201803639 |
80 |
Zhang J. C. ; Sun L. Z. ; Jia K. C. ; Liu X. T. ; Cheng T. ; Peng H. L. ; Lin L. ; Liu Z. F. ACS Nano 2020, 14, 10796.
doi: 10.1021/acsnano.0c06141 |
81 |
Zhang J. C. ; Jia K. C. ; Lin L. ; Zhao W. ; Quang H. T. ; Sun L. Z. ; Li T. R. ; Li Z. Z. ; Liu X. T. ; Zheng L. M. ; et al Angew. Chem. Int. Ed. Engl. 2019, 58, 14446.
doi: 10.1002/anie.201905672 |
82 |
Sun L. Z. ; Lin L. ; Wang Z. H. ; Rui D. R. ; Yu Z. W. ; Zhang J. C. ; Li Y. L. Z. ; Liu X. T. ; Jia K. C. ; Wang K. X. ; et al Adv. Mater. 2019, 31, 1902978.
doi: 10.1002/adma.201902978 |
83 |
Jia K. C. ; Ci H. N. ; Zhang J. C. ; Sun Z. T. ; Ma Z. T. ; Zhu Y. S. ; Liu S. N. ; Liu J. L. ; Sun L. Z. ; Liu X. T. ; et al Angew. Chem. Int. Ed. Engl. 2020, 59, 17214.
doi: 10.1002/anie.202005406 |
84 | Liu X. T. ; Zhang J. C. ; Chen H. ; Liu Z. F. Acta Phys. -Chim. Sin. 2021, 37, 2012047. |
刘晓婷; 张金灿; 陈恒; 刘忠范. 物理化学学报, 2021, 37, 2012047.
doi: 10.3866/PKU.WHXB202012047 |
|
85 |
Xie H. H. ; Cui K. J. ; Cui L. Z. ; Liu B. Z. ; Yu Y. ; Tan C. W. ; Zhang Y. Y. ; Zhang Y. F. ; Liu Z. F. Small 2020, 16, 1905485.
doi: 10.1002/smll.201905485 |
86 |
Chen X. D. ; Chen Z. L. ; Jiang W. S. ; Zhang C. ; Sun J. Y. ; Wang H. H. ; Xin W. ; Lin L. ; Priydarshi M. K. ; Yang H. ; et al Adv. Mater. 2017, 29, 1603428.
doi: 10.1002/adma.201603428 |
87 |
Castro Neto A. H. ; Guinea F. ; Peres N. M. R. ; Novoselov K. S. ; Geim A. K. Rev. Mod. Phys. 2009, 81, 109.
doi: 10.1103/RevModPhys.81.109 |
88 |
Ta H. Q. ; Perello D. J. ; Duong D. L. ; Han G. H. ; Gorantla S. ; Nguyen V. L. ; Bachmatiuk A. ; Rotkin S. V. ; Lee Y. H. ; Rummeli M. H. Nano Lett. 2016, 16, 6403.
doi: 10.1021/acs.nanolett.6b02826 |
89 |
Deng B. ; Xin Z. W. ; Xue R. W. ; Zhang S. S. ; Xu X. Z. ; Gao J. ; Tang J. L. ; Qi Y. ; Wang Y. N. ; Zhao Y. ; et al Sci. Bull. 2019, 64, 659.
doi: 10.1016/j.scib.2019.04.030 |
90 |
Huet B. ; Zhang X. ; Redwing J. M. ; Snyder D. W. ; Raskin J.-P. 2D Mater. 2019, 6, 045032.
doi: 10.1088/2053-1583/ab33ae |
91 |
Jiang B. ; Zhao Q. Y. ; Zhang Z. P. ; Liu B. Z. ; Shan J. Y. ; Zhao L. ; Rümmeli M. H. ; Gao X. ; Zhang Y. F. ; Yu T. J. ; et al Nano Res. 2020, 13, 1564.
doi: 10.1007/s12274-020-2771-3 |
92 |
Huang P. Y. ; Ruiz-Vargas C. S. ; van der Zande A. M. ; Whitney W. S. ; Levendorf M. P. ; Kevek J. W. ; Garg S. ; Alden J. S. ; Hustedt C. J. ; Zhu Y. ; et al Nature 2011, 469, 389.
doi: 10.1038/nature09718 |
93 |
Cui T. ; Mukherjee S. ; Sudeep P. M. ; Colas G. ; Najafi F. ; Tam J. ; Ajayan P. M. ; Singh C. V. ; Sun Y. ; Filleter T. Nat. Mater. 2020, 19, 405.
doi: 10.1038/s41563-019-0586-y |
94 |
Ma T. ; Liu Z. B. ; Wen J. X. ; Gao Y. ; Ren X. B. ; Chen H. J. ; Jin C. H. ; Ma X. L. ; Xu N. S. ; Cheng H. M. ; et al Nat. Commun. 2017, 8, 14486.
doi: 10.1038/ncomms14486 |
95 |
Lin L. ; Li J. Y. ; Ren H. Y. ; Koh A. L. ; Kang N. ; Peng H. L. ; Xu H. Q. ; Liu Z. F. ACS Nano 2016, 10, 2922.
doi: 10.1021/acsnano.6b00041 |
96 |
Vlassiouk I. V. ; Stehle Y. ; Pudasaini P. R. ; Unocic R. R. ; Rack P. D. ; Baddorf A. P. ; Ivanov I. N. ; Lavrik N. V. ; List F. ; Gupta N. ; et al Nat. Mater. 2018, 17, 318.
doi: 10.1038/s41563-018-0019-3 |
97 |
Wang H. ; Xu X. Z. ; Li J. Y. ; Lin L. ; Sun L. Z. ; Sun X. ; Zhao S. L. ; Tan C. W. ; Chen C. ; Dang W. H. ; et al Adv. Mater. 2016, 28, 8968.
doi: 10.1002/adma.201603579 |
98 |
Sun X. ; Lin L. ; Sun L. Z. ; Zhang J. C. ; Rui D. R. ; Li J. Y. ; Wang M. Z. ; Tan C. W. ; Kang N. ; Wei D. ; et al Small 2018, 14, 1702916.
doi: 10.1002/smll.201702916 |
99 |
Xie Y. D. ; Cheng T. ; Liu C. ; Chen K. ; Cheng Y. ; Chen Z. L. ; Qiu L. ; Cui G. ; Yu Y. ; Cui L. Z. ; et al ACS Nano 2019, 13, 10272.
doi: 10.1021/acsnano.9b03596 |
100 |
Xu J. B. ; Hu J. X. ; Li Q. ; Wang R. B. ; Li W. W. ; Guo Y. F. ; Zhu Y. B. ; Liu F. K. ; Ullah Z. ; Dong G. C. ; et al Small 2017, 13, 1700651.
doi: 10.1002/smll.201700651 |
101 |
Zhang Y. N. ; Huang D. P. ; Duan Y. W. ; Chen H. ; Tang L. L. ; Shi M. Q. ; Li Z. C. ; Shi H. F. Nanotechnology 2020, 32, 105603.
doi: 10.1088/1361-6528/abcceb |
102 |
Chen Z. L. ; Guan B. L. ; Chen X.-D. ; Zeng Q. ; Lin L. ; Wang R. Y. ; Priydarshi M. K. ; Sun J. Y. ; Zhang Z. P. ; Wei T. B. ; et al Nano Res. 2016, 9, 3048.
doi: 10.1007/s12274-016-1187-6 |
103 |
Liu B. Z. ; Sun J. Y. ; Liu Z. F. ChemNanoMat 2020, 6, 483.
doi: 10.1002/cnma.202000045 |
[1] | Mengshi Yu, Congwei Tan, Xiaoyin Gao, Junchuan Tang, Hailin Peng. Chemical Vapor Deposition Growth of High-Mobility 2D Semiconductor Bi2O2Se: Controllability and Material Quality [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306043-. |
[2] | Yue Qi, Luzhao Sun, Zhongfan Liu. Super Graphene-Skinned Material: A New Member of Graphene Materials Family [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2307028-. |
[3] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[4] | Zeyao Zhang, Yixi Yao, Yan Li. Modulating the Diameter of Bulk Single-Walled Carbon Nanotubes Grown by FeCo/MgO Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2101055-. |
[5] | Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012085-. |
[6] | Yi Cheng, Kun Wang, Yue Qi, Zhongfan Liu. Chemical Vapor Deposition Method for Graphene Fiber Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2006046-. |
[7] | Bei Jiang, Jingyu Sun, Zhongfan Liu. Synthesis of Graphene Wafers: from Lab to Fab [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2007068-. |
[8] | Ting Cheng, Luzhao Sun, Zhirong Liu, Feng Ding, Zhongfan Liu. Roles of Transition Metal Substrates in Graphene Chemical Vapor Deposition Growth [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012006-. |
[9] | Xiaoting Liu, Jincan Zhang, Heng Chen, Zhongfan Liu. Synthesis of Superclean Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012047-. |
[10] | Jionghua Wu, Yiming Li, Jiangjian Shi, Huijue Wu, Yanhong Luo, Dongmei Li, Qingbo Meng. UV Photodetectors Based on High Quality CsPbCl3 Film Prepared by a Two-Step Diffusion Method [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004041-. |
[11] | Fei Wang, Zhaolong Chen, Jiawei Yang, Hao Li, Jingyuan Shan, Feng Zhang, Baolu Guan, Zhongfan Liu. Heating Characteristics of Graphene Glass Transparent Films [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2001024-. |
[12] | Tianyi Yang, Cheng Cui, Hongpan Rong, Jiatao Zhang, Dingsheng Wang. Recent Advances in Platinum-based Intermetallic Nanocrystals: Controlled Synthesis and Electrocatalytic Applications [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 2003047-. |
[13] | Shuchen Zhang,Na Zhang,Jin Zhang. Controlled Synthesis of Carbon Nanotubes: Past, Present and Future [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907021-. |
[14] | Zhaolong Chen, Peng Gao, Zhongfan Liu. Graphene-Based LED: from Principle to Devices [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907004-. |
[15] | Fang LIU,Lufeng ZHANG,Qian DONG,Zhuo CHEN. Synthesis and Characterization of Small Size Gold-Graphitic Nanocapsules [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 651-656. |
|