Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (3): 2210043.doi: 10.3866/PKU.WHXB202210043
• REVIEW • Previous Articles
Mingli Xu, Mengchuang Liu, Zezhou Yang, Chen Wu, Jiangfeng Qian()
Received:
2022-10-31
Accepted:
2022-12-02
Published:
2022-12-09
Contact:
Jiangfeng Qian
E-mail:jfqian@whu.edu.cn
About author:
Jiangfeng Qian, Email: jfqian@whu.edu.cn; Tel.: +86-27-68754526Supported by:
Mingli Xu, Mengchuang Liu, Zezhou Yang, Chen Wu, Jiangfeng Qian. Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin. 2023, 39(3), 2210043. doi: 10.3866/PKU.WHXB202210043
Fig 2
(a) Schematic illustration of the direct-contact method; (b) comparison of the electrochemical performance of HC as an anode before and after presodiation; galvanostatic charge and discharge profiles of the Na0.67Fe0.5Mn0.5O2 electrode (c) before and (d) after presodiation 19. Adapted with permission from Ref. 19, Copyright 2019, American Chemical Society."
Fig 3
(a) Schematic illustration of the electrochemical presodiation method 23; (b, c) electrochemical characteristic of hard carbon anode with different sodiation degrees 24; (d) the effect of the different preparation steps (electrochemical presodiation and Al2O3 artificial SEI coating) on the sodiation mechanism of soft carbon 25; (e) the chronopotentiometry curves based on three-electrode tests of HC||Na4V2(PO4)3 full cell 31. (a) Adapted from Ref. 23, Copyright 2015, Royal Society of Chemistry; (b, c) Adapted from Ref. 24, Copyright 2021, Elsevier Inc.; (d) Adapted from Ref. 25, Copyright 2021, Elsevier Inc; (e) Adapted from Ref. 31, Copyright 2020, Royal Society of Chemistry."
Fig 4
(a) Schematic illustration of the preparation and application procedure of sodium powder 32; (b) preparation of Na-Sn alloy, (c) initial charge-discharge curves of the pure Sn and Na-Sn alloy, (d, e) differential electrochemical mass spectrometry result of Sn||Na3V2(PO4)2F3 full cell and Na-Sn||Na3V2(PO4)2F3 full cell 34; (f, g) electrochemical performance of HC||Na3V2(PO4)3 full cell before and after pretreatment by SLMP 37. (a) Adapted from Ref. 32, Copyright 2018, Elsevier Inc.; (b–e) Adapted with permission from Ref. 34, Copyright 2019, American Chemical Society; (f, g) Adapted from Ref. 37, Copyright 2018, John Wiley and Sons."
Fig 6
(a) Illustration of the chemical presodiation of Sb/C electrode; electrochemical performance of Sb/C before and after presodiation: (b) initial charge-discharge curves; (c) rate performance; (d) cycling performance 43. Adapted with permission from Ref. 43, Copyright 2021, Royal Society of Chemistry"
Table 1
Comparisions of different anodes before and after chemical presodiation."
Anode | Presodiation reagent | Presodiation time | ICE of half cell before presodiation | ICE of half cell after presodiation | ICE of full cell after presodiation | Ref. |
Na2Ti6O13 | Na-Naph/DME | 10 min | 65% | 100% | 80.0% (Na2Ti6O13||Na3V2(PO4)3) | |
Na2Ti3O7 | Na-Naph/DME | Unknow | ~43% | ~100% | None | |
TiO2 | Na-Naph/DME | Unknow | ~75% | ~100% | None | |
Hard carbon | Na-Naph/THF | None (Quantitative spraying) | 67% | 87% | 92.9% (HC||Na0.9[Cu0.22Fe0.30Mn0.48]O2) | |
Na-Biph/DME | 1 min | 72% | 100% | 95.0% (HC||Na3V2(PO4)3) | ||
Sb | Na-Biph/DME | 15 s | 75% | 100% | 95.4% (Sb||Na3V2(PO4)3) | |
Sn | Na-Biph/THF | Unknow | 70% | 94% | None | |
P/C | Na-Biph/THF | 30 min | 64% | 94% | None |
Table 2
Comparisons of the key parameters of various cathode presodiation additives."
Additive | Theoretical capacity (mAh?g?1) | Decomposition potential (V) | Experimental capacity (mAh?g?1) | Main product | Problem | Ref. | |
Inorganic additive | NaN3 | 412 | 3.55 | 315 | N2 | Explosive | |
Na3P | 804 | 0.5 | 600 | P | Toxic and flammable | ||
Na2O | 864 | 2.5–4.2 | 500 | O2 | Production of H2 | ||
Na2O2 | 687 | 4 | 421 | O2 | Production of O2, Low electronic conductivity | ||
NaNO2 | 427 | 3.3–3.8 | 350 | NO2 | Production of NO2 with toxicity and strong oxidation | ||
Na2CO3 | 506 | 4 | 253 | CO2、O2 | Production of O2 and low capacity utilization | ||
Na2NiO2 | 392 | 2.0-3.6 | 277 | NaNiO2 | Limited sodium compensation and big dead mass | ||
NaCrO2 | 251 | 3.0–4.2 | 229 | Na0.06CrO2 | Limited sodium compensation and big dead mass | ||
NaBH4 | 708 | 2.4 | 750 | B、H2 | Production of H2 | ||
NaNH2 | 686 | 3.8 | 680 | N2H4、N2、H2 | Production of H2 and N2H4 with strong reduction and unstability | ||
Na2S | 687 | 2.0–4.0 | ~687/553 | S | Low electronic conductivity and polysulfide dissolution | ||
Organic additive | Na2C6O6 | 250 | 3.6 | 310 | C6O6 | Copious side effect | |
Na2C6H2O6 | 250 | 3.98 | 265 | Unknow | Limited sodium compensation and copious side effect | ||
CH3COONa | 326 | 4.18 | 302 | C2H6、CO2 | High decomposition potential | ||
PABZ-Na | 168 | 3.45 | 160 | Alkane、CO2 | Limited sodium compensation | ||
EDTA-4Na | 282 | 3.79 | 420 | CO、C3N、H2O、H2、O2 | Produce flammable gas and H2O | ||
DTPA-5Na | 266 | 3.61 | 363 | CO、C3N、H2O、H2、O2 | Produce flammable gas and H2O | ||
Na2C4O4 | 339 | 3.6 | 256/348 | CO2、CO、C | Low electronic conductivity | ||
Na2C2O4 | 400 | 3.97 | 389 | CO2 | Low electronic conductivity | ||
Na2C3O5 | 331 | 4 | 310 | C、CO2 | Low electronic conductivity |
Fig 8
(a) Effect of different content of NaN3 on the initial charge-discharge curve of the full cell 47; (b) schematic illustration of preparing the electrode through spraying Na2O2-containing ACN slurry 48; (c) Half-cell voltage curves of the Sb/C composite anode and the cathode with a blend of 90% NaCrO2 and 10% Na2NiO2 54; (d) schematic illustration of the electrochemical evolution for the traditional additives and the Na2S/C additive 57. (a) Adapted from Ref. 47, Copyright 2017, Elsevier Inc.; (b) Adapted with permission from Ref. 48, Copyright 2021, American Chemical Society; (c) Adapted with permission from Ref. 54, Copyright 2015, American Chemical Society; (d, e) Adapted with permission from Ref. 57, Copyright 2021, American Chemical Society."
Fig 9
(a) Scheme of the desodiation of Na2C6O6 58; (b) illustration of the presodiation mechanism of CH3COONa 60; (c) initial charge-discharge curves of Na2C4O4 64; (d) effect of different conductive additives on electrochemical oxidation potential of Na2C2O4 68. (a) Adapted from Ref. 58, Copyright 2020, John Wiley and Sons; (b) Adapted from Ref. 60, Copyright 2021, John Wiley and Sons; (c) Adapted from Ref. 64, Copyright 2018, John Wiley and Sons; (d) Adapted from Ref. 68, Copyright 2020, John Wiley and Sons."
1 |
Gogotsi Y. ; Simon P. Science 2011, 334, 917.
doi: 10.1126/science.1213003 |
2 |
Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
doi: 10.1126/science.1212741 |
3 |
Kundu D. ; Talaie E. ; Duffort V. ; Nazar L. F. Angew. Chem. Int. Ed. 2015, 54, 3431.
doi: 10.1002/anie.201410376 |
4 |
Nayak P. K. ; Yang L. ; Brehm W. ; Adelhelm P. Angew. Chem. Int. Ed. 2018, 57, 102.
doi: 10.1002/anie.201703772 |
5 | Cao X. ; Zhou J. ; Pan A. ; Liang S. Acta Phys. -Chim. Sin. 2020, 36, 1905018. |
曹鑫鑫; 周江; 潘安强; 梁叔全. 物理化学学报, 2020, 36, 1905018.
doi: 10.3866/PKU.WHXB201905018 |
|
6 | Wu C. ; Qian J. ; Yang H. Sci. Sin. Chim. 2017, 47, 603. |
吴晨; 钱江锋; 杨汉西. 中国科学: 化学, 2017, 47, 603.
doi: 10.1360/N032016-00218 |
|
7 |
Qian J. F. ; Wu C. ; Cao Y. L. ; Ma Z. F. ; Huang Y. H. ; Ai X. P. ; Yang H. X. Adv. Energy Mater. 2018, 8, 1702619.
doi: 10.1002/aenm.201702619 |
8 | Cao B. ; Li X. Acta Phys. -Chim. Sin. 2020, 36, 1905003. |
曹斌; 李喜飞. 物理化学学报, 2020, 36, 1905003.
doi: 10.3866/PKU.WHXB201905003 |
|
9 |
Liang J. M. ; Zhang L. J. ; XiLi D. G. ; Kang J. Rare Met. 2020, 39, 1005.
doi: 10.1007/s12598-020-01453-x |
10 |
Delmas C. Adv. Energy Mater. 2018, 8, 1703137.
doi: 10.1002/aenm.201703137 |
11 |
Qian J. ; Xiong Y. ; Cao Y. ; Ai X. ; Yang H. Nano Lett. 2014, 14, 1865.
doi: 10.1021/nl404637q |
12 |
Qian J. F. ; Chen Y. ; Wu L. ; Cao Y. L. ; Ai X. P. ; Yang H. X. Chem. Commun. 2012, 48, 7070.
doi: 10.1039/c2cc32730a |
13 |
Patra J. ; Huang H. T. ; Xue W. ; Wang C. ; Helal A. S. ; Li J. ; Chang J. K. Energy Storage Mater. 2019, 16, 146.
doi: 10.1016/j.ensm.2018.04.022 |
14 |
He H. ; Sun D. ; Tang Y. ; Wang H. ; Shao M. Energy Storage Mater. 2019, 23, 233.
doi: 10.1016/j.ensm.2019.05.008 |
15 |
Holtstiege F. ; Bärmann P. ; Nölle R. ; Winter M. ; Placke T. Batteries 2018, 4, 4.
doi: 10.3390/batteries4010004 |
16 |
Aravindan V. ; Lee Y. S. ; Madhavi S. Adv. Energy Mater. 2017, 7, 1602607.
doi: 10.1002/aenm.201602607 |
17 |
Zou K. ; Deng W. ; Cai P. ; Deng X. ; Wang B. ; Liu C. ; Li J. ; Hou H. ; Zou G. ; Ji X. Adv. Funct. Mater. 2020, 31, 2005581.
doi: 10.1002/adfm.202005581 |
18 |
Dewar D. ; Glushenkov A. M. Energy Environ. Sci. 2021, 14, 1380.
doi: 10.1039/d0ee02782k |
19 |
Moeez I. ; Jung H. G. ; Lim H. D. ; Chung K. Y. ACS Appl. Mater. Interfaces 2019, 11, 41394.
doi: 10.1021/acsami.9b14381 |
20 |
Wu J. X. ; Lin C. ; Liang Q. H. ; Zhou G. D. ; Liu J. P. ; Liang G. M. ; Wang M. ; Li B. H. ; Hu L. ; Ciucci F. ; et al Infomat 2022, 4, e12288.
doi: 10.1002/inf2.12288 |
21 |
Yang Y. ; Wei W. F. Rare Met. 2020, 39, 332.
doi: 10.1007/s12598-020-01403-7 |
22 |
Cohn A. P. ; Muralidharan N. ; Carter R. ; Share K. ; Pint C. L. Nano Lett. 2017, 17, 1296.
doi: 10.1021/acs.nanolett.6b05174 |
23 |
Wang H. ; Xiao Y. ; Sun C. ; Lai C. ; Ai X. RSC Adv. 2015, 5, 106519.
doi: 10.1039/c5ra21235a |
24 |
Pi Y. ; Gan Z. ; Yan M. ; Pei C. ; Yu H. ; Ge Y. ; An Q. ; Mai L. Chem. Eng. J. 2021, 413, 127565.
doi: 10.1016/j.cej.2020.127565 |
25 |
Bublil S. ; Leifer N. ; Nanda R. ; Elias Y. ; Fayena-Greenstein M. ; Aurbach D. ; Goobes G. J. Solid State Chem. 2021, 298, 122121.
doi: 10.1016/j.jssc.2021.122121 |
26 |
Ma R. ; Fan L. ; Chen S. ; Wei Z. ; Yang Y. ; Yang H. ; Qin Y. ; Lu B. ACS Appl. Mater. Interfaces 2018, 10, 15751.
doi: 10.1021/acsami.8b03648 |
27 |
de la Llave E. ; Borgel V. ; Park K. J. ; Hwang J. Y. ; Sun Y. K. ; Hartmann P. ; Chesneau F. F. ; Aurbach D. ACS Appl. Mater. Interfaces 2016, 8, 1867.
doi: 10.1021/acsami.5b09835 |
28 |
Shen F. ; Luo W. ; Dai J. ; Yao Y. ; Zhu M. ; Hitz E. ; Tang Y. ; Chen Y. ; Sprenkle V. L. ; Li X. ; et al Adv. Energy Mater. 2016, 6, 1600377.
doi: 10.1002/aenm.201600377 |
29 |
Sun D. ; Zhu X. ; Luo B. ; Zhang Y. ; Tang Y. ; Wang H. ; Wang L. Adv. Energy Mater. 2018, 8, 1801197.
doi: 10.1002/aenm.201801197 |
30 |
Jian Z. ; Sun Y. ; Ji X. Chem. Commun. 2015, 51, 6381.
doi: 10.1039/c5cc00944h |
31 |
Mirza S. ; Song Z. ; Zhang H. ; Hussain A. ; Zhang H. ; Li X. J. Mater. Chem. A 2020, 8, 23368.
doi: 10.1039/d0ta08186h |
32 |
Tang J. ; Kye D. K. ; Pol V. G. J. Power Sources 2018, 396, 476.
doi: 10.1016/j.jpowsour.2018.06.067 |
33 |
Zhang B. ; Dugas R. ; Rousse G. ; Rozier P. ; Abakumov A. M. ; Tarascon J. M. Nat. Commun. 2016, 7, 10308.
doi: 10.1038/ncomms10308 |
34 |
Liu W. ; Chen X. ; Zhang C. ; Xu H. ; Sun X. ; Zheng Y. ; Yu Y. ; Li S. ; Huang Y. ; Li J. ACS Appl. Mater. Interfaces 2019, 11, 23207.
doi: 10.1021/acsami.9b05005 |
35 |
Li Y. ; Fitch B. Electrochem. Commun. 2011, 13, 664.
doi: 10.1016/j.elecom.2011.04.003 |
36 |
Vaughey J. T. ; Liu G. ; Zhang J. G. MRS. Bull. 2014, 39, 429.
doi: 10.1557/mrs.2014.88 |
37 |
Xiao B. ; Soto F. A. ; Gu M. ; Han K. S. ; Song J. ; Wang H. ; Engelhard M. H. ; Murugesan V. ; Mueller K. T. ; Reed D. ; et al Adv. Energy Mater. 2018, 8, 1801441.
doi: 10.1002/aenm.201801441 |
38 |
Shen Y. ; Zhang J. ; Pu Y. ; Wang H. ; Wang B. ; Qian J. ; Cao Y. ; Zhong F. ; Ai X. ; Yang H. ACS Energy Lett. 2019, 4, 1717.
doi: 10.1021/acsenergylett.9b00889 |
39 |
Wu C. ; Hu J. ; Ye L. ; Su Z. ; Fang X. ; Zhu X. ; Zhuang L. ; Ai X. ; Yang H. ; Qian J. ACS Sustain. Chem. Eng. 2021, 9, 16384.
doi: 10.1021/acssuschemeng.1c06278 |
40 |
Cao Y. ; Zhang T. ; Zhong X. ; Zhai T. ; Li H. Chem. Commun. 2019, 55, 14761.
doi: 10.1039/c9cc06581d |
41 |
Liu X. ; Tan Y. ; Liu T. ; Wang W. ; Li C. ; Lu J. ; Sun Y. Adv. Funct. Mater. 2019, 29, 1903795.
doi: 10.1002/adfm.201903795 |
42 |
Liu M. ; Zhang J. ; Guo S. ; Wang B. ; Shen Y. ; Ai X. ; Yang H. ; Qian J. ACS Appl. Mater. Interfaces 2020, 12, 17620.
doi: 10.1021/acsami.0c02230 |
43 |
Liu M. ; Yang Z. ; Shen Y. ; Guo S. ; Zhang J. ; Ai X. ; Yang H. ; Qian J. J. Mater. Chem. A 2021, 9, 5639.
doi: 10.1039/d0ta10880d |
44 |
Li F. F. ; Yu X. F. ; Tang K. ; Peng X. Y. ; Zhao Q. Q. ; Li B. J. Appl. Electrochem. 2022,
doi: 10.1007/s10800-022-01754-2 |
45 |
Sun Y. M. ; Li Y. B. ; Sun J. ; Li Y. Z. ; Pei A. ; Cui Y. Energy Storage Mater. 2017, 6, 119.
doi: 10.1016/j.ensm.2016.10.004 |
46 |
Singh G. ; Acebedo B. ; Cabanas M. C. ; Shanmukaraj D. ; Armand M. ; Rojo T. Electrochem. Commun. 2013, 37, 61.
doi: 10.1016/j.elecom.2013.10.008 |
47 |
Martinez De Ilarduya J. ; Otaegui L. ; López del Amo J. M. ; Armand M. ; Singh G. J. Power Sources 2017, 337, 197.
doi: 10.1016/j.jpowsour.2016.10.084 |
48 |
Guo Y. J. ; Niu Y. B. ; Wei Z. ; Zhang S. Y. ; Meng Q. ; Li H. ; Yin Y. X. ; Guo Y. G. ACS Appl. Mater. Interfaces 2021, 13, 2772.
doi: 10.1021/acsami.0c20870 |
49 |
Zhang Q. ; Gao X. W. ; Shi Y. ; Luo W. B. ; Li Y. ; Gu Q. F. ; Fan H. N. ; Li F. ; Liu H. K. Energy Storage Mater. 2021, 39, 54.
doi: 10.1016/j.ensm.2021.04.011 |
50 |
Sathiya M. ; Thomas J. ; Batuk D. ; Pimenta V. ; Gopalan R. ; Tarascon J. M. Chem. Mater. 2017, 29, 5948.
doi: 10.1021/acs.chemmater.7b01542 |
51 |
Jo C. H. ; Choi J. U. ; Yashiro H. ; Myung S. T. J. Mater. Chem. A 2019, 7, 3903.
doi: 10.1039/c8ta09833f |
52 |
Jeżowski P. ; Crosnier O. ; Brousse T. Open Chem. 2021, 19, 432.
doi: 10.1515/chem-2021-0040 |
53 |
Jeżowski P. ; Chojnacka A. ; Pan X. ; Béguin F. Electrochim. Acta 2021, 375, 137980.
doi: 10.1016/j.electacta.2021.137980 |
54 |
Park K. ; Yu B. C. ; Goodenough J. B. Chem. Mater. 2015, 27, 6682.
doi: 10.1021/acs.chemmater.5b02684 |
55 |
Shen B. ; Zhan R. ; Dai C. ; Li Y. ; Hu L. ; Niu Y. ; Jiang J. ; Wang Q. ; Xu M. J. Colloid Interface Sci. 2019, 553, 524.
doi: 10.1016/j.jcis.2019.06.056 |
56 |
Pan X. ; Chojnacka A. ; Jeżowski P. ; Béguin F. Electrochim. Acta 2019, 318, 471.
doi: 10.1016/j.electacta.2019.06.086 |
57 |
Liu X. ; Tan Y. ; Wang W. ; Wei P. ; Seh Z. W. ; Sun Y. ACS Appl. Mater. Interfaces 2021, 13, 27057.
doi: 10.1021/acsami.1c05144 |
58 |
Zou K. ; Cai P. ; Tian Y. ; Li J. ; Liu C. ; Zou G. ; Hou H. ; Ji X. Small Methods 2020, 4, 1900763.
doi: 10.1002/smtd.201900763 |
59 |
Marelli E. ; Marino C. ; Bolli C. ; Villevieille C. J. Power Sources 2020, 450, 227617.
doi: 10.1016/j.jpowsour.2019.227617 |
60 |
Zou K. ; Song Z. ; Gao X. ; Liu H. ; Luo Z. ; Chen J. ; Deng X. ; Chen L. ; Zou G. ; Hou H. ; et al Angew. Chem. Int. Ed. 2021, 60, 17070.
doi: 10.1002/anie.202103569 |
61 |
Zou K. ; Song Z. ; Liu H. ; Wang Y. ; Massoudi A. ; Deng W. ; Hou H. ; Zou G. ; Ji X. J. Phys. Chem. Lett. 2021, 12, 11968.
doi: 10.1021/acs.jpclett.1c03078 |
62 |
Jo J. H. ; Choi J. U. ; Park Y. J. ; Zhu J. ; Yashiro H. ; Myung S. T. ACS Appl. Mater. Interfaces 2019, 11, 5957.
doi: 10.1021/acsami.8b18488 |
63 |
Jo J. H. ; Choi J. U. ; Park Y. J. ; Ko J. K. ; Yashiro H. ; Myung S. T. Energy Storage Mater. 2020, 32, 281.
doi: 10.1016/j.ensm.2020.07.002 |
64 |
Shanmukaraj D. ; Kretschmer K. ; Sahu T. ; Bao W. ; Rojo T. ; Wang G. ; Armand M. ChemSusChem 2018, 11, 3286.
doi: 10.1002/cssc.201801099 |
65 |
Martínez De Ilarduya J. ; Otaegui L. ; Galcerán M. ; Acebo L. ; Shanmukaraj D. ; Rojo T. ; Armand M. Electrochim. Acta 2019, 321, 134693.
doi: 10.1016/j.electacta.2019.134693 |
66 |
Shen X. ; Zhao J. ; Li Y. ; Sun X. ; Yang C. ; Liu H. ; Hu Y. S. ACS Appl. Energy Mater. 2019, 2, 7474.
doi: 10.1021/acsaem.9b01458 |
67 |
Pan X. ; Chojnacka A. ; Béguin F. Energy Storage Mater. 2021, 40, 22.
doi: 10.1016/j.ensm.2021.04.048 |
68 |
Niu Y. B. ; Guo Y. J. ; Yin Y. X. ; Zhang S. Y. ; Wang T. ; Wang P. ; Xin S. ; Guo Y. G. Adv. Mater. 2020, 32, e2001419.
doi: 10.1002/adma.202001419 |
69 |
Fernandez-Ropero A. J. ; Zarrabeitia M. ; Baraldi G. ; Echeverria M. ; Rojo T. ; Armand M. ; Shanmukaraj D. ACS Appl. Mater. Interfaces 2021, 13, 11814.
doi: 10.1021/acsami.0c20542 |
70 | Chen J. ; Chen W. L. ; Zhang X. ; Zhou Y. W. ; Zhang W. X. Energy Storage Sci. Technol. 2022, 11, 3487. |
陈杰; 陈伟伦; 张旭; 周晏玮; 张五星. 储能科学与技术, 2022, 11, 3487.
doi: 10.19799/j.cnki.2095-4239.2022.0332 |
|
71 |
Song Z. ; Zou K. ; Xiao X. ; Deng X. ; Li S. ; Hou H. ; Lou X. ; Zou G. ; Ji X. Chem 2021, 27, 16082.
doi: 10.1002/chem.202102433 |
72 |
Zhang T. ; Wang R. ; He B. ; Jin J. ; Gong Y. ; Wang H. Electrochem. Commun. 2021, 129, 107090.
doi: 10.1016/j.elecom.2021.107090 |
73 |
Liu X. ; Liu T. ; Wang R. ; Cai Z. ; Wang W. ; Yuan Y. ; Shahbazian-Yassar R. ; Li X. ; Wang S. ; Hu E. ; et al ACS Energy Lett. 2020, 6, 320.
doi: 10.1021/acsenergylett.0c02487 |
74 |
Feng J. ; Ci L. ; Xiong S. RSC Adv. 2015, 5, 96649.
doi: 10.1039/C5RA19988C |
75 | Nie P ; Xu G. Y. ; Jiang J. M. ; Wang J. ; Fu R. R. ; Fang S. ; Dou H. ; Zhang X. G. Energy Storage Sci. Technol. 2017, 6, 889. |
聂平; 徐桂银; 蒋江民; 王江; 付瑞瑞; 方姗; 窦辉; 张校刚. 储能科学与技术, 2017, 6, 889.
doi: 10.12028/j.issn.2095-4239.2017.0088 |
|
76 |
Jin L. ; Shen C. ; Shellikeri A. ; Wu Q. ; Zheng J. ; Andrei P. ; Zhang J. G. ; Zheng J. P. Energy Environ. Sci. 2020, 13, 2341.
doi: 10.1039/D0EE00807A |
[1] | Yao Chen, Haoyang Dong, Yuanyuan Li, Jinping Liu. Recent Advances in 3D Array Anode Materials for Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2007075-. |
[2] | Haixia Li,Jiwei Wang,Lifang Jiao,Zhanliang Tao,Jing Liang. Spherical Nano-SnSb/C Composite as a High-Performance Anode Material for Sodium Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1904017-. |
[3] | Wenli Pan,Wenhao Guan,Yinzhu Jiang. Research Advances in Polyanion-Type Cathodes for Sodium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905017-. |
[4] | Guifang Zeng,Yining Liu,Chunyan Gu,Kai Zhang,Yongling An,Chuanliang Wei,Jinkui Feng,Jiangfeng Ni. A Nonflammable Fluorinated Carbonate Electrolyte for Sodium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905006-. |
[5] | Laiqiang Xu,Jiayang Li,Cheng Liu,Guoqiang Zou,Hongshuai Hou,Xiaobo Ji. Research Progress in Inorganic Solid-State Electrolytes for Sodium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905013-. |
[6] | Chao Li, Ming Shen, Bingwen Hu. Solid-State NMR and EPR Methods for Metal Ion Battery Research [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1902019-. |
[7] | Hui LI,Shuangyu LIU,Huiming WANG,Bo WANG,Peng SHENG,Li XU,Guangyao ZHAO,Huitao BAI,Xin CHEN,Yuliang CAO,Zhongxue CHEN. Improved Sodium Storage Performance of Na0.44MnO2 Cathode at a High Temperature by Al2O3 Coating [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1357-1364. |
[8] | Ze YANG,Wang ZHANG,Yue SHEN,Li-Xia YUAN,Yun-Hui HUANG. Next-Generation Energy Storage Technologies and Their Key Electrode Materials [J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1062-1071. |
|