Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (7): 2211034.doi: 10.3866/PKU.WHXB202211034
• REVIEW • Previous Articles Next Articles
Linfeng Peng1, Chuang Yu1,*(), Chaochao Wei1, Cong Liao1, Shuai Chen1, Long Zhang2, Shijie Cheng1, Jia Xie1,*(
)
Received:
2022-11-20
Accepted:
2022-12-23
Published:
2022-12-23
Contact:
Chuang Yu, Jia Xie
E-mail:cyu2020@hust.edu.cn;xiejia@hust.edu.cn
Supported by:
Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes[J]. Acta Phys. -Chim. Sin. 2023, 39(7), 2211034. doi: 10.3866/PKU.WHXB202211034
Table 1
Advantages and disadvantages of the oxide, halide, polymer, and sulfide solid electrolytes."
SEs | Advantages | Disadvantages |
Oxide | Wide electrochemical window; Good air stability | High interfacial impedance; High sintering temperature |
Halide | High oxidation stability; Simple synthesis process | Poor reduction stability; Hygroscopicity |
Polymer | Processibility; Flexibility | Low ionic conductivity; Poor thermal stability |
Sulfide | High ionic conductivity; Low interfacial impedance | Poor air stability; Narrow electrochemical window |
Table 2
The typical sulfide-based electrolyte materials and the room-temperature ionic conductivity."
Types | SEs | Ionic conductivity/(S∙cm−1) | Test method | Ref. |
Glass | 60Li2S∙40P2S5 | 3.2 × 10−6 | Cold-press | |
67Li2S·33P2S5 | 3.8 × 10−5 | Cold-press | ||
70Li2S·30P2S5 | 3.7 × 10−5 | Cold-press | ||
75Li2S·25P2S5 | 2.8 × 10−4 | Cold-press | ||
80Li2S·20P2S5 | 1.3 × 10−4 | Cold-press | ||
Glass-ceramic | Li7P3S11 | 3.2 × 10−3 | Cold-press | |
Li7P3S11 | 1.7 × 10−2 | Hot-press | ||
Li7P2.9S10.85Mo0.01 | 4.8 × 10−3 | Cold-press | ||
Li7P2.9Mn0.1S10.7I0.3 | 5.6 × 10−3 | Cold-press | ||
β-Li3PS4 | 1.6 × 10−4 | Cold-press | ||
Li3.25P0.95S4 | 1.3 × 10−3 | Cold-press | ||
Li7P2S8I | 6 × 10−4 | Cold-press | ||
Crystal | Li10GeP2S12 | 1.2 × 10−2 | Hot-press | |
Li10SnP2S12 | 4 × 10−3 | Cold-press | ||
Li10SiP2S12 | 2.3 × 10−3 | Cold-press | ||
Li10Si0.3Sn0.7P2S12 | 8 × 10−3 | Hot-press | ||
Li9.54Si1.74P1.44S11.7Cl0.3 | 2.5 × 10−2 | Hot-press | ||
Li3.25Ge0.25P0.75S4 | 2.2 × 10−3 | Cold-press | ||
Li6PS5Cl | 4.9 × 10−3 | Cold-press | ||
Li6PS5Br | 2.6 × 10−3 | Cold-press | ||
Li6PS5I | 4.6 × 10−7 | Cold-press | ||
Li5.5PS4.5Cl1.5 | 9.4 × 10−3 | Cold-press | ||
Li5.5PS4.5Cl1.5 | 1.2 × 10−2 | Hot-press | ||
Li5.3PS4.3Cl1.7 | 1.7 × 10−2 | Hot-press | ||
Li5.3PS4.3Br1.7 | 1.1 × 10−2 | Hot-press | ||
Li5.3PS4.3ClBr0.7 | 2.4 × 10−2 | Hot-press | ||
Li6.6P0.4Ge0.6S5I | 5.4 × 10−3 | Cold-press | ||
Li6.6P0.4Ge0.6S5I | 1.8 × 10−2 | Hot-press | ||
Li6.6Sb0.4Si0.6S5I | 1.5 × 10−2 | Cold-press | ||
Li6.6Sb0.4Si0.6S5I | 2.4 × 10−2 | Hot-press | ||
Li6.5Sb0.5Ge0.5S5I | 1.6 × 10−2 | Cold-press |
Fig 1
(a) Crystal structure of lithium argyrodite Li6PS5X (X = Cl, Br, I); (b) The intra-cage and inter-cage lithium diffusion pathways in Li6PS5X (X = Cl, Br, I); (c) The structure of lithium argyrodite viewed along the c-axis 82; (d) 31P MAS NMR spectra of Li6PS5I, Li6PS5Br and Li6PS5Cl recorded at 202.4 MHz and a spinning frequency of 25 kHz 83; The spectra have been referenced to 85.0% H3PO4 and were recorded at an ambient bearing gas temperature. (e) 6Li MAS NMR spectra of Li6PS5Cl, Li6PS5Br and Li6PS5I recorded at 73.6 MHz and a spinning speed of 25 kHz 83; All spectra have been referenced to solid LiCH3COO. Values given in ppm indicate the isotropic chemical shifts. (f) With decreasing lattice stiffness (i.e., decreasing speed of sound), the activation energy and the Pre-exponential factor σ0 decrease. The increase in the iodine-containing samples can be attributed to the lack of anion disorder 84. (a–c) Adapted with permission from Ref. 82, Copyright 2019, American Chemical Society; (d, e) Adapted with permission from Ref. 83, Copyright 2019, Royal Society of Chemistry; (f) Adapted with permission from Ref. 84, Copyright 2017, American Chemical Society."
Fig 2
(a) Li-ion density in Li6PS5Cl argyrodite unit cell during MD simulations at 450 K 85; (b) The activation energy values of different argyrodite electrolytes obtained from AC impedance at different temperatures 90; (c) 7Li spin-lattice relaxation rates of Li6PS5Br (left) and Li6PS5Cl (right) plotted as a function of reciprocal temperature, measured at three different field strengths (9.4, 14.1 T, and 20 T); (d) 2D 6Li-6Li exchange NMR probing lithium ion transport from the Li6PS5Cl to Li6PS5Br electrolyte at different temperatures 91; (e) 1D 7Li-7Li exchange NMR experiment probing lithium ion transport from the Li6PS5Cl electrolyte to the Li2S cathode at room temperature 87. (a) Adapted with permission from Ref. 85, Copyright 2016, American Chemical Society; (b) Adapted with permission from Ref. 90, Copyright 2019, Elsevier Inc.; (c, d) Adapted with permission from Ref. 91, Copyright 2019, American Chemical Society; (e) Adapted with permission from Ref. 87, Copyright 2016, American Chemical Society."
Table 3
Comparison of different synthesis methods."
Synthesis methods | Homogeneity | Process | Ionic conductivity | Environment |
Mechanical milling | Poor | Complex | < 10−3 S∙cm−1 | Friendly |
Mechanical milling with post annealing | Poor | Complex | > 10−3 S∙cm−1 | Friendly |
Solid-state sintering | Poor | Simple | > 10−3 S∙cm−1 | Friendly |
Liquid-phase route | Good | Complex | < 10−4 S∙cm−1 | Unfriendly |
Fig 3
(a) The Crystal structure of Li5.5PS4.5Cl1.5 51; (b) the schematic diagram of equivalent doping of Li+ sites with Ca2+ to produce vacancies to improve Li+ diffusion and conductivity 117; (c) calculated RT ionic conductivities (σ300 K) and activation energies in table for Li6.25PS5.25(BH4)0.75, Li6POS4(SH), Li6PS5(BH4), and Li6.25PS5.25Cl0.75 121. (a) Adapted with permission from Ref. 51, Copyright 2019, John Wiley and Sons; (b) Adapted with permission from Ref. 117, Copyright 2020, American Chemical Society; (c) Adapted with permission from Ref. 121, Copyright 2022, Springer Nature."
Fig 4
(a) Jumps distance between the lithium positions (48h-24g-48h), intra-cage jumps (48h-48h), and inter-cage jumps in Li5.4Al0.2PS5Br 77; (b) increasing lattice parameters and MS4 (M = Si1−xPx) polyhedral volumes of Li6PS5Br due to the larger ionic radius of Si4+ substitution 123; (c) energy differences and the ionic conductivities between the HT and LT phases of cation substituted Li7PS6 76; (d) lattice parameters of the solid solutions Li6+xP1−xGexS5I vs. nominal Ge content; (e) while Li6PS5I is known to exhibit no site disorder, the substitution with Ge leads to a growing S2−/I− disorder when the dopant of Ge4+ reaches 20.0%; (f) activation barrier and ionic conductivity of Li6+xP1−xGexS5I 55. (a) Adapted with permission from Ref. 77, Copyright 2019, Elsevier Inc.; (b) Adapted with permission from Ref. 123, Copyright 2018, Royal Society of Chemistry; (c) Adapted with permission from Ref. 76, Copyright 2019, Royal Society of Chemistry; (d–f) Adapted with permission from Ref. 55, Copyright 2018, American Chemical Society."
Fig 5
(a) XRD patterns of Li6PS5Br and Li5.7Zn0.15PS4.85O0.15Br before and after exposing to air for 10 min with humidity of ∼10.0% 126; (b) amount of H2S gas generated from pelletized Li5.5PS4.5−xOxCl1.5 (x = 0, 0.075, 0.175, 0.25) solid electrolytes, the humidity is 20.0% 127; (c) amount of H2S generated from Li6PS5I and Li6+xSb1−xGexS5I (x = 0, 0.5, 0.75) as a function of exposure time with 15.0% air humidity; (d) in situ Raman spectra of Li6PS5I, Li6SbS5I, and Li6.5Sb0.5Ge0.5S5I after exposure to the air; (e) serial photographs of F-POS@LATP/Li6PS5Cl/F-POS@LATP membrane and bare Li6PS5Cl membrane exposed in the extreme condition with continuous water-drop attack 132. (a) Adapted with permission from Ref. 126, Copyright 2019, American Chemical Society; (b) Adapted with permission from Ref. 127, Copyright 2022, American Chemical Society; (c, d) Adapted from Ref. 57, Copyright 2021, American Chemical Society; (e) Adapted from Ref. 132, Copyright 2021, John Wiley and Sons."
Fig 6
(a) Schematic illustration for the fabrication procedure of the interpenetrating LPSCl@P(VDF-TrFE) via an electrospinning-infiltration hot-pressing method; (b) long-term cycling performance of NCM811/Li6PS5Cl@(P(VDF-TrFE))/Li-In cell 137. (a, b) Adapted with permission from Ref. 135, Copyright 2022, John Wiley and Sons."
Fig 7
(a) Arrhenius plots of the conductivity values for Li6+xSixSb1−xS5I (x = 0–0.7) in the temperature range from 30 to 60 ℃ 56; (b) iso-surfaces of the Li-ion probability densities (dark green) for Li6.5Sb0.5Ge0.5S5I, the blue and orange tetrahedra correspond to SbS4 and GeS4, respectively 57; (c) XRD powder diffraction patterns of Li22SiP2S18 and Li21P3S18 138; (d) synchrotron-X-ray Rietveld-refined patterns for HT-Li6.15M1.5S6 (Li4.1Al0.1Si0.9S4) 139; (e) Rietveld refinement patterns of the neutron diffraction data for Li6.96Sn1.55Si1.71P0.8S12 140. (a) Adapted with permission from Ref. 56, Copyright 2019, American Chemical Society; (b) Adapted from Ref. 57, Copyright 2021, American Chemical Society; (c) Adapted with permission from Ref. 138, Copyright 2017, Elsevier Inc.; (d) Adapted with permission from Ref. 139, Copyright 2019, Elsevier Inc.; (e) Adapted with permission from Ref. 140, Copyright 2020, Elsevier Inc."
Fig 8
(a) Li 1s, S 2p and P 2p of the composite electrode of LCO/Li6PS5Cl/Li-In at different cycling stage 143; (b) TOF-SIMS measurements of cathodes before and after cycling 144; (c) redox reaction path of S and P during battery cycle 147; (d) schematic illustrations of interfacial evolution during the charge-discharge processes based on different vibration states of P―S bond in PS43− at NCM/Li6PS5Cl interface 150. (a) Adapted from Ref. 143, Copyright 2017, American Chemical Society; (b) Adapted from Ref. 144, Copyright 2019, American Chemical Society; (c) Adapted with permission from Ref. 147, Copyright 2021, John Wiley and Sons; (d) Adapted with permission from Ref. 150, Copyright 2020, John Wiley and Sons."
Fig 9
(a) Schematic diagram and cross-section regions SEM images of the multilayer electrolytes 151; (b) cycling performance of Li-Li asymmetrical cell with LPSCl1.5-LPSCl1.0-LPSCl1.5 multilayer electrolyte at 10 mA cm−2 current density 149; (c) cycling performance of Li/Li5.7PS4.7Cl1.3/LNO@NCM622 Li-metal solid-state battery; (d) cryogenic STEM-HAADF and EDS images of Li5.4PS4.4Cl1.6 powder 152. (a) Adapted from Ref. 151, Copyright 2021, Springer Nature; (b) Adapted with permission from Ref. 149, Copyright 2022, Elsevier Inc.; (c, d) Adapted with permission from Ref. 152, Copyright 2022, Springer Nature."
Fig 10
(a) Schematic diagram, (b) cycling stability, and (c) rate capability of the Li/LPSI-20Sn//LGPS// LCO@LNO//LGPS 131; (d) schematic diagram of Li6PS5Cl/Li interphase 163; (e) Schematic diagram of F-rich interface 164; (f) schematic illustration for the advantages of the ZnO-doped Li6PS5Br electrolyte 126. (a–c) Adapted with permission from Ref. 131, Copyright 2020, John Wiley and Sons; (d) Adapted with permission from Ref. 163, Copyright 2021, John Wiley and Sons; (e) Adapted with permission from Ref. 164, Copyright 2020, American Chemical Society; (f) Adapted with permission from Ref. 126, Copyright 2019, American Chemical Society."
Fig 11
(a) Schematic illustration of the formation of carbonate-rich and carbonate-poor Li2ZrO3-coated NCM622 CAMs 169; (b) a schematic diagram of the In//LPSCl//LZO@LCO/LPSCl all-solid-state battery and the proposed mechanism; (c) long-term cycling stability of all-solid-state batteries with bare LCO, ZrOx@LCO, and LZO@LCO cathodes 176; (d) schematics of NMC/Li6PS5Cl interface with optimized LiOH coating 177. (a) Adapted with permission from Ref. 169, Copyright 2020, American Chemical Society; (b, c) Adapted with permission from Ref. 176, Copyright 2020, Elsevier Inc.; (d) Adapted with permission from Ref. 177, Copyright 2021, Elsevier Inc."
Fig 12
(a) Schematic illustration and (b) the electrochemical performance of the NCM523@Li3InCl6/Li6.5Sb0.5Ge0.5S5I/ Li-In ASSB 57; (c) initial charge/discharge curves of bulk-type NCA/SE/In-Li ASSB with LYC, LYB, or LPS electrolyte 181; (d) cross-sectional SEM-BSE images of the electrodes with LYC or LPSX electrolyte before and after cycling; (e) cycling performances of NCA (LiNi0.88Co0.11Al0.01O2) with halide (LYC (Li3YCl6)) or sulfide (LPSX (Li6PS5Cl0.5Br0.5)) SEs in all-solid-state half cells at 0.5C under 30 ℃ 182. (a, b) Adapted from Ref. 57, Copyright 2021, American Chemical Society; (c) Adapted from Ref. 181, Copyright 2018, John Wiley and Sons; (d, e) Adapted with permission from Ref. 182, Copyright 2021, John Wiley and Sons."
Fig 13
(a) Schematic illustration of in situ sustained release effect of poly (propylene carbonate) between Li6PS5Cl (LPSC) and Li anode; (b) cycling performance of LFP/LPSC/PPC@Li ASSB 185; (c) the long-term cycling performance of NCM622/Li5.5PS4.5Cl1.5/In-Li ASSB at 10C-rate 98; (d) schematic diagram of mechanical prelithiation of Al foil to form the double-layered MP-Al foil; (e) voltage profiles of symmetrical cells based on MP-Al-H foil electrodes and LPSC electrolyte at room temperature; (f) cycle performances of MP-Al-H||LPSC||LCO cells at RT 193. (a, b) Adapted with permission from Ref. 185, Copyright 2020, John Wiley and Sons; (c) Adapted with permission from Ref. 98, Copyright 2022, Elsevier Inc.; (d–f) Adapted with permission from Ref. 193, Copyright 2022, John Wiley and Sons."
Fig 14
(a) Schematic illustration and (b) cycling performance of ASSB with Si anode 197; (c) Schematic illustration and (d) cycling performance of ASSB with Ag-C anode 200. (a, b) Adapted from Ref. 197, Copyright 2021, American Association for the Advancement of Science; (c, d) Adapted from Ref. 200, Copyright 2020, Springer Nature."
Fig 15
(a) Schematic illustrating fabrication by injection of liquefied sulfide SEs into ASSB assemblies and corresponding cycling performance 109; (b) estimated gravimetric and volumetric energy densities of LiCoO2//Li ASLBs as the factor of the thickness of SE layers 203; (c) schematic illustration of the ultrathin Li5.4PS4.4Cl1.6 membrane fabrication; (d) cyclic performance of the NCM523/Li ASSLB with a high NCM mass loading of 11.6 mg∙cm−2 at 0.05C 204. (a) Adapted from Ref. 109, Copyright 2020, American Chemical Society; (b) Adapted with permission from Ref. 203, Copyright 2021, John Wiley and Sons; (c, d) Adapted with permission from Ref. 204, Copyright 2021, American Chemical Society."
1 |
Zeng, X.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K.Adv. Energy Mater.2019,9,1900161.
doi: 10.1002/aenm.201900161 |
2 |
Hesse, H.; Schimpe, M.; Kucevic, D.; Jossen, A.Energies2017,10,122107.
doi: 10.3390/en10122107 |
3 |
Armand, M.; Tarascon, J.-M.Nature2008,451,652.
doi: 10.1038/451652a |
4 |
Manthiram, A.ACS Cent. Sci.2017,3,1063.
doi: 10.1021/acscentsci.7b00288 |
5 |
Li, M.; Lu, J.; Chen, Z.; Amine, K.Adv. Mater.2018,30,e1800561.
doi: 10.1002/adma.201800561 |
6 |
Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al.Adv. Mater.2021,121,1623.
doi: 10.1021/acs.chemrev.0c00767 |
7 |
Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X.Energy Storage Mater.2018,10,246.
doi: 10.1016/j.ensm.2017.05.013 |
8 |
Schnell, J.; Knorzer, H.; Imbsweiler, A. J.; Reinhart, G.Energy Technol.-Ger.2020,8,1901237.
doi: 10.1002/ente.201901237 |
9 |
Chen, J.; Wu, J.; Wang, X.; Zhou, A. A.; Yang, Z.Energy Storage Mater.2021,35,70.
doi: 10.1016/j.ensm.2020.11.017 |
10 |
Riphaus, N.; Stiaszny, B.; Beyer, H.; Indris, S.; Gasteiger, H. A.; Sedlmaier, S. J.J. Electrochem. Soc.2019,166,A975.
doi: 10.1149/2.0351906jes |
11 | Wang, H.; An, H.; Shan, H.; Zhao, L.; Wang, J.Acta Phys.-Chim. Sin.2021,37,2007070. |
王晗, 安汉文, 单红梅, 赵雷, 王家钧物理化学学报,2021,37,2007070.
doi: 10.3866/PKU.WHXB202007070 |
|
12 | Liao, C.; Yu, C.; Peng, L.; Li, L.; Cheng, S.; Xie, J.Chin. J. Inorg. Chem.2022,38,977. |
廖聪, 余创, 彭林峰, 李莉萍, 程时杰, 谢佳无机化学学报,2022,38,977.
doi: 10.11862/CJIC.2022.122 |
|
13 | Wei, C.; Yu, C.; Wu, Z.; Peng, L.; Cheng, S.; Xie, J.Energy Storage Sci. Technol.2022,11,1368. |
魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳储能科学与技术,2022,11,1368.
doi: 10.19799/j.cnki.2095-4239.2021.0513 |
|
14 |
Manthiram, A.; Yu, X.; Wang, S.Nat. Rev. Mater.2017,2,16103.
doi: 10.1038/natrevmats.2016.103 |
15 |
Zhang, Z.; Shao, Y.; Lotsch, B.; Hu, Y.-S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C.-W.; Maier, J.; Armand, M.; et al.Energy Environ. Sci.2018,11,1945.
doi: 10.1039/c8ee01053f |
16 |
Thangadurai, V.; Narayanan, S.; Pinzaru, D.Chem. Soc. Rev.2014,43,4714.
doi: 10.1039/c4cs00020j |
17 |
Zhao, N.; Khokhar, W.; Bi, Z. J.; Shi, C.; Guo, X. X.; Fan, L. Z.; Nan, C. W.Joule2019,3,1190.
doi: 10.1016/j.joule.2019.03.019 |
18 |
Liang, J.; Li, X.; Adair, K. R.; Sun, X.Acc. Chem. Res.2021,54,1023.
doi: 10.1021/acs.accounts.0c00762 |
19 |
Li, X.; Liang, J.; Yang, X.; Adair, K. R.; Wang, C.; Zhao, F.; Sun, X.Energy Environ. Sci.2020,13,1429.
doi: 10.1039/c9ee03828k |
20 |
Chen, S.; Yu, C.; Chen, S.; Peng, L.; Liao, C.; Wei, C.; Wu, Z.; Cheng, S.; Xie, J.Chin. Chem. Lett.2022,33,4635.
doi: 10.1016/j.cclet.2021.12.048 |
21 |
Chen, S.; Yu, C.; Wei, C.; Peng, L.; Cheng, S.; Xie, J.Chin. Chem. Lett.2022,
doi: 10.1016/j.cclet.2022.05.058 |
22 |
Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G.Adv. Mater.2019,31,e1902029.
doi: 10.1002/adma.201902029 |
23 |
Zhang, Q.; Liu, K.; Ding, F.; Liu, X.Nano Res.2017,10,4139.
doi: 10.1007/s12274-017-1763-4 |
24 |
Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; et al.Chem. Rev.2016,116,140.
doi: 10.1021/acs.chemrev.5b00563 |
25 |
Zhao, Q.; Stalin, S.; Zhao, C.-Z.; Archer, L. A.Nat. Rev. Mater.2020,5,229.
doi: 10.1038/s41578-019-0165-5 |
26 |
Kim, K. J.; Balaish, M.; Wadaguchi, M.; Kong, L.; Rupp, J. L. M.Adv. Energy Mater.2020,11,2002689.
doi: 10.1002/aenm.202002689 |
27 |
Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S.Adv. Mater.2020,33,2000751.
doi: 10.1002/adma.202000751 |
28 |
Zhang, Q.; Cao, D. X.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. L.Adv. Mater.2019,31,1901131.
doi: 10.1002/adma.201901131 |
29 |
Yuan, H.; Liu, J.; Lu, Y.; Zhao, C. Z.; Cheng, X. B.; Nan, H. X.; Liu, Q. B.; Huang, J. Q.; Zhang, Q.Chem. Res. Chin. Univ.2020,36,377.
doi: 10.1007/s40242-020-0103-5 |
30 |
Umeshbabu, E.; Zheng, B.; Yang, Y.Electrochem. Energy Rep.2019,2,199.
doi: 10.1007/s41918-019-00029-3 |
31 |
Wu, J. H.; Shen, L.; Zhang, Z. H.; Liu, G. Z.; Wang, Z. Y.; Zhou, D.; Wan, H. L.; Xu, X. X.; Yao, X. Y.Electrochem. Energy Rep.2020,4,101.
doi: 10.1007/s41918-020-00081-4 |
32 |
Wu, Z.; Chen, S.; Yu, C.; Wei, C.; Peng, L.; Wang, H.-L.; Cheng, S.; Xie, J.Chem. Eng. J.2022,442,136346.
doi: 10.1016/j.cej.2022.136346 |
33 |
Zhang, Z. R.; Zhang, J. X.; Sun, Y. L.; Jia, H. H.; Peng, L. F.; Zhang, Y. Y.; Xie, J.J. Energy Chem.2020,41,171.
doi: 10.1016/j.jechem.2019.05.015 |
34 | Wei, C.; Liu, X.; Yu, C.; Chen, S.; Chen, S.; Cheng, S.; Xie, J. Chin. Chem. Lett. 2022, Accepted. doi: 10.1016/j.cclet.2022.107859 |
35 |
Dietrich, C.; Weber, D. A.; Sedlmaier, S. J.; Indris, S.; Culver, S. P.; Walter, D.; Janek, J.; Zeier, W. G.J. Mater. Chem. A2017,5,18111.
doi: 10.1039/c7ta06067j |
36 |
Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsumisago, M.Solid State Ion.2007,178,1163.
doi: 10.1016/j.ssi.2007.05.020 |
37 |
Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M.Energy Environ. Sci.2014,7,627.
doi: 10.1039/c3ee41655k |
38 |
Xu, R.., Xia, X.; Wang, X.; Xia, Y.; Tu, J.J. Mater. Chem. A2017,5,2829.
doi: 10.1039/c6ta10142a |
39 |
Xu, R.; Xia, X.; Li, S.; Zhang, S.; Wang, X.; Tu, J.J. Mater. Chem. A2017,5,6310.
doi: 10.1039/c7ta01147d |
40 |
Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C.J. Am. Chem. Soc.2013,135,975.
doi: 10.1021/ja3110895 |
41 |
Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M.Solid State Ion.2006,177,2721.
doi: 10.1016/j.ssi.2006.04.017 |
42 |
Rangasamy, E.; Liu, Z.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, H.; Greenbaum, S.; Liang, C.J. Am. Chem. Soc.2015,137,1384.
doi: 10.1021/ja508723m |
43 |
Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al.Nat. Mater.2011,10,682.
doi: 10.1038/nmat3066 |
44 |
Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Gunne, J.; Dehnen, S.; Roling, B.J. Am. Chem. Soc.2013,135,15694.
doi: 10.1021/ja407393y |
45 |
Whiteley, J. M.; Woo, J. H.; Hu, E. Y.; Nam, K. W.; Lee, S. H.J. Electrochem. Soc.2014,161,A1812.
doi: 10.1149/2.0501412jes |
46 |
Bron, P.; Dehnen, S.; Roling, B.J. Power Sources2016,329,530.
doi: 10.1016/j.jpowsour.2016.08.115 |
47 |
Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R.Nat. Energy2016,1,16030.
doi: 10.1038/Nenergy.2016.30 |
48 |
Yu, C.; Ganapathy, S.; Hageman, J.; van Eijck, L.; van Eck, E. R. H.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E. M.; Wagemaker, M.ACS Appl. Mater. Interfaces2018,10,33296.
doi: 10.1021/acsami.8b07476 |
49 |
Yu, C.; Hageman, J.; Ganapathy, S.; van Eijck, L.; Zhang, L.; Adair, K. R.; Sun, X.; Wagemaker, M.J. Mater. Chem. A2019,7,10412.
doi: 10.1039/c9ta02126d |
50 |
Rao, R. P.; Adams, S.Phys. Status Solidi A2011,208,1804.
doi: 10.1002/pssa.201001117 |
51 |
Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F.Angew. Chem. Int. Ed.2019,58,8681.
doi: 10.1002/anie.201814222 |
52 |
Feng, X.; Chien, P.-H.; Wang, Y.; Patel, S.; Wang, P.; Liu, H.; Immediato-Scuotto, M.; Hu, Y.-Y.Energy Storage Mater.2020,30,67.
doi: 10.1016/j.ensm.2020.04.042 |
53 |
Wang, P.; Liu, H.; Patel, S.; Feng, X.; Chien, P.-H.; Wang, Y.; Hu, Y.-Y.Chem. Mater.2020,32,3833.
doi: 10.1021/acs.chemmater.9b05331 |
54 |
Patel, S. V.; Banerjee, S.; Liu, H.; Wang, P.; Chien, P.-H.; Feng, X.; Liu, J.; Ong, S. P.; Hu, Y.-Y.Chem. Mater.2021,33,1435.
doi: 10.1021/acs.chemmater.0c04650 |
55 |
Kraft, M. A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S. P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B. J.; Zeier, W. G.J. Am. Chem. Soc.2018,140,16330.
doi: 10.1021/jacs.8b10282 |
56 |
Zhou, L.; Assoud, A.; Zhang, Q.; Wu, X.; Nazar, L. F.J. Am. Chem. Soc.2019,141,19002.
doi: 10.1021/jacs.9b08357 |
57 |
Lee, Y.; Jeong, J.; Lee, H. J.; Kim, M.; Han, D.; Kim, H.; Yuk, J. M.; Nam, K.-W.; Chung, K. Y.; Jung, H.-G.; et al.ACS Energy Lett.2021,171,02428.
doi: 10.1021/acsenergylett.1c02428 |
58 |
Ribes, M.; Barrau, B.; Souquet, J. L.J. Non-Cryst. Solids1980,38,271.
doi: 10.1016/0022-3093(80)90430-5 |
59 |
Wada, H.; Menetrier, M.; Levasseur, A.; Hagenmuller, P.Mater. Res. Bull.1983,18,189.
doi: 10.1016/0025-5408(83)90080-6 |
60 |
Kennedy, J. H.; Zhang, Z.J. Electrochem. Soc.1988,135,859.
doi: 10.1149/1.2095811 |
61 |
Zhang, Z.; Kennedy, J.Solid State Ion.1990,38,217.
doi: 10.1016/0167-2738(90)90424-p |
62 |
Morimoto, H.; Yamashita, H.; Tatsumisago, M.; Minami, T.J. Am. Ceram. Soc.1999,82,1352.
doi: 10.1111/j.1151-2916.1999.tb01923.x |
63 |
Kim, Y.; Saienga, J.; Martin, S. W.J. Phys. Chem. B2006,110,16318.
doi: 10.1021/jp060670c |
64 |
Akitoshi, H.; Shigenori, H.; Hideyuki, M.; Masahiro, T.; Tsutomu, M.J. Am. Ceram. Soc.2004,84,477.
doi: 10.1111/j.1151-2916.2001.tb00685.x |
65 |
Mercier, R.; Jean, M.; Fahys, B.; Robert, G.; Douglade, J.Acta Cryst.1982,B38,1887.
doi: 10.0567/cryst.82/071887-04 |
66 |
Dietrich, C.; Weber, D. A.; Culver, S.; Senyshyn, A.; Sedlmaier, S. J.; Indris, S.; Janek, J.; Zeier, W. G.Inorg. Chem.2017,56,6681.
doi: 10.1021/acs.inorgchem.7b00751 |
67 |
Mercier, R.; Malugani, J. P.; Fahys, B.; Douglande, J.; Robert, G.J. Solid State Chem.1982,43,151.
doi: 10.1016/0022-4596(82)90224-9 |
68 |
Deiseroth, H.-J.; Kong, S.-T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß T.; Schlosser, M.Angew. Chem. Int. Ed.2008,120,767.
doi: 10.1002/ange.200703900 |
69 |
Yu, C.; Zhao, F.; Luo, J.; Zhang, L.; Sun, X.Nano Energy2021,83,105858.
doi: 10.1016/j.nanoen.2021.105858 |
70 |
Bai, X.; Duan, Y.; Zhuang, W.; Yang, R.; Wang, J.J. Mater. Chem. A2020,8,25663.
doi: 10.1039/d0ta08472g |
71 |
Zhang, Z.; Yao, J.; Yu, C.; Xu, R.; Ma, J.; Wei, C.; Peng, L.; Zhang, L.; Cheng, S.; Xie, J.J. Mater. Chem. A2022,10,22155.
doi: 10.1039/d2ta03168j |
72 |
Liao, C.; Yu, C.; Miao, X.; Chen, S.; Peng, L.; Wei, C.; Wu, Z.; Cheng, S.; Xie, J.Materialia2022,26,101603.
doi: 10.1016/j.mtla.2022.101603 |
73 |
He, Z.-Y.; Zhang, Z.-Q.; Yu, M.; Yu, C.; Ren, H.-T.; Zhang, J.-Z.; Peng, L.-F.; Zhang, L.; Cheng, S.-J.; Xie, J.Rare Metals2021,41,798.
doi: 10.1007/s12598-021-01827-9 |
74 |
Zhang, Z.; Yu, C.; Xu, R.; Peng, L.; Ren, H.; Zhang, J.; Zhang, L.; Cheng, S.; Xie, J.Scr. Mater.2022,210,114475.
doi: 10.1016/j.scriptamat.2021.114475 |
75 |
Liao, C.; Yu, C.; Peng, L.; Miao, X.; Chen, S.; Zhang, Z.; Cheng, S.; Xie, J.Solid State Ion.2022,377,115871.
doi: 10.1016/j.ssi.2022.115871 |
76 |
Zhang, Z.; Sun, Y.; Duan, X.; Peng, L.; Jia, H.; Zhang, Y.; Shan, B.; Xie, J.J. Mater. Chem. A2019,7,2717.
doi: 10.1039/c8ta10790d |
77 |
Zhang, Z.; Zhang, J.; Jia, H.; Peng, L.; An, T.; Xie, J.J. Power Sources2020,450,227601.
doi: 10.1016/j.jpowsour.2019.227601 |
78 |
Wei, C.; Yu, C.; Peng, L.; Zhang, Z.; Xu, R.; Wu, Z.; Liao, C.; Zhang, W.; Zhang, L.; Cheng, S.; et al.Mater. Adv.2022,3,1047.
doi: 10.1039/d1ma00987g |
79 |
Kong, S. T.; Gun, O.; Koch, B.; Deiseroth, H. J.; Eckert, H.; Reiner, C.Chem2010,16,5138.
doi: 10.1002/chem.200903023 |
80 |
Rao, R. P.; Sharma, N.; Peterson, V. K.; Adams, S.Solid State Ion.2013,230,72.
doi: 10.1016/j.ssi.2012.09.014 |
81 |
Deiseroth, H.-J.; Maier, J.; Weichert, K.; Nickel, V.; Kong, S.-T.; Reiner, C.Z. Anorg. Allg. Chem.2011,637,1287.
doi: 10.1002/zaac.201100158 |
82 |
Hanghofer, I.; Gadermaier, B.; Wilkening, H. M. R.Chem. Mater.2019,31,4591.
doi: 10.1021/acs.chemmater.9b01435 |
83 |
Hanghofer, I.; Brinek, M.; Eisbacher, S. L.; Bitschnau, B.; Volck, M.; Hennige, V.; Hanzu, I.; Rettenwander, D.; Wilkening, H. M. R.Phys. Chem. Chem. Phys.2019,21,8489.
doi: 10.1039/c9cp00664h |
84 |
Kraft, M. A.; Culver, S. P.; Calderon, M.; Bocher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W. G.J. Am. Chem. Soc.2017,139,10909.
doi: 10.1021/jacs.7b06327 |
85 |
de Klerk, N. J. J.; Rosłoń I.; Wagemaker, M.Chem. Mater.2016,28,7955.
doi: 10.1021/acs.chemmater.6b03630 |
86 |
Stamminger, A. R.; Ziebarth, B.; Mrovec, M.; Hammerschmidt, T.; Drautz, R.Chem. Mater.2019,31,8673.
doi: 10.1021/acs.chemmater.9b02047 |
87 |
Yu, C.; Ganapathy, S.; de Klerk, N. J.; Roslon, I.; van Eck, E. R.; Kentgens, A. P.; Wagemaker, M.J. Am. Chem. Soc.2016,138,11192.
doi: 10.1021/jacs.6b05066 |
88 |
Gautam, A.; Sadowski, M.; Ghidiu, M.; Minafra, N.; Senyshyn, A.; Albe, K.; Zeier, W. G.Adv. Energy Mater.2020,11,2003369.
doi: 10.1002/aenm.202003369 |
89 |
Schlenker, R.; Hansen, A.-L.; Senyshyn, A.; Zinkevich, T.; Knapp, M.; Hupfer, T.; Ehrenberg, H.; Indris, S.Chem. Mater.2020,32,8420.
doi: 10.1021/acs.chemmater.0c02418 |
90 |
Wang, H.; Yu, C.; Ganapathy, S.; van Eck, E. R. H.; van Eijck, L.; Wagemaker, M.J. Power Sources2019,412,29.
doi: 10.1016/j.jpowsour.2018.11.029 |
91 |
Ganapathy, S.; Yu, C.; van Eck, E. R. H.; Wagemaker, M.ACS Energy Lett.2019,4,1092.
doi: 10.1021/acsenergylett.9b00610 |
92 |
Yu, C.; van Eijck, L.; Ganapathy, S.; Wagemaker, M.Electrochim. Acta2016,215,93.
doi: 10.1016/j.electacta.2016.08.081 |
93 |
Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V.Solid State Ion.2012,221,1.
doi: 10.1016/j.ssi.2012.06.008 |
94 |
Yu, C.; Ganapathy, S.; van Eck, E. R. H.; van Eijck, L.; Basak, S.; Liu, Y.; Zhang, L.; Zandbergen, H. W.; Wagemaker, M.J. Mater. Chem. A2017,5,21178.
doi: 10.1039/c7ta05031c |
95 |
Zhang, Z.; Zhang, L.; Liu, Y.; Yu, C.; Yan, X.; Xu, B.; Wang, L.-M.J. Alloy. Compd.2018,747,227.
doi: 10.1016/j.jallcom.2018.03.027 |
96 |
Liu, Y.; Peng, H.; Su, H.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J.Adv. Mater.2022,34,e2107346.
doi: 10.1002/adma.202107346 |
97 |
Peng, L.; Ren, H.; Zhang, J.; Chen, S.; Yu, C.; Miao, X.; Zhang, Z.; He, Z.; Yu, M.; Zhang, L.; Cheng, S.; Xie, J.Energy Storage Mater.2021,43,53.
doi: 10.1016/j.ensm.2021.08.028 |
98 |
Peng, L.; Yu, C.; Zhang, Z.; Ren, H.; Zhang, J.; He, Z.; Yu, M.; Zhang, L.; Cheng, S.; Xie, J.Chem. Eng. J.2022,430,132896.
doi: 10.1016/j.cej.2021.132896 |
99 |
Wang, S.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y. H.; Shen, Y.; Li, L.; Nan, C. W.ACS Appl. Mater. Interfacesfaces2018,10,42279.
doi: 10.1021/acsami.8b15121 |
100 |
Zhang, Z.; Zhang, L.; Liu, Y.; Yan, X.; Xu, B.; Wang, L.J. Alloy. Compd.2020,812,152103.
doi: 10.1016/j.jallcom.2019.152103 |
101 |
Wu, L.; Zhang, Z.; Liu, G.; Weng, W.; Zhang, Z.; Yao, X.ACS Appl. Mater. Interfacesfaces2021,13,46644.
doi: 10.1021/acsami.1c13031 |
102 |
Yubuchi, S.; Uematsu, M.; Hotehama, C.; Sakuda, A.; Hayashi, A.; Tatsumisago, M.J. Mater. Chem. A2019,7,558.
doi: 10.1039/c8ta09477b |
103 |
Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M.ACS Appl. Energy Mater.2018,1,3622.
doi: 10.1021/acsaem.8b00280 |
104 |
Yubuchi, S.; Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M.J. Power Sources2015,293,941.
doi: 10.1016/j.jpowsour.2015.05.093 |
105 |
Kim, D. H.; Oh, D. Y.; Park, K. H.; Choi, Y. E.; Nam, Y. J.; Lee, H. A.; Lee, S. M.; Jung, Y. S.Nano Lett.2017,17,3013.
doi: 10.1021/acs.nanolett.7b00330 |
106 |
Rosero-Navarro, N. C.; Kinoshita, T.; Miura, A.; Higuchi, M.; Tadanaga, K.Ionics2017,23,1619.
doi: 10.1007/s11581-017-2106-x |
107 |
Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K.J. Power Sources2018,396,33.
doi: 10.1016/j.jpowsour.2018.06.011 |
108 |
Zhou, L.; Park, K.-H.; Sun, X.; Lalère, F.; Adermann, T.; Hartmann, P.; Nazar, L. F.ACS Energy Lett.2019,4,265.
doi: 10.1021/acsenergylett.8b01997 |
109 |
Kim, D. H.; Lee, Y. H.; Song, Y. B.; Kwak, H.; Lee, S. Y.; Jung, Y. S.ACS Energy Lett.2020,5,718.
doi: 10.1021/acsenergylett.0c00251 |
110 |
Lee, J.; Lee, K.; Lee, T.; Kim, H.; Kim, K.; Cho, W.; Coskun, A.; Char, K.; Choi, J. W.Adv. Mater.2020,32,2001702.
doi: 10.1002/adma.202001702 |
111 |
Song, Y. B.; Kim, D. H.; Kwak, H.; Han, D.; Kang, S.; Lee, J. H.; Bak, S. M.; Nam, K. W.; Lee, H. W.; Jung, Y. S.Nano Lett.2020,20,4337.
doi: 10.1021/acs.nanolett.0c01028 |
112 |
Kim, M. J.; Park, J. W.; Kim, B. G.; Lee, Y. J.; Ha, Y. C.; Lee, S. M.; Baeg, K. J.Sci. Rep.2020,10,68885.
doi: 10.1038/s41598-020-68885-4 |
113 |
Choi, S.; Ann, J.; Do, J.; Lim, S.; Park, C.; Shin, D.J. Electrochem. Soc.2018,166,A5193.
doi: 10.1149/2.0301903jes |
114 |
Yubuchi, S.; Nakamura, W.; Bibienne, T.; Rousselot, S.; Taylor, L. W.; Pasquali, M.; Dolle, M.; Sakuda, A.; Hayashi, A.; Tatsumisago, M.J. Power Sources2019,417,125.
doi: 10.1016/j.jpowsour.2019.01.070 |
115 |
Yubuchi, S.; Tsukasaki, H.; Sakuda, A.; Mori, S.; Hayashi, A.; Tatsumisago, M.RSC Adv.2019,9,14465.
doi: 10.1039/c9ra00949c |
116 |
Lee, J. E.; Park, K. H.; Kim, J. C.; Wi, T. U.; Ha, A. R.; Song, Y. B.; Oh, D. Y.; Woo, J.; Kweon, S. H.; Yeom, S. J.; et al.Adv. Mater.2022,34,e2200083.
doi: 10.1002/adma.202200083 |
117 |
Adeli, P.; Bazak, J. D.; Huq, A.; Goward, G. R.; Nazar, L. F.Chem. Mater.2020,33,146.
doi: 10.1021/acs.chemmater.0c03090 |
118 |
Yu, C.; Li, Y.; Willans, M.; Zhao, Y.; Adair, K. R.; Zhao, F.; Li, W.; Deng, S.; Liang, J.; Banis, M. N.; et al.Nano Energy2020,69,104396.
doi: 10.1016/j.nanoen.2019.104396 |
119 |
Yu, C.; Li, Y.; Li, W.; Adair, K. R.; Zhao, F.; Willans, M.; Liang, J.; Zhao, Y.; Wang, C.; Deng, S.; et al.Energy Storage Mater.2020,30,238.
doi: 10.1016/j.ensm.2020.04.014 |
120 |
Subramanian, Y.; Rajagopal, R.; Ryu, K.-S.J. Power Sources2022,520,230849.
doi: 10.1016/j.jpowsour.2021.230849 |
121 |
Fang, H.; Jena, P.Nat. Commun.2022,13,2078.
doi: 10.1038/s41467-022-29769-5 |
122 |
Schneider, H.; Sedlmaier, S. J.; Du, H.; Kelley, T.; Leitner, K.; ter Maat, J.; Scordilis-Kelley, C.; Mudalige, A.; Kulisch, J.; Schneider, L.ChemistrySelect2019,4,3351.
doi: 10.1002/slct.201803388 |
123 |
Minafra, N.; Culver, S. P.; Krauskopf, T.; Senyshyn, A.; Zeier, W. G.J. Mater. Chem. A2018,6,645.
doi: 10.1039/c7ta08581h |
124 |
Ohno, S.; Helm, B.; Fuchs, T.; Dewald, G.; Kraft, M. A.; Culver, S. P.; Senyshyn, A.; Zeier, W. G.Chem. Mater.2019,31,4936.
doi: 10.1021/acs.chemmater.9b01857 |
125 |
Lee, Y.; Jeong, J.; Lim, H.-D.; Kim, S.-O.; Jung, H.-G.; Chung, K. Y.; Yu, S.ACS Sustain. Chem. Eng.2020,9,120.
doi: 10.1021/acssuschemeng.0c05549 |
126 |
Chen, T.; Zhang, L.; Zhang, Z. X.; Li, P.; Wang, H. Q.; Yu, C.; Yan, X. L.; Wang, L. M.; Xu, B.ACS Appl. Mater. Interfaces2019,11,40808.
doi: 10.1021/acsami.9b13313 |
127 |
Peng, L.; Chen, S.; Yu, C.; Wei, C.; Liao, C.; Wu, Z.; Wang, H. L.; Cheng, S.; Xie, J.ACS Appl. Mater. Interfacesfaces2022,14,4179.
doi: 10.1021/acsami.1c21561 |
128 |
Lu, P.; Wu, D.; Chen, L.; Li, H.; Wu, F.Electrochem. Energy Rep.2022,5,00149.
doi: 10.1007/s41918-022-00149-3 |
129 |
Chen, T.; Zeng, D.; Zhang, L.; Yang, M.; Song, D.; Yan, X.; Yu, C.J. Energy Chem.2021,59,530.
doi: 10.1016/j.jechem.2020.11.031 |
130 |
Zhao, F.; Liang, J.; Yu, C.; Sun, Q.; Li, X.; Adair, K.; Wang, C.; Zhao, Y.; Zhang, S.; Li, W.; et al.Adv. Energy Mater.2020,10,1903422.
doi: 10.1002/aenm.201903422 |
131 |
Zhang, J.; Gu, X.Rare Metals2022,
doi: 10.1007/s12598-022-02188-7 |
132 |
Xu, J.; Li, Y.; Lu, P.; Yan, W.; Yang, M.; Li, H.; Chen, L.; Wu, F.Adv. Energy Mater.2021,12,2102348.
doi: 10.1002/aenm.202102348 |
133 |
Li, Y.; Arnold, W.; Thapa, A.; Jasinski, J. B.; Sumanasekera, G.; Sunkara, M.; Druffel, T.; Wang, H.ACS Appl. Mater. Interfaces2020,12,42653.
doi: 10.1021/acsami.0c08261 |
134 |
Singer, C.; Topper, H. C.; Kutsch, T.; Schuster, R.; Koerver, R.; Daub, R.ACS Appl. Mater. Interfacesfaces2022,14,24245.
doi: 10.1021/acsami.2c01099 |
135 |
Simon, F. J.; Hanauer, M.; Richter, F. H.; Janek, J.ACS Appl. Mater. Interfacesfaces2020,12,11713.
doi: 10.1021/acsami.9b22968 |
136 |
Wang, Y.; Ju, J.; Dong, S.; Yan, Y.; Jiang, F.; Cui, L.; Wang, Q.; Han, X.; Cui, G.Adv. Funct. Mater.2021,31,2101523.
doi: 10.1002/adfm.202101523 |
137 |
Liu, S.; Zhou, L.; Han, J.; Wen, K.; Guan, S.; Xue, C.; Zhang, Z.; Xu, B.; Lin, Y.; Shen, Y.; et al.Adv. Energy Mater.2022,12,2200660.
doi: 10.1002/aenm.202200660 |
138 |
Schneider, H.; Du, H.; Kelley, T.; Leitner, K.; ter Maat, J.; Scordilis-Kelley, C.; Sanchez-Carrera, R.; Kovalev, I.; Mudalige, A.; Kulisch, J.; et al.J. Power Sources2017,366,151.
doi: 10.1016/j.jpowsour.2017.09.012 |
139 |
Huang, W. Z.; Yoshino, K.; Hori, S.; Suzuki, K.; Yonemura, M.; Hirayama, M.; Kanno, R.J. Solid State Chem.2019,270,487.
doi: 10.1016/j.jssc.2018.12.015 |
140 |
Xu, M.; Sun, Y.; Hori, S.; Suzuki, K.; Huang, W.; Hirayama, M.; Kanno, R.Solid State Ion.2020,356,115458.
doi: 10.1016/j.ssi.2020.115458 |
141 |
Sakuda, A.; Yamauchi, A.; Yubuchi, S.; Kitamura, N.; Idemoto, Y.; Hayashi, A.; Tatsumisago, M.ACS Omega2018,3,5453.
doi: 10.1021/acsomega.8b00377 |
142 |
Zhu, Y.; He, X.; Mo, Y.ACS Appl. Mater. Interfacesfaces2015,7,23685.
doi: 10.1021/acsami.5b07517 |
143 |
Auvergniot, J.; Cassel, A.; Ledeuil, J. B.; Viallet, V.; Seznec, V.; Dedryvere, R.Chem. Mater.2017,29,3883.
doi: 10.1021/acs.chemmater.6b04990 |
144 |
Walther, F.; Koerver, R.; Fuchs, T.; Ohno, S.; Sann, J.; Rohnke, M.; Zeier, W. G.; Janek, J.Chem. Mater.2019,31,3745.
doi: 10.1021/acs.chemmater.9b00770 |
145 |
Schwietert, T. K.; Arszelewska, V. A.; Wang, C.; Yu, C.; Vasileiadis, A. de Klerk, N. J. J.; Hageman, J.; Hupfer, T.; Kerkamm, I.; Xu, Y.; van der Maas, E.; et al.Nat. Mater.2020,19,428.
doi: 10.1038/s41563-019-0576-0 |
146 |
Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J. M.; Wang, X. F.; Yang, H. D.; Banerjee, A.; Meng, Y. S.ACS Energy Lett.2019,4,2418.
doi: 10.1021/acsenergylett.9b01693 |
147 |
Wang, S.; Tang, M.; Zhang, Q.; Li, B.; Ohno, S.; Walther, F.; Pan, R.; Xu, X.; Xin, C.; Zhang, W.; Li, L.; et al.Adv. Energy Mater.2021,11,2101370.
doi: 10.1002/aenm.202101370 |
148 |
Wang, S.; Xu, X. F.; Zhang, X.; Xin, C. Z.; Xu, B. Q.; Li, L. L.; Lin, Y. H.; Shen, Y.; Li, B. H.; Nan, C. W.J. Mater. Chem. A2019,7,18612.
doi: 10.1039/c9ta04289j |
149 |
Gil-González, E.; Ye, L.; Wang, Y.; Shadike, Z.; Xu, Z.; Hu, E.; Li, X.Energy Storage Mater.2022,45,484.
doi: 10.1016/j.ensm.2021.12.008 |
150 |
Zhang, J.; Zheng, C.; Li, L. J.; Xia, Y.; Huang, H.; Gan, Y. P.; Liang, C.; He, X. P.; Tao, X. Y.; Zhang, W. K.Adv. Energy Mater.2020,10,1903311.
doi: 10.1002/aenm.201903311 |
151 |
Ye, L.; Li, X.Nature2021,593,218.
doi: 10.1038/s41586-021-03486-3 |
152 |
Zeng, D.; Yao, J.; Zhang, L.; Xu, R.; Wang, S.; Yan, X.; Yu, C.; Wang, L.Nat. Commun.2022,13,1909.
doi: 10.1038/s41467-022-29596-8 |
153 |
Doux, J. M.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S.Adv. Energy Mater.2019,10,1903253.
doi: 10.1002/aenm.201903253 |
154 |
Liu, G.; Weng, W.; Zhang, Z.; Wu, L.; Yang, J.; Yao, X.Nano Lett.2020,20,6660.
doi: 10.1021/acs.nanolett.0c02489 |
155 |
Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z.; Hartley, G. O.; Marrow, J.; Bruce, P. G.Nat. Mater.2019,18,1105.
doi: 10.1038/s41563-019-0438-9 |
156 |
Li, Y.; Zhang, D.; Xu, X.; Wang, Z.; Liu, Z.; Shen, J.; Liu, J.; Zhu, M.J. Energy Chem.2021,60,32.
doi: 10.1016/j.jechem.2020.12.017 |
157 |
Wang, S.; Fang, R.; Li, Y.; Liu, Y.; Xin, C.; Richter, F. H.; Nan, C.-W.J. Materiomics2021,7,209.
doi: 10.1016/j.jmat.2020.09.003 |
158 |
Zheng, C.; Li, L.; Wang, K.; Wang, C.; Zhang, J.; Xia, Y.; Huang, H.; Liang, C.; Gan, Y.; He, X.; Tao, X.; Zhang, W.Batteries Supercaps2020,4,8.
doi: 10.1002/batt.202000147 |
159 |
Li, B.; Sun, Z.; Lv, N.; Hu, Y.; Jiang, L.; Zhang, Z.; Liu, F.ACS Appl. Mater. Interfacesfaces2022,14,37738.
doi: 10.1021/acsami.2c09013 |
160 |
Hänsel, C.; Singh, B.; Kiwic, D.; Canepa, P.; Kundu, D.Chem. Mater.2021,33,6029.
doi: 10.1021/acs.chemmater.1c01431 |
161 |
Li, M.; Zhou, D.; Wang, C.; Weng, W.; Jiang, M.; Liu, G.; Yao, X.; He, H.ACS Appl. Mater. Interfaces2021,13,50076.
doi: 10.1021/acsami.1c16356 |
162 |
Jiang, Z.; Peng, H.; Liu, Y.; Li, Z.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J.Adv. Energy Mater.2021,11,2101521.
doi: 10.1002/aenm.202101521 |
163 |
Xu, H.; Cao, G.; Shen, Y.; Yu, Y.; Hu, J.; Wang, Z.; Shao, G.Energy Environm. Mater.2021,5,852.
doi: 10.1002/eem2.12282 |
164 |
Zhao, F.; Sun, Q.; Yu, C.; Zhang, S.; Adair, K.; Wang, S.; Liu, Y.; Zhao, Y.; Liang, J.; Wang, C.; et al.ACS Energy Lett.2020,5,1035.
doi: 10.1021/acsenergylett.0c00207 |
165 |
Liu, Y.; Su, H.; Li, M.; Xiang, J.; Wu, X.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J.J. Mater. Chem. A2021,9,13531.
doi: 10.1039/d1ta03343c |
166 |
Taklu, B. W.; Su, W.-N.; Nikodimos, Y.; Lakshmanan, K.; Temesgen, N. T.; Lin, P.-X.; Jiang, S.-K.; Huang, C.-J.; Wang, D.-Y.; Sheu, H.-S.; et al.Nano Energy2021,90,106542.
doi: 10.1016/j.nanoen.2021.106542 |
167 |
Banik, A.; Liu, Y.; Ohno, S.; Rudel, Y.; Jiménez-Solano, A.; Gloskovskii, A.; Vargas-Barbosa, N. M.; Mo, Y.; Zeier, W. G.ACS Appl. Energy Mater.2022,5,2045.
doi: 10.1021/acsaem.1c03599 |
168 |
Xiao, Y. H.; Miara, L. J.; Wang, Y.; Ceder, G.Joule2019,3,1252.
doi: 10.1016/j.joule.2019.02.006 |
169 |
Strauss, F.; Teo, J. H.; Maibach, J.; Kim, A. Y.; Mazilkin, A.; Janek, J.; Brezesinski, T.ACS Appl. Mater. Interfacesfaces2020,12,57146.
doi: 10.1021/acsami.0c18590 |
170 |
Culver, S. P.; Koerver, R.; Zeier, W. G.; Janek, J.Adv. Energy Mater.2019,9,1900626.
doi: 10.1002/aenm.201900626 |
171 |
Kim, Y.-J.; Rajagopal, R.; Kang, S.; Ryu, K.-S.Chem. Eng. J.2020,386,123975.
doi: 10.1016/j.cej.2019.123975 |
172 |
Haruyama, J.; Sodeyama, K.; Han, L. Y.; Takada, K.; Tateyama, Y.Chem. Mater.2014,26,4248.
doi: 10.1021/cm5016959 |
173 |
Li, X.; Sun, Q.; Wang, Z.; Song, D.; Zhang, H.; Shi, X.; Li, C.; Zhang, L.; Zhu, L.J. Power Sources2020,456,227997.
doi: 10.1016/j.jpowsour.2020.227997 |
174 |
Lee, J. S.; Park, Y. J.ACS Appl. Mater. Interfacesfaces2021,13,38333.
doi: 10.1021/acsami.1c10294 |
175 |
Lim, C. B.; Park, Y. J.Sci. Rep.2020,10,10501.
doi: 10.1038/s41598-020-67493-6 |
176 |
Zhao, F.; Zhao, Y.; Wang, J.; Sun, Q.; Adair, K.; Zhang, S.; Luo, J.; Li, J.; Li, W.; Sun, Y.; et al.Energy Storage Mater.2020,33,139.
doi: 10.1016/j.ensm.2020.06.013 |
177 |
Zhang, Y.; Sun, X.; Cao, D.; Gao, G.; Yang, Z.; Zhu, H.; Wang, Y.Energy Storage Mater.2021,41,505.
doi: 10.1016/j.ensm.2021.06.024 |
178 |
Cao, D.; Zhang, Y.; Nolan, A. M.; Sun, X.; Liu, C.; Sheng, J.; Mo, Y.; Wang, Y.; Zhu, H.Nano Lett.2020,20,1483.
doi: 10.1021/acs.nanolett.9b02678 |
179 |
Wang, L.; Sun, X.; Ma, J.; Chen, B.; Li, C.; Li, J.; Chang, L.; Yu, X.; Chan, T. S.; Hu, Z.; Noked, M.; Cui, G.Adv. Energy Mater.2021,11,2100881.
doi: 10.1002/aenm.202100881 |
180 |
Doerrer, C.; Capone, I.; Narayanan, S.; Liu, J.; Grovenor, C. R. M.; Pasta, M.; Grant, P. S.ACS Appl. Mater. Interfacesfaces2021,13,37809.
doi: 10.1021/acsami.1c07952 |
181 |
Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S.Adv. Mater.2018,30,e1803075.
doi: 10.1002/adma.201803075 |
182 |
Han, Y.; Jung, S. H.; Kwak, H.; Jun, S.; Kwak, H. H.; Lee, J. H.; Hong, S. T.; Jung, Y. S.Adv. Energy Mater.2021,11,2100126.
doi: 10.1002/aenm.202100126 |
183 |
Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G.Energy Environ. Sci.2014,7,513.
doi: 10.1039/c3ee40795k |
184 |
He, Y.; Chen, W.; Zhao, Y.; Li, Y.; Lv, C.; Li, H.; Yang, J.; Gao, Z.; Luo, J.Energy Storage Mater.2022,49,19.
doi: 10.1016/j.ensm.2022.03.043 |
185 |
Chen, Y.; Li, W. W.; Sun, C. Z.; Jin, J.; Wang, Q.; Chen, X. D.; Zha, W. P.; Wen, Z. Y.Adv. Energy Mater.2020,11,2002545.
doi: 10.1002/aenm.202002545 |
186 |
Wan, H.; Zhang, J.; Xia, J.; Ji, X.; He, X.; Liu, S.; Wang, C.Adv. Funct. Mater.2021,32,2110876.
doi: 10.1002/adfm.202110876 |
187 |
Lu, Y.; Zhao, C. Z.; Zhang, R.; Yuan, H.; Hou, L. P.; Fu, Z. H.; Chen, X.; Huang, J. Q.; Zhang, Q.Sci. Adv.2021,7,eabi5520.
doi: 10.1126/sciadv.abi5520 |
188 |
Wan, J.; Song, Y. X.; Chen, W. P.; Guo, H. J.; Shi, Y.; Guo, Y. J.; Shi, J. L.; Guo, Y. G.; Jia, F. F.; Wang, F. Y.; et al.J. Am. Chem. Soc.2021,143,839.
doi: 10.1021/jacs.0c10121 |
189 |
Peng, L.; Yu, C.; Zhang, Z.; Xu, R.; Sun, M.; Zhang, L.; Cheng, S.; Xie, J.Energy Environm. Mater.2022,
doi: 10.1002/eem2.12308 |
190 |
Peng, L.; Chen, S.; Yu, C.; Liao, C.; Sun, M.; Wang, H.-L.; Zhang, L.; Cheng, S.; Xie, J.J. Power Sources2022,520,230890.
doi: 10.1016/j.jpowsour.2021.230890 |
191 |
Pan, H.; Zhang, M.; Cheng, Z.; Jiang, H.; Yang, J.; Wang, P.; He, P.; Zhou, H.Sci. Adv.2022,8,4372.
doi: 10.1126/sciadv.abn4372 |
192 |
Li, X. N.; Liang, J. W.; Li, X.; Wang, C. H.; Luo, J.; Li, R. Y.; Sun, X. L.Energy Environ. Sci.2018,11,2828.
doi: 10.1039/c8ee01621f |
193 |
Fan, Z.; Ding, B.; Li, Z.; Hu, B.; Xu, C.; Xu, C.; Dou, H.; Zhang, X.Small2022,18,e2204037.
doi: 10.1002/smll.202204037 |
194 |
Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K.J. Sol-Gel Sci. Technol.2021,101,8.
doi: 10.1007/s10971-021-05634-7 |
195 |
Kim, J.; Kim, C.; Jang, I.; Park, J.; Kim, J.; Paik, U.; Song, T.J. Power Sources2021,510,230425.
doi: 10.1016/j.jpowsour.2021.230425 |
196 |
Kim, D. H.; Lee, H. A.; Song, Y. B.; Park, J. W.; Lee, S. M.; Jung, Y. S.J. Power Sources2019,426,143.
doi: 10.1016/j.jpowsour.2019.04.028 |
197 |
Darren, H. S.; Tan, Y.-T. C.; Hedi, Y.; Wurigumula, B.; Bhagath, S.; Jean, D.; Weikang, L.; Bingyu, L.; So-Yeon, H.; Baharak, S.; et al.Science2021,373,1494.
doi: 10.1126/science.abg7217 |
198 |
Li, Y.; Arnold, W.; Jasinski, J. B.; Thapa, A.; Sumanasekera, G.; Sunkara, M.; Narayanan, B.; Druffel, T.; Wang, H.Electrochim. Acta2020,363,137128.
doi: 10.1016/j.electacta.2020.137128 |
199 |
Budiman, B. A.; Saputro, A.; Rahardian, S.; Aziz, M.; Sambegoro, P.; Nurprasetio, I. P.J. Energy Storage2022,52,104810.
doi: 10.1016/j.est.2022.104810 |
200 |
Lee, Y. G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D. S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; et al.Nat. Energy2020,5,299.
doi: 10.1038/s41560-020-0575-z |
201 |
Zhang, J.; Zhong, H.; Zheng, C.; Xia, Y.; Liang, C.; Huang, H.; Gan, Y.; Tao, X.; Zhang, W.J. Power Sources2018,391,73.
doi: 10.1016/j.jpowsour.2018.04.069 |
202 |
Zhu, G. L.; Zhao, C. Z.; Peng, H. J.; Yuan, H.; Hu, J. K.; Nan, H. X.; Lu, Y.; Liu, X. Y.; Huang, J. Q.; He, C.; et al.Adv. Funct. Mater.2021,31,210.
doi: 10.1002/adfm.202101985 |
203 |
Cao, D.; Li, Q.; Sun, X.; Wang, Y.; Zhao, X.; Cakmak, E.; Liang, W.; Anderson, A.; Ozcan, S.; Zhu, H.Adv. Mater.2021,33,e2105505.
doi: 10.1002/adma.202105505 |
204 |
Zhang, Z.; Wu, L.; Zhou, D.; Weng, W.; Yao, X.Nano Lett.2021,21,5233.
doi: 10.1021/acs.nanolett.1c01344 |
205 |
Wang, C.; Yu, R.; Duan, H.; Lu, Q.; Li, Q.; Adair, K. R.; Bao, D.; Liu, Y.; Yang, R.; Wang, J.; Zhao, S.; Huang, H.; Sun, X.ACS Energy Lett.2021,410,02261.
doi: 10.1021/acsenergylett.1c02261 |
[1] | Ganchang Lei, Yong Zheng, Yanning Cao, Lijuan Shen, Shiping Wang, Shijing Liang, Yingying Zhan, Lilong Jiang. Deactivation Mechanism of COS Hydrolysis over Potassium Modified Alumina [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2210038-0. |
[2] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[3] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[4] | Jingjing Wang, Guiqiang Cao, Ruixian Duan, Xiangyang Li, Xifei Li. Advances in Single Metal Atom Catalysts Enhancing Kinetics of Sulfur Cathode [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212005-0. |
[5] | Jingchao Xiang, Jingjun Li, Xue Yang, Shuiying Gao, Rong Cao. Cationic Ni-MOF-Assembled CdS/PFC-8 Catalyst for Photocatalytic Hydrogen Production with Selective Benzyl Alcohol Oxidation under Visible Light [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2205039-0. |
[6] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[7] | Kuangyu Wang, Kai Liu, Hui Wu. Molten Alkali Metal Batteries Based on Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301009-. |
[8] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[9] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[10] | Jingyun Zou, Bing Gao, Xiaopin Zhang, Lei Tang, Simin Feng, Hehua Jin, Bilu Liu, Hui-Ming Cheng. Direct Growth of 1D SWCNT/2D MoS2 Mixed-Dimensional Heterostructures and Their Charge Transfer Property [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2008037-. |
[11] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[12] | Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205005-. |
[13] | Hui Li, Shuangyu Liu, Tianci Yuan, Bo Wang, Peng Sheng, Li Xu, Guangyao Zhao, Huitao Bai, Xin Chen, Zhongxue Chen, Yuliang Cao. Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1907049-. |
[14] | Gaolong Zhu, Chenzi Zhao, Hong Yuan, Haoxiong Nan, Bochen Zhao, Lipeng Hou, Chuangxin He, Quanbing Liu, Jiaqi Huang. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005003-. |
[15] | Jun Guan, Nianwu Li, Le Yu. Artificial Interphase Layers for Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2009011-. |
|