Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (6): 2212016.doi: 10.3866/PKU.WHXB202212016
Special Issue: S-scheme photocatalyst
• REVIEW • Previous Articles Next Articles
Xinhe Wu(), Guoqiang Chen, Juan Wang, Jinmao Li, Guohong Wang(
)
Received:
2022-12-09
Accepted:
2023-01-02
Published:
2023-01-06
Contact:
Xinhe Wu, Guohong Wang
E-mail:wuxinhe@hbnu.edu.cn;wanggh2003@163.com
Xinhe Wu, Guoqiang Chen, Juan Wang, Jinmao Li, Guohong Wang. Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution[J]. Acta Phys. -Chim. Sin. 2023, 39(6), 2212016. doi: 10.3866/PKU.WHXB202212016
"
S-scheme heterojunctions | Cocatalyst (wt%) | Light source (wavelength/nm) | H2-evolution rate (μmol∙h−1∙g−1) | Enhancement factor versus g-C3N4 | Apparent quantum yield (%) | Reference |
WO3/g-C3N4 | Pt (2%) | 350 W Xe lamp | 982 | 1.7 | − | |
S-g-C3N4/g-C3N4 | Pt (3%) | 300 W Xe lamp (λ > 420 nm) | 5548.1 | 49 | 0.43 | |
NMS/SCN | − | 300 W Xe lamp | 658.5 | 23 | − | |
Ag/CNU-CNT | Pt (0.3%) | 400 W metal halide lamp | 10100 | 8 | 39 | |
W18O49/g-C3N4 | Pt (X%) | 300 W Xe lamp (λ > 420 nm) | 1700 | 56 | − | |
N-CDs/S-C3N4 | Pt (1%) | Xe lamp | 483.8 | 2.3 | 4.67 | |
Pg-C3N4/CdS-EDTA | Pt (0.6%) | 300 W Xe lamp (λ > 400 nm) | 9378 | 11.8 | 10.17 | |
HCCN/ACN | Pt (1%) | 300 W Xe lamp | 5534 | 6.6 | 3.62 | |
Ni0.85Se/CN | − | 300 W Xe lamp | 8780.3 | 92.9 | − | |
BiOBr/g-C3N4 | − | 300 W Xe lamp | 106.6 | 3.4 | − | |
PCN/CS-D | Pt (0.6%) | Sodium lamp | 12547 | 15.6 | − | |
SbVO4/g-C3N4 | − | 300 W Xe lamp | 752 | 4.1 | − | |
CdS/g-C3N4/ GA | − | 300 W Xe lamp (λ > 420 nm) | 86.4 | 3.5 | − | |
W18O49/HCN | − | 300 W Xe lamp (λ > 420 nm) | 892 | 3.4 | 6.21 | |
MnWO4/g-C3N4 | Pt (0.5%) | 200 W Xe lamp | 2820.2 | 3.7 | 7.23 | |
TiO2/g-C3N4-Ti3C2 | − | 300 W Xe lamp (λ > 420 nm) | 5540.2 | > 98 | 5.81 | |
Bi2S3/g-C3N4 | − | 300 W Xe lamp | 3394.1 | 2.6 | ||
TiO2/g-C3N4 | Pt (3%) | 300 W Xe lamp (λ > 420 nm) | 2137.3 | 4.8 | 6.73 | |
Ni2P-pg-C3N4/Cd0.5Zn0.5Se-D | Pt (1%) | 300 W Xe lamp (λ > 420 nm) | 12627 | > 100 | 37.7 | |
NiTe2/g-C3N4 | − | 300 W Xe lamp | 2540.4 | 23.4 | − | |
SNO/g-C3N4 | Pt (3%) | 300 W Xe lamp (λ > 420 nm) | 1427.1 | 12.3 | 2.3 | |
S-pCN/WO2.72 | − | 300 W Xe lamp (λ > 420 nm) | 786 | − | 7.5 | |
g-C3N4/CdS | Pt (3%) | 300 W Xe lamp | 3370 | 3.5 | − | |
Nano CdS/g-C3N4 | Pt (1%) | 300 W Xe lamp (λ > 420 nm) | 2582 | 9.7 | 3.41 | |
Co3S4/g-C3N4 | − | 100 W Xe lamp (λ > 400 nm) | 2120 | 176 | − | |
Au/g-C3N4/Cu2O | − | 500 W Xe lamp (λ > 400 nm) | 552.6 | 5.3 | − |
"
S-scheme heterojunction | Cocatalyst (wt%) | Light source (wavelength/nm) | H2 production rate (μmol∙h−1∙g−1) | Enhancement factor versus MS | Apparent quantum yield (%) | Reference |
CdS/PT | Pt (1%) | 350 W Xe lamp (λ > 420 nm) | 9280 | 8 | 24.3 | |
CdS/g-C3N4-GA | – | 300 W Xe lamp (λ > 420 nm) | 86.38 | 2.37 | – | |
CdS/MnOx-BiVO4 | Pt (1%) | 300 W Xe lamp (λ > 350 nm) | 1010 | 1.87 | 11.3 | |
CuO/CdS/CoWO4 | – | 300 W Xe lamp (λ > 420 nm) | 457.9 | 11.99 | – | |
Cu-MOFs/Mn0.05Cd0.95S | – | 5 W LED | 10940 | 2.8 | 1.8 | |
MX-ZIS-NiSe2 | – | 300 W Xe lamp (λ > 420 nm) | 23510 | 23.51 | 10.9 | |
Cu2S/CdZnS | – | 300 W Xe lamp (λ > 420 nm) | 5904 | 3.19 | 2.13 | |
Ti3C2-ZnIn2S4/CdS | – | 300 W Xe lamp (λ > 420 nm) | 8930 | 7.32 | 3.42 | |
MX-CdS/WO3 | – | 300 W Xe lamp (λ > 420 nm) | 2750 | 11 | 12.16 | |
Co9S8-GDY-CuI | – | 5 W LED | 1411.8 | 1.85 | – | |
MnO2@CdS | Pt (3%) | 300 W Xe lamp (λ > 420 nm) | 3940 | 2.8 | 16.9 | |
COF/CdS | Pt | 300 W Xe lamp (λ > 420 nm) | 8670 | 2.1 | 8.9 | |
ZIS/CDs/CN | Pt (1%) | 300 W Xe lamp (λ > 420 nm) | 17580 | 2 | 12.73 | |
CdS/MoO3‒x | – | 350 W Xe lamp | 7440 | 10.3 | 14.3 | |
CdS/W18O49 | – | 300 W Xe lamp | 15400 | 5.1 | 15.4 | |
SnO2/CdS | – | 300 W Xe lamp (λ > 400 nm) | 2540 | 5 | 29.3 | |
Vs-ZCS/NixCo1−x(OH)2 | – | 300 W Xe lamp (λ > 420 nm) | 64600 | 11.1 | 17.32 | |
BP/CIZS | – | 300 W Xe lamp | 2056 | 2 | 7.216 | |
MoS2/CdIn2S4 | – | 300 W Xe lamp (λ > 400 nm) | 1868.19 | 2.26 | – | |
CNMT/Zn0.5Cd0.5S | Pt (3%) | 300 W Xe lamp (λ > 420 nm) | 7825.20 | 6.38 | 18.9 | |
In2S3/Nb2O5/Nb2C | – | 300 W Xe lamp | 68.8 | 7.5 | 1.07 | |
ZnCdS/ NiCoP | – | 5W LED (λ > 420 nm) | 11659.6 | 4.16 | 7.93 | |
Cd0.5Zn0.5S/Nb2O5 | – | 300 W Xe lamp (λ > 420 nm) | 94 | 2.85 | – | |
CuInS2@C3N4 | – | 350 W Xe lamp (λ > 420 nm) | 373 | 31 | 4.32 | |
Au-ZnIn2S4/NaTaO3 | – | 300 W Xe lamp | 11404 | 10 | 10.1 | |
ZnIn2S4/PDIIM | – | 300 W Xe lamp | 13040 | 2.64 | – |
"
S-scheme heterojunction | Cocatalyst (wt%) | Light source (wavelength/nm) | H2 production rate (μmol∙h−1∙g−1) | Enhancement factor versus TiO2 | Apparent quantum yield (%) | Reference |
TiO2−x/TpPa-1-COF | Pt (3%) | 300 W Xe lamp (λ > 420 nm) | 15330 | 10.5 | 6.7 | |
TiO2-MoO3 | – | Xe lamp | 151 | – | 1.38 | |
TiO2/In0.5WO3/rGO | – | Xe lamp (λ > 400 nm) | 304.98 | 12 | 15.6 | |
Co2P/PC-b-TiO2 | – | 300 W Xe lamp | 1530 | 4.37 | 12.5 | |
Ti3C2 MXene@TiO2/CuInS2 | – | 300 W Xe lamp | 356.27 | 69.5 | – | |
TiO2/CdS | – | 350 W Xe lamp | 2320 | 35 | 10.14 | |
ZnIn2S4/TiO2 | Pt (1%) | 300 W Xe lamp | 8774 | 2.7 | 39 | |
TiO2/ZnIn2S4 | Pt (1%) | 300 W Xe lamp | 6030 | 3.7 | 10.49 | |
TiO2/g-C3N4 | – | 350 W Xe lamp | 4900 | 11 | – | |
Co3Se4/TiO2 | – | 300 W Xe lamp (350–780 nm) | 6065 | 12.5 | 1.8 | |
BP/(Ti3C2Tx@TiO2) | – | 300 W Xe lamp (λ > 325 nm) | 564.8 | 48.11 | 2.7 | |
CuBi2O4/Na-P25 | – | 300 W Xe lamp | 2695.73 | 37.5 | – | |
TiO2−x MS/BiOI NS | Pt (1%) | 300 W Xe lamp (300–800 nm) | 749.28 | 3 | 4.46 | |
TiO2/Bi2O3 | – | LED (λ = 365 nm) | 12080 | 43 | – | |
WO3/TiO2/rGO | – | 350 W Xe lamp | 245.8 | 3.5 | 1.4 | |
TiO2/ZnCo2S4 | – | 300 W Xe lamp (λ > 420 nm) | 5580 | 88.3 | 11.5 | |
PDI-TiO2 | Pt (3%) | 300 W Xe lamp | 9766 | 2.56 | – |
"
S-scheme heterojunction | Cocatalyst (wt%) | Light source (wavelength/nm) | H2 production rate (μmol∙h−1∙g−1) | Enhancement factor versus oxide | Apparent quantum yield (%) | Reference |
WO3@ZnIn2S4 | – | 300 W Xe lamp | 8500 | 10.62 | 3.61 | |
W18O49/g‐C3N4 | – | 300 W Xe lamp (λ > 420 nm) | 892 | 3.4 | 6.21 | |
CuO/CdS/CoWO4 | – | 300 W Xe lamp (λ > 420 nm) | 457.9 | 102.9 | – | |
Cd0.5Zn0.5S/Nb2O5 | – | 300 W Xe lamp (λ > 420 nm) | 94 | – | – | |
WO3/TiO2/rGO | – | 350 W Xe lamp | 245.8 | 2.3 | 1.4 | |
Cu2O/ZnO | – | 150 W Xe lamp | 208.95 | 31.77 | 8.85 | |
In2O3/MⅡIn2S4 | – | 250 W Xe lamp (λ > 420 nm) | 5331 | 88.8 | – | |
Fe3O4/Co3O4-TiO2 | – | 150 W Xe lamp (λ > 400 nm) | 578 | – | – | |
Co3O4/ZnO | Pt (0.5%) | 500 W Xe lamp (420-700m) | 2241 | 1834 | – | |
WO3/TpPa-1-COF | – | 300 W Xe lamp (λ > 420 nm) | 19890 | 4.8 | 12.4 | |
ZnO@ZnS | – | 350 W Xe lamp | 15700 | 3.2 | 27.4 | |
W18O49/Cd0.5Zn0.5S | – | 300 W Xe lamp (200-2500 nm) | 147700 | 2.03 | 45.3 | |
CeO2/CdWO4 | – | 300 W Xe lamp | 2590 | 14.97 | – | |
α-Fe2O3/TiO2-Pd | – | 250 W UV lamp (λ > 420 nm) | 3490.54 | 87 | – | |
p-CNQDs/VO-ZnO | – | 300 W Xe lamp (λ > 420 nm) | 481.3 | 117 | 15.4 | |
ZnBi2O4/ZnO | – | 570 W Xe lamp | 3440 | 12.7 | – | |
WO3/RP | – | 300 W Xe lamp (λ > 420 nm) | 6 | 6 | 2.5 | |
WO3/CoP | – | 5 W white light | 4417.2 | 5.06 | 2.02 | |
MoP@MoO3 | – | 5 W LED | 10000.3 | – | 7.78 | |
In2O3/CdS | – | 150 W Xe lamp | 14.98 | 8.66 | 9.5 | |
Mn0.5Cd0.5S/WO3/Au | – | 300 W Xe lamp | 25856 | 2.74 | – | |
CeO2/CdSe-DETA | Pt (0.6%) | 300 W Xe lamp (λ > 420 nm) | 3710 | 46.38 | 29.7 | |
Cu2O/g-C3N4 | – | 500 W Xe lamp (λ > 400 nm) | 480.6 | 12 | – | |
ZnO/SrTiO3 | – | 300 W Xe lamp | 16006.12 | 31.89 | 11.52 |
"
S-scheme heterojunction | Cocatalyst (wt%) | Light source (wavelength/nm) | H2 production rate (μmol∙h−1∙g−1) | Enhancement factor | Apparent quantum yield (%) | Reference |
Ni2P/pg-C3N4/Cd0.5Zn0.5Se-D | – | 300 W Xe lamp (λ > 420 nm) | 12627 | 3.65 | 37.7 | |
COF/CdS | – | 300 W Xe lamp (λ > 420 nm) | 8670 | 2.1 | 8.9 | |
ZnBi2O4/ZnO | – | 570 W Xe lamp | 3440 | 12.7 | – | |
CdSe/Cu3P | – | 500 W Xe-Hg lamp | 92100 | 2 | – | |
BiOBr/ZnIn2S4 | Pt (3%) | 300 W Xe lamp (320-780 nm) | 17000 | 4 | 11.7 | |
ZnFe2O4@WO3−X/polypyrrole | – | 150 W Xe lamp (λ > 400 nm) | 43800 | 2.2 | – | |
curcumin/ZnO | – | 300 W sun simulator | 5100 | 6.46 | – | |
BiVO3/SnO2 | – | 300 W Xe lamp | 8200 | 8 | – | |
ZnWO4-ZnIn2S4 | – | 300 W Xe lamp | 4925.3 | 304 | – | |
BiVO4/Bi0.6Y0.4VO4 | Rh (1%) | 300 W Xe lamp (λ > 300 nm) | 910 | 3 | – | |
Polyaniline/g-C3N4 | – | 300 W sun simulator | 4430 | 11 | – | |
ZnCoMOF@CoP-5 | – | 5 W LED | 16958 | 14.8 | 7.6 | |
Cs2AgBiBr6/Ag3PO4 | – | 300 W Xe lamp (λ > 420 nm) | 819.23 | 3.3 | – | |
CoAlP/Ni2P | – | 5 W LED | 8240 | 10.3 | – | |
Ni2P-SnNb2O6/CdS-D | – | 300 W Xe lamp (λ > 420 nm) | 11992 | 199.87 | 35.8 | |
Zn0.7Cd0.3S/0.5Ti3C2/2Fe2O3 | – | 300 W Xe lamp (λ > 420 nm) | 27240 | 100.89 | 20.92 | |
Ni-MOF–74/BiVO4/P | – | 5 W LED | 4908 | 23 | – | |
SnNb2O6/Ni-ZnIn2S4 | Pt (3%) | 300 W Xe lamp (λ > 420 nm) | 2807 | 4.49 | 7.8 | |
Pt/BP-Bi2WO6 | – | 300 W Xe lamp | 16.8 | 4.5 | – | |
Bi2O2CO3/HRP | – | 300 W Xe lamp | 3144 | 3 | – | |
Ni-MOF/P | – | 5 W LED | 6337 | 14.18 | – |
1 |
Hasija V. ; Kumar A. ; Sudhaik A. ; Raizada P. ; Singh P. ; Van Le Q. ; Le T. T. ; Nguyen V. H. Environ. Chem. Lett. 2021, 19, 2941.
doi: 10.1007/s10311-021-01231-w |
2 |
Sayed M. ; Yu J. ; Liu G. ; Jaroniec M. Chem. Rev. 2022, 122, 10484.
doi: 10.1021/acs.chemrev.1c00473 |
3 |
Kumar A. ; Khosla A. ; Kumar Sharma S. ; Dhiman P. ; Sharma G. ; Gnanasekaran L. ; Naushad M. ; Stadler F. J. Fuel 2023, 333, 126267.
doi: 10.1016/j.fuel.2022.126267 |
4 |
Abutaleb A. Polymer 2021, 13, 2290.
doi: 10.3390/polym13142290 |
5 |
Dhakshinamoorthy A. ; Asiri A. M. ; García H. Angew. Chem. Int. Edit. 2016, 55, 5414.
doi: 10.1002/anie.201505581 |
6 | Han G. ; Xu F. ; Cheng B. ; Li Y. ; Yu J. ; Zhang L. Acta Phys. -Chim. Sin. 2022, 38, 2112037. |
韩高伟; 徐飞燕; 程蓓; 李佑稷; 余家国; 张留洋; 物理化学学报, 2022, 38, 2112037.
doi: 10.3866/PKU.WHXB202112037 |
|
7 |
Kudo A. ; Miseki Y. Chem. Soc. Rev. 2009, 38, 253.
doi: 10.1039/B800489G |
8 |
Wazir M. B. ; Daud M. ; Safeer S. ; Almarzooqi F. ; Qurashi A. ACS Omega 2022, 7, 16856.
doi: 10.1021/acsomega.2c00330 |
9 |
Bie C. ; Cheng B. ; Fan J. ; Ho W. ; Yu J. EnergyChem 2021, 3, 100051.
doi: 10.1016/j.enchem.2021.100051 |
10 |
Purohit S. ; Yadav K. L. ; Satapathi S. Adv. Mater. Interfaces 2022, 9, 2200058.
doi: 10.1002/admi.202200058 |
11 |
Bie C. ; Cheng B. ; Ho W. ; Li Y. ; Macyk W. ; Ghasemi J. B. ; Yu J. Green Chem. 2022, 24, 5739.
doi: 10.1039/D2GC01684B |
12 |
Wang X. ; Sayed M. ; Ruzimuradov O. ; Zhang J. ; Fan Y. ; Li X. ; Bai X. ; Low J. Appl. Mater. Today 2022, 29, 101609.
doi: 10.1016/j.apmt.2022.101609 |
13 |
Xiang X. ; Wang L. ; Zhang J. ; Cheng B. ; Yu J. ; Macyk W. Adv. Photonics Res. 2022, 3, 2200065.
doi: 10.1002/adpr.202200065 |
14 |
Bie C. ; Wang L. ; Yu J. Chem 2022, 8, 1567.
doi: 10.1016/j.chempr.2022.04.013 |
15 |
Gao D. ; Xu J. ; Wang L. ; Zhu B. ; Yu H. ; Yu J. Adv. Mater. 2022, 34, 2108475.
doi: 10.1002/adma.202108475 |
16 |
Bie C. ; Zhu B. ; Wang L. ; Yu H. ; Jiang C. ; Chen T. ; Yu J. Angew. Chem. Int. Ed. 2022, 61, 202212045.
doi: 10.1002/anie.202212045 |
17 |
Gao D. ; Xu J. ; Chen F. ; Wang P. ; Yu H. Appl. Catal. B: Environ. 2022, 305, 121053.
doi: 10.1016/j.apcatb.2021.121053 |
18 |
Wu X. ; Ma H. ; Zhong W. ; Fan J. ; Yu H. Appl. Catal. B: Environ. 2020, 271, 118899.
doi: 10.1016/j.apcatb.2020.118899 |
19 |
Yu W. ; Zhang S. ; Chen J. ; Xia P. ; Richter M. H. ; Chen L. ; Xu W. ; Jin J. ; Chen S. ; Peng T. J. Mater. Chem. A 2018, 6, 15668.
doi: 10.1039/C8TA02922A |
20 |
Cao S. ; Yu J. ; Wageh S. ; Al-Ghamdi A. A. ; Mousavi M. ; Ghasemi J. B. ; Xu F. J. Mater. Chem. A 2022, 10, 17174.
doi: 10.1039/D2TA05181H |
21 |
Wu X. ; Gao D. ; Wang P. ; Yu H. ; Yu J. Carbon 2019, 153, 757.
doi: 10.1016/j.carbon.2019.07.083 |
22 | Wageh S. ; Al-Ghamdi A. A. ; Xu Q. Acta Phys. -Chim. Sin. 2022, 38, 2202001. |
WagehS.; Al-GhamdiAhmed A.; 徐全龙; 物理化学学报, 2022, 38, 2202001.
doi: 10.3866/PKU.WHXB202202001 |
|
23 |
Wu X. ; Gao D. ; Yu H. ; Yu J. Nanoscale 2019, 11, 9608.
doi: 10.1039/C9NR00887J |
24 |
Xu J. ; Zhong W. ; Gao D. ; Wang X. ; Wang P. ; Yu H. Chem. Eng. J. 2022, 439, 135758.
doi: 10.1016/j.cej.2022.135758 |
25 |
Zhong W. ; Wu X. ; Liu Y. ; Wang X. ; Fan J. ; Yu H. Appl. Catal. B: Environ. 2021, 280, 119455.
doi: 10.1016/j.apcatb.2020.119455 |
26 |
Wu X. ; Chen F. ; Wang X. ; Yu H. Appl. Surf. Sci. 2018, 427, 645.
doi: 10.1016/j.apsusc.2017.08.050 |
27 |
Yu H. ; Ma H. ; Wu X. ; Wang X. ; Fan J. ; Yu J. Sol. RRL 2020, 5, 2000372.
doi: 10.1002/solr.202000372 |
28 |
Wang L. ; Bie C. ; Yu J. Trends Chem. 2022, 4, 973.
doi: 10.1016/j.trechm.2022.08.008 |
29 |
Xia Y. ; Sayed M. ; Zhang L. ; Cheng B. ; Yu J. Chem. Catal. 2021, 1, 1173.
doi: 10.1016/j.checat.2021.08.009 |
30 |
Xu Q. ; Zhang L. ; Cheng B. ; Fan J. ; Yu J. Chem 2020, 6, 1543.
doi: 10.1016/j.chempr.2020.06.010 |
31 |
Serpone N. ; Borgarello E. ; Grätzel M. J. Chem. Soc., Chem. Commun. 1984, 6, 342.
doi: 10.1039/C39840000342 |
32 |
Bard A. J. J. Photochem. 1979, 10, 59.
doi: 10.1016/0047-2670(79)80037-4 |
33 |
Sayama K. ; Mukasa K. ; Abe R. ; Abe Y. ; Arakawa H. J. Photochem. Photobiol. A: Chem. 2002, 148, 71.
doi: 10.1016/S1010-6030(02)00070-9 |
34 |
Abe R. ; Shinmei K. ; Koumura N. ; Hara K. ; Ohtani B. J. Am. Chem. Soc. 2013, 135, 16872.
doi: 10.1021/ja4048637 |
35 |
Tada H. ; Mitsui T. ; Kiyonaga T. ; Akita T. ; Tanaka K. Nat. Mater. 2006, 5, 782.
doi: 10.1038/nmat1734 |
36 |
Fu J. ; Xu Q. ; Low J. ; Jiang C. ; Yu J. Appl. Catal. B: Environ. 2019, 243, 556.
doi: 10.1016/j.apcatb.2018.11.011 |
37 |
Zhang L. ; Zhang J. ; Yu H. ; Yu J. Adv. Mater. 2022, 34, 2107668.
doi: 10.1002/adma.202107668 |
38 |
Zhang J. ; Wang L. ; Mousavi M. ; Ghasemi J. B. ; Yu J. Chin. J. Struct. Chem. 2022, 41, 2206003.
doi: 10.14102/j.cnki.0254-5861.2022-0150 |
39 |
Wang Z. ; Cheng B. ; Zhang L. ; Yu J. ; Li Y. ; Wageh S. ; Al-Ghamdi A. A. Chin. J Catal. 2022, 43, 1657.
doi: 10.1016/S1872-2067(21)64010-X |
40 |
Jiang Z. ; Cheng B. ; Zhang Y. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. ; Wang L. J. Mater. Sci. Technol. 2022, 124, 193.
doi: 10.1016/j.jmst.2022.01.029 |
41 |
Wang L. ; Zhang J. ; Yu H. ; Patir I. H. ; Li Y. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. J. Phys. Chem. Lett. 2022, 13, 4695.
doi: 10.1021/acs.jpclett.2c01332 |
42 |
Xu Q. ; Wageh S. ; Al-Ghamdi A. A. ; Li X. J. Mater. Sci. Technol. 2022, 124, 171.
doi: 10.1016/j.jmst.2022.02.016 |
43 |
Zhang J. ; Zhang L. ; Wang W. ; Yu J. J. Phys. Chem. Lett. 2022, 13, 8462.
doi: 10.1021/acs.jpclett.2c02125 |
44 |
Wang L. ; Cheng B. ; Zhang L. ; Yu J. Small 2021, 17, 2103447.
doi: 10.1002/smll.202103447 |
45 |
Yu W. ; Fu H. J. ; Mueller T. ; Brunschwig B. S. ; Lewis N. S. J. Chem. Phys. 2020, 153, 020902.
doi: 10.1063/5.0009858 |
46 |
Cheng C. ; He B. ; Fan J. ; Cheng B. ; Cao S. ; Yu J. Adv. Mater. 2021, 33, 2100317.
doi: 10.1002/adma.202100317 |
47 |
Yang J. ; Wu X. ; Mei Z. ; Zhou S. ; Su Y. ; Wang G. Adv. Sustain. Syst. 2022, 8, 2200056.
doi: 10.1002/adsu.202200056 |
48 |
Liu B. ; Bie C. ; Zhang Y. ; Wang L. ; Li Y. ; Yu J. Langmuir 2021, 37, 14114.
doi: 10.1021/acs.langmuir.1c02360 |
49 |
Wu X. ; Ma H. ; Wang K. ; Wang J. ; Wang G. ; Yu H. J. Colloid Interface Sci. 2023, 633, 817.
doi: 10.1016/j.jcis.2022.11.143 |
50 |
Jiang J. ; Xiong Z. ; Wang H. ; Liao G. ; Bai S. ; Zou J. ; Wu P. ; Zhang P. ; Li X. J. Mater. Sci. Technol. 2022, 118, 15.
doi: 10.1016/j.jmst.2021.12.018 |
51 |
Vignesh S. ; Chandrasekaran S. ; Srinivasan M. ; Anbarasan R. ; Perumalsamy R. ; Arumugam E. ; Shkir M. ; Algarni H. ; AlFaify S. Chemosphere 2022, 288, 132611.
doi: 10.1016/j.chemosphere.2021.132611 |
52 |
Chen Y. ; Su F. ; Xie H. ; Wang R. ; Ding C. ; Huang J. ; Xu Y. ; Ye L. Chem. Eng. J. 2021, 404, 126498.
doi: 10.1016/j.cej.2020.126498 |
53 |
Gogoi D. ; Shah A. K. ; Qureshi M. ; Golder A. K. ; Peela N. R. Appl. Surf. Sci. 2021, 558, 149900.
doi: 10.1016/j.apsusc.2021.149900 |
54 | Huang Y. ; Mei F. ; Zhang J. ; Dai K. ; Dawson G. Acta Phys. -Chim. Sin. 2022, 38, 2108028. |
黄悦; 梅飞飞; 张金锋; 代凯; DawsonG.; 物理化学学报, 2022, 38, 2108028.
doi: 10.3866/PKU.WHXB202108028 |
|
55 |
Li X. ; Luo Q. ; Han L. ; Deng F. ; Yang Y. ; Dong F. J. Mater. Sci. Technol. 2022, 114, 222.
doi: 10.1016/j.jmst.2021.10.030 |
56 |
Chen X. ; Hu T. ; Zhang J. ; Yang C. ; Dai K. ; Pan C. J. Alloy. Compd. 2021, 863, 158068.
doi: 10.1016/j.jallcom.2020.158068 |
57 |
Sun H. ; Shi Y. ; Shi W. ; Guo F. Appl. Surf. Sci. 2022, 593, 153281.
doi: 10.1016/j.apsusc.2022.153281 |
58 |
Feng K. ; Tian J. ; Hu X. ; Fan J. ; Liu E. Int. J. Hydrog. Energ. 2022, 47, 4601.
doi: 10.1016/j.ijhydene.2021.11.095 |
59 |
Zhang B. ; Hu X. ; Liu E. ; Fan J. Chin. J. Catal. 2021, 42, 1519.
doi: 10.1016/S1872-2067(20)63765-2 |
60 |
Chen D. ; Li X. ; Dai K. ; Zhang J. ; Dawson G. J. Phys. D: Appl. Phys. 2022, 55, 244001.
doi: 10.1088/1361-6463/ac58d0 |
61 |
Li C. ; Zhao Y. ; Fan J. ; Hu X. ; Liu E. ; Yu Q. J. Alloy. Compd. 2022, 919, 165752.
doi: 10.1016/j.jallcom.2022.165752 |
62 |
Liu J. ; Wei X. ; Sun W. ; Guan X. ; Zheng X. ; Li J. Environ. Res. 2021, 197, 111136.
doi: 10.1016/j.envres.2021.111136 |
63 |
Liu Q. ; He X. ; Peng J. ; Yu X. ; Tang H. ; Zhang J. Chin. J. Catal. 2021, 42, 1478.
doi: 10.1016/S1872-2067(20)63753-6 |
64 |
Zhou H. ; Ke J. ; Wu H. ; Liu J. ; Xu D. ; Zou X. Mater. Today Energy 2022, 23, 100918.
doi: 10.1016/j.mtener.2021.100918 |
65 |
Dong G. ; Zhang Y. ; Wang Y. ; Deng Q. ; Qin C. ; Hu Y. ; Zhou Y. ; Tian G. ACS Appl. Energy Mater. 2021, 4, 14342.
doi: 10.1021/acsaem.1c03019 |
66 |
Zhang B. ; Shi H. ; Yan Y. ; Liu C. ; Hu X. ; Liu E. ; Fan J. Colloid. Surface. A 2021, 608, 125598.
doi: 10.1016/j.colsurfa.2020.125598 |
67 |
Li B. ; Zhang B. ; Zhang Y. ; Zhang M. ; Huang W. ; Yu C. ; Sun J. ; Feng J. ; Dong S. ; Sun J. Int. J. Hydrog. Energy 2021, 46, 32413.
doi: 10.1016/j.ijhydene.2021.07.090 |
68 |
Chen X. ; Ke X. ; Zhang J. ; Yang C. ; Dai K. ; Liang C. Ceram. Int. 2021, 47, 13488.
doi: 10.1016/j.ceramint.2021.01.207 |
69 |
Zhang Q. ; Bai X. ; Hu X. ; Fan J. ; Liu E. Appl. Surf. Sci. 2022, 579, 152224.
doi: 10.1016/j.apsusc.2021.152224 |
70 |
Wang H. ; Zhao Y. ; Zhan X. ; Yu J. ; Chen L. ; Sun Y. ; Shi H. J. Alloy. Compd. 2022, 899, 163250.
doi: 10.1016/j.jallcom.2021.163250 |
71 |
Li X. ; Kang B. ; Dong F. ; Zhang Z. ; Luo X. ; Han L. ; Huang J. ; Feng Z. ; Chen Z. ; Xu J. ; et al Nano Energy 2021, 81, 105671.
doi: 10.1016/j.nanoen.2020.105671 |
72 |
Ran Y. ; Cui Y. ; Zhang Y. ; Fang Y. ; Zhang W. ; Yu X. ; Lan H. ; An X. Chem. Eng. J. 2022, 431, 133348.
doi: 10.1016/j.cej.2021.133348 |
73 |
Chen L. ; Xu Y. ; Chen B. Appl. Catal. B: Environ. 2019, 256, 117848.
doi: 10.1016/j.apcatb.2019.117848 |
74 |
Wang Y. ; Hao X. ; Zhang L. ; Jin Z. ; Zhao T. Catal. Sci. Technol. 2021, 11, 943.
doi: 10.1039/D0CY02009E |
75 |
Mu F. ; Miao X. ; Cao J. ; Zhao W. ; Yang G. ; Zeng H. ; Li S. ; Sun C. J. Clean. Prod. 2022, 360, 131948.
doi: 10.1016/j.jclepro.2022.131948 |
76 |
Zhang G. ; Guan Z. ; Yang J. ; Li Q. ; Zhou Y. ; Zou Z. Sol. RRL 2022, 6, 2200587.
doi: 10.1002/solr.202200587 |
77 |
Gao L. ; Liu J. ; Long H. ; Wang P. ; Yu H. Catal. Sci. Technol. 2021, 11, 7307.
doi: 10.1039/D1CY01581H |
78 |
Chandrasekaran S. ; Yao L. ; Deng L. ; Bowen C. ; Zhang Y. ; Chen S. ; Lin Z. ; Peng F. ; Zhang P. Chem. Soc. Rev. 2019, 48, 4178.
doi: 10.1039/C8CS00664D |
79 |
Kulkarni P. ; Nataraj S. K. ; Balakrishna R. G. ; Nagaraju D. H. ; Reddy M. V. J. Mater. Chem. A 2017, 5, 22040.
doi: 10.1039/C7TA07329A |
80 |
Gogoi D. ; Shah A. K. ; Rambabu P. ; Qureshi M. ; Golder A. K. ; Peela N. R. ACS Appl. Mater. Interfaces 2021, 13, 45475.
doi: 10.1021/acsami.1c11740 |
81 |
Güy N. ; Atacan K. ; Özacar M. Renew. Energy 2022, 195, 107.
doi: 10.1016/j.renene.2022.05.171 |
82 |
Cao Y. ; Wang G. ; Liu H. ; Li Y. ; Jin Z. ; Ma Q. Int. J. Hydrog. Energy 2021, 46, 7230.
doi: 10.1016/j.ijhydene.2020.11.214 |
83 |
Bai J. ; Chen W. ; Hao L. ; Shen R. ; Zhang P. ; Li N. ; Li X. Chem. Eng. J. 2022, 447, 137488.
doi: 10.1016/j.cej.2022.137488 |
84 |
Wang G. ; Quan Y. ; Yang K. ; Jin Z. J. Mater. Sci. Technol. 2022, 121, 28.
doi: 10.1016/j.jmst.2021.11.073 |
85 |
Bai J. ; Chen W. ; Shen R. ; Jiang Z. ; Zhang P. ; Liu W. ; Li X. J. Mater. Sci. Technol. 2022, 112, 85.
doi: 10.1016/j.jmst.2021.11.003 |
86 |
Bai J. ; Shen R. ; Jiang Z. ; Zhang P. ; Li Y. ; Li X. Chin. J. Catal. 2022, 43, 359.
doi: 10.1016/S1872-2067(21)63883-4 |
87 |
Jin Z. ; Li H. ; Li J. Chin. J. Catal. 2022, 43, 303.
doi: 10.1016/S1872-2067(21)63818-4 |
88 |
Zulfiqar S. ; Liu S. ; Rahman N. ; Tang H. ; Shah S. ; Yu X. ; Liu Q. Rare Met. 2021, 40, 2381.
doi: 10.1007/s12598-020-01616-w |
89 |
Sun L. ; Li L. ; Yang J. ; Fan J. ; Xu Q. Chin. J. Catal. 2022, 43, 350.
doi: 10.1016/S1872-2067(21)63869-X |
90 |
Xu Z. ; Shi W. ; Shi Y. ; Sun H. ; Li L. ; Guo F. ; Wen H. Appl. Surf. Sci. 2022, 595, 153482.
doi: 10.1016/j.apsusc.2022.153482 |
91 |
Peng J. ; Shen J. ; Yu X. ; Tang H. ; Zulfiqar ; Liu Q. Chin. J. Catal. 2021, 42, 87.
doi: 10.1016/S1872-2067(20)63595-1 |
92 |
Xiong Y. ; Liu T. ; Wang X. ; Liu W. ; Xue Y. ; Zhang X. ; Xiong C. ; Tian J. J. Alloy. Compd. 2022, 918, 165652.
doi: 10.1016/j.jallcom.2022.165652 |
93 |
Liu Y. ; Sun J. ; Zhou X. ; Lv C. ; Zhou Y. ; Cong B. ; Chen G. Chem. Eng. J. 2022, 437, 135280.
doi: 10.1016/j.cej.2022.135280 |
94 |
Yang H. ; Meng A. L. ; Yang L. ; - N. ; Li Z.-J. J. Chem. Eng. J. 2022, 432, 134371.
doi: 10.1016/j.cej.2021.134371 |
95 |
Wang L. ; Zhang Z. ; Xu X. ; Yu L. ; Yang T. ; Zhang X. ; Zhang Y. ; Zhu H. ; Li J. ; Zhang J. J. Alloy. Compd. 2022, 926, 166981.
doi: 10.1016/j.jallcom.2022.166981 |
96 |
Zhang B. ; Shi H. ; Hu X. ; Wang Y. ; Liu E. ; Fan J. J. Phys. D: Appl. Phys. 2020, 53, 205101.
doi: 10.1088/1361-6463/ab7563 |
97 |
Li C. ; Liu X. ; Huo P. ; Yan Y. ; Liao G. ; Ding G. ; Liu C. Small 2021, 17, 2102539.
doi: 10.1002/smll.202102539 |
98 |
Tayyab M. ; Liu Y. ; Liu Z. ; Pan L. ; Xu Z. ; Yue W. ; Zhou L. ; Lei J. ; Zhang J. J. Colloid Interface Sci. 2022, 628, 500.
doi: 10.1016/j.jcis.2022.08.071 |
99 |
Wang K. ; Xie H. ; Li Y. ; Wang G. ; Jin Z. J. Colloid Interface Sci. 2022, 628, 64.
doi: 10.1016/j.jcis.2022.08.001 |
100 |
Shao X. ; Wang K. ; Peng L. ; Li K. ; Wen H. ; Le X. ; Wu X. ; Wang G. Colloid. Surfaces A 2022, 652, 129846.
doi: 10.1016/j.colsurfa.2022.129846 |
101 |
Luo J. ; Lin Z. ; Zhao Y. ; Jiang S. ; Song S. Chin. J. Catal. 2020, 41, 122.
doi: 10.1016/S1872-2067(19)63490-X |
102 |
Zhang J. ; Gu H. ; Wang X. ; Zhang H. ; Chang S. ; Li Q. ; Dai W. L. J. Colloid Interface Sci. 2022, 625, 785.
doi: 10.1016/j.jcis.2022.06.074 |
103 |
Liu L. ; Wu Y. ; Song R. ; Zhang Y. ; Ma Y. ; Wan J. ; Zhang M. ; Cui H. ; Yang H. ; Chen X. ; et al J. Colloid Interface Sci. 2022, 628, 701.
doi: 10.1016/j.jcis.2022.08.109 |
104 |
He B. ; Wang Z. ; Xiao P. ; Chen T. ; Yu J. ; Zhang L. Adv. Mater. 2022, 34, 2203225.
doi: 10.1002/adma.202203225 |
105 |
Wang L. ; Fei X. ; Zhang L. ; Yu J. ; Cheng B. ; Ma Y. J. Mater. Sci. Technol. 2022, 112, 1.
doi: 10.1016/j.jmst.2021.10.016 |
106 |
Peiris S. ; de Silva H. B. ; Ranasinghe K. N. ; Bandara S. V. ; Perera I. R. J. Chin. Chem. Soc. 2021, 68, 738.
doi: 10.1002/jccs.202000465 |
107 |
Zhang Y. -P. ; Han W. ; Yang Y. ; Zhang H. -Y. ; Wang Y. ; Wang L. ; Sun X. J. ; Zhang F. M. Chem. Eng. J. 2022, 446, 137213.
doi: 10.1016/j.cej.2022.137213 |
108 |
Alnaggar G. ; Alkanad K. ; Chandrashekar S. S. G. ; Bajiri M. A. ; Drmosh Q. A. ; Krishnappagowda L. N. ; Ananda S. New J. Chem. 2022, 46, 9629.
doi: 10.1039/D2NJ00173J |
109 |
Shaheer A. R. M. ; Vinesh V. ; Lakhera S. K. ; Neppolian B. Sol. Energy 2021, 213, 260.
doi: 10.1016/j.solener.2020.11.030 |
110 |
Chen L. ; Song X. ; Ren J. ; Yuan Z. Appl. Catal. B: Environ. 2022, 315, 121546.
doi: 10.1016/j.apcatb.2022.121546 |
111 |
Yang W. ; Ma G. ; Fu Y. ; Peng K. ; Yang H. ; Zhan X. ; Yang W. ; Wang L. ; Hou H. Chem. Eng. J. 2022, 429, 132381.
doi: 10.1016/j.cej.2021.132381 |
112 |
Ge H. ; Xu F. ; Cheng B. ; Yu J. ; Ho W. ChemCatChem 2019, 11, 6301.
doi: 10.1002/cctc.201901486 |
113 | Mei Z. ; Wang G. ; Yan S. ; Wang J. Acta Phys. -Chim. Sin. 2021, 37, 2009097. |
梅子慧; 王国宏; 严素定; 王娟; 物理化学学报, 2021, 37, 2009097.
doi: 10.3866/PKU.WHXB202009097 |
|
114 |
Li J. ; Wu C. ; Li J. ; Dong B. ; Zhao L. ; Wang S. Chin. J. Catal. 2022, 43, 339.
doi: 10.1016/S1872-2067(21)63875-5 |
115 |
Alsalme A. ; Galal A. H. ; El-Sherbeny E. F. ; Soltan A. ; Abdel-Messih M. F. ; Ahmed M. A. Diam. Relat. Mater. 2022, 122, 108819.
doi: 10.1016/j.diamond.2022.108819 |
116 |
Huang W. ; Xue W. ; Hu X. ; Fan J. ; Tang C. ; Liu E. Appl. Surf. Sci. 2022, 599, 153900.
doi: 10.1016/j.apsusc.2022.153900 |
117 |
Ai Z. ; Zhang K. ; Xu L. ; Huang M. ; Shi D. ; Shao Y. ; Shen J. ; Wu Y. ; Hao X. J. Colloid Interface Sci. 2022, 610, 13.
doi: 10.1016/j.jcis.2021.12.053 |
118 |
Mao J. X. ; Wang J. C. ; Gao H. ; Shi W. ; Jiang H. P. ; Hou Y. ; Li R. ; Zhang W. ; Liu L. Int. J. Hydrog. Energy 2022, 47, 8214.
doi: 10.1016/j.ijhydene.2021.12.133 |
119 |
Zhang B. ; Wang D. ; Jiao S. ; Xu Z. ; Liu Y. ; Zhao C. ; Pan J. ; Liu D. ; Liu G. ; Jiang B. ; et al Chem. Eng. J. 2022, 446, 137138.
doi: 10.1016/j.cej.2022.137138 |
120 |
Gao J. ; Rao S. ; Yu X. ; Wang L. ; Xu J. ; Yang J. ; Liu Q. J. Colloid Interface Sci. 2022, 628, 166.
doi: 10.1016/j.jcis.2022.07.112 |
121 |
He F. ; Meng A. ; Cheng B. ; Ho W. ; Yu J. Chin. J. Catal. 2020, 41, 9.
doi: 10.1016/S1872-2067(19)63382-6 |
122 |
Dai X. ; Feng S. ; Wu W. ; Zhou Y. ; Ye Z. ; Cao X. ; Wang Y. ; Yang C. Int. J. Hydrog. Energy 2022, 47, 25104.
doi: 10.1016/j.ijhydene.2022.05.269 |
123 |
Liu L. ; Liu J. ; Zong S. ; Huang Z. ; Feng X. ; Zheng J. ; Fang Y. Int. J. Hydrog. Energy 2022, 47, 39486.
doi: 10.1016/j.ijhydene.2022.09.122 |
124 |
Park B. H. ; Park H. ; Kim T. ; Yoon S. J. ; Kim Y. ; Son N. ; Kang M. Int. J. Hydrog. Energy 2021, 46, 38319.
doi: 10.1016/j.ijhydene.2021.09.087 |
125 |
Bariki R. ; Das K. ; Pradhan S. K. ; Prusti B. ; Mishra B. G. ACS Appl. Energ. Mater. 2022, 5, 11002.
doi: 10.1021/acsaem.2c01670 |
126 |
Abutalib M. M. ; Alghamdi H. M. ; Rajeh A. ; Nur O. ; Hezma A. M. ; Mannaa M. A. J. Mater. Res. Technol. 2022, 20, 1043.
doi: 10.1016/j.jmrt.2022.07.078 |
127 |
Mohamed R. M. ; Shawky A. Opt. Mater. 2022, 124, 112012.
doi: 10.1016/j.optmat.2022.112012 |
128 |
Sun L. ; Li L. ; Fan J. ; Xu Q. ; Ma D. J. Mater. Sci. Technol. 2022, 123, 41.
doi: 10.1016/j.jmst.2021.12.065 |
129 |
Jiang J. ; Wang G. ; Shao Y. ; Wang J. ; Zhou S. ; Su Y. Chin. J. Catal. 2022, 43, 329.
doi: 10.1016/S1872-2067(21)63889-5 |
130 |
Xue W. ; Sun H. ; Hu X. ; Bai X. ; Fan J. ; Liu E. Chin. J. Catal. 2022, 43, 234.
doi: 10.1016/S1872-2067(20)63783-4 |
131 |
Bahadoran A. ; Ramakrishna S. ; Masudy-Panah S. ; De Lile J. R. ; Gu J. ; Liu Q. ; Mishra Y. K. Ind. Eng. Chem. Res. 2022, 61, 10931.
doi: 10.1021/acs.iecr.2c01224 |
132 |
Bootluck W. ; Chittrakarn T. ; Techato K. ; Jutaporn P. ; Khongnakorn W. Catal. Lett. 2022, 152, 2590.
doi: 10.1007/s10562-021-03873-5 |
133 |
Wang Y. ; Yu H. ; Wang D. ; Xing M. ; Zhang Y. ; Song C. Chem. Eng. J. 2022, 437, 135321.
doi: 10.1016/j.cej.2022.135321 |
134 |
Bahadoran A. ; Masudy-Panah S. ; De Lile J. R. ; Li J. ; Gu J. ; Sadeghi B. ; Ramakrishna S. ; Liu Q. Int. J. Hydrog. Energy 2021, 46, 24094.
doi: 10.1016/j.ijhydene.2021.04.208 |
135 |
Jiang S. ; Cao J. ; Guo M. ; Cao D. ; Jia X. ; Lin H. ; Chen S. Appl. Surf. Sci. 2021, 558, 149882.
doi: 10.1016/j.apsusc.2021.149882 |
136 |
Li T. ; Guo X. ; Zhang L. ; Yan T. ; Jin Z. Int. J. Hydrog. Energy 2021, 46, 20560.
doi: 10.1016/j.ijhydene.2021.03.169 |
137 |
Zhang L. ; Jin Z. ; Tsubaki N. Nanoscale 2021, 13, 18507.
doi: 10.1039/D1NR05452J |
138 |
Chava R. K. ; Son N. ; Kang M. J. Colloid Interface Sci. 2022, 627, 247.
doi: 10.1016/j.jcis.2022.07.031 |
139 |
Liu Y. ; Gong Z. ; Lv H. ; Ren H. ; Xing X. Appl. Surf. Sci. 2020, 526, 146734.
doi: 10.1016/j.apsusc.2020.146734 |
140 |
Li Z. ; Jin D. ; Wang Z. Int. J. Hydrog. Energy 2021, 46, 6358.
doi: 10.1016/j.ijhydene.2020.11.122 |
141 |
Dai B. ; Li Y. ; Xu J. ; Sun C. ; Li S. ; Zhao W. Appl. Surf. Sci. 2022, 592, 153309.
doi: 10.1016/j.apsusc.2022.153309 |
142 |
Zhao Y. ; Guo Y. ; Li J. ; Li P. Int. J. Hydrog. Energy 2021, 46, 18922.
doi: 10.1016/j.ijhydene.2021.03.051 |
143 |
Ravi P. ; Kumaravel D. K. ; Subramanian D. ; Thoondyaiah D. ; Rao V. N. ; Venkatakrishnan S. M. ; Sathish M. ACS Appl. Energ. Mater. 2021, 4, 13983.
doi: 10.1021/acsaem.1c02790 |
144 |
Xi Y. ; Chen W. ; Dong W. ; Fan Z. ; Wang K. ; Shen Y. ; Tu G. ; Zhong S. ; Bai S. ACS Appl. Mater. Interfaces 2021, 13, 39491.
doi: 10.1021/acsami.1c11233 |
145 |
Kumar Das K. ; Sahoo D. P. ; Mansingh S. ; Parida K. ACS Omega 2021, 6, 30401.
doi: 10.1021/acsomega.1c03705 |
146 |
AlFawaz A. ; Alsalme A. ; Alswieleh A. M. ; Abdel-Messih M. F. ; Galal A. H. ; Shaker M. H. ; Ahmed M. A. ; Soltan A. Opt. Mater. 2022, 128, 112331.
doi: 10.1016/j.optmat.2022.112331 |
147 |
Abd-Rabboh H. S. M. ; Galal A. H. ; Aziz R. A. ; Ahmed M. A. RSC Adv. 2021, 11, 29507.
doi: 10.1039/D1RA04717E |
148 |
Dai M. ; He Z. ; Zhang P. ; Li X. ; Wang S. J. Mater. Sci. Technol. 2022, 122, 231.
doi: 10.1016/j.jmst.2022.02.014 |
149 |
Guo W. ; Luo H. ; Jiang Z. ; Shangguan W. Chin. J. Catal. 2022, 43, 316.
doi: 10.1016/S1872-2067(21)63846-9 |
150 |
AlFawaz A. ; Alsalme A. ; Soltan A. ; Elmahgary M. G. ; Ahmed M. A. J. Phys. Chem. Solids 2022, 168, 110773.
doi: 10.1016/j.jpcs.2022.110773 |
151 |
Quan Y. ; Wang G. ; Wang X. ; Guo X. ; Hao X. ; Wang K. ; Jin Z. Langmuir 2022, 38, 12617.
doi: 10.1021/acs.langmuir.2c02091 |
152 |
Chen Z. ; Li X. ; Wu Y. ; Zheng J. ; Peng P. ; Zhang X. ; Duan A. ; Wang D. ; Yang Q. Sep. Purif. Technol. 2022, 295, 121250.
doi: 10.1016/j.seppur.2022.121250 |
153 |
Wang K. ; Li S. ; Li Y. ; Li Y. ; Wang G. ; Jin Z. Int. J. Hydrog. Energy 2022, 47, 23618.
doi: 10.1016/j.ijhydene.2022.05.200 |
154 |
Hu T. ; Dai K. ; Zhang J. ; Chen S. Appl. Catal. B: Environ. 2020, 269, 118844.
doi: 10.1016/j.apcatb.2020.118844 |
155 |
Bai J. ; Shen R. ; Chen W. ; Xie J. ; Zhang P. ; Jiang Z. ; Li X. Chem. Eng. J. 2022, 429, 132587.
doi: 10.1016/j.cej.2021.132587 |
156 |
Li H. ; Gong H. ; Jin Z. Appl. Catal. B: Environ. 2022, 307, 121166.
doi: 10.1016/j.apcatb.2022.121166 |
157 |
Li C. ; Liu X. ; Ding G. ; Huo P. ; Yan Y. ; Yan Y. ; Liao G. Inorg. Chem. 2022, 61, 4681.
doi: 10.1021/acs.inorgchem.1c03936 |
158 |
Chen C. ; Hu J. ; Yang X. ; Yang T. ; Qu J. ; Guo C. ; Li C. M. ACS Appl. Mater. Interfaces 2021, 13, 20162.
doi: 10.1021/acsami.1c03482 |
159 |
Wang Z. ; Bai Y. ; Li Y. ; Tao K. ; Simayi M. ; Li Y. ; Chen Z. ; Sun Y. ; Chen X. ; Pang X. ; et al J. Colloid Interface Sci. 2022, 609, 320.
doi: 10.1016/j.jcis.2021.11.136 |
160 |
Gong H. ; Li Y. ; Li H. ; Jin Z. Langmuir 2022, 38, 2117.
doi: 10.1021/acs.langmuir.1c03198 |
161 |
Xia Z. ; Chen C. ; Qi X. ; Xu Q. ; Tang H. ; Liu G. Adv. Sustain. Syst. 2022, 2200134.
doi: 10.1002/adsu.202200134 |
162 |
Lei W. ; Pang X. ; Ge G. ; Liu G. Nano Today 2021, 39, 101183.
doi: 10.1016/j.nantod.2021.101183 |
163 |
Lei W. ; Zhou T. ; Pang X. ; Xue S. ; Xu Q. J. Mater. Sci. Technol. 2022, 114, 143.
doi: 10.1016/j.jmst.2021.10.029 |
164 |
Chen Y. ; Li L. ; Xu Q. ; Chen W. ; Dong Y. ; Fan J. ; Ma D. Sol. RRL 2021, 5, 2000541.
doi: 10.1002/solr.202000541 |
165 |
Pang X. ; Xue S. ; Zhou T. ; Qiao M. ; Li H. ; Liu X. ; Xu Q. ; Liu G. ; Lei W. Adv. Sustain. Syst. 2022, 2100507.
doi: 10.1002/adsu.202100507 |
166 |
Xu Q. ; Ma D. ; Yang S. ; Tian Z. ; Cheng B. ; Fan J. Appl. Surf. Sci. 2019, 495, 143555.
doi: 10.1016/j.apsusc.2019.143555 |
167 |
Deng J. ; Lei W. ; Fu J. ; Jin H. ; Xu Q. ; Wang S. Sol. RRL 2022, 6, 2200279.
doi: 10.1002/solr.202200279 |
168 |
Xu Q. ; Xia Z. ; Zhang J. ; Wei Z. ; Guo Q. ; Jin H. ; Tang H. ; Li S. ; Pan X. ; Su Z. ; et al Carbon Energy 2022, 1.
doi: 10.1002/cey2.205 |
[1] | Chengbo Zhang, Xiaoping Tao, Wenchao Jiang, Junxue Guo, Pengfei Zhang, Can Li, Rengui Li. Microwave-Assisted Synthesis of Bismuth Chromate Crystals for Photogenerated Charge Separation [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303034-. |
[2] | Kezhen Lai, Fengyan Li, Ning Li, Yangqin Gao, Lei Ge. Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304018-. |
[3] | Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212038-0. |
[4] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[5] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[6] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[7] | Zhen Li, Wen Liu, Chunxu Chen, Tingting Ma, Jinfeng Zhang, Zhenghua Wang. Transforming the Charge Transfer Mechanism in the In2O3/CdSe-DETA Nanocomposite from Type-I to S-Scheme to Improve Photocatalytic Activity and Stability During Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2208030-. |
[8] | Ruyao Chen, Jiazeng Xia, Yigang Chen, Haifeng Shi. S-Scheme-Enhanced PMS Activation for Rapidly Degrading Tetracycline Using CuWO4−x/Bi12O17Cl2 Heterostructures [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209012-. |
[9] | Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai. Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209037-. |
[10] | Ji-Chao Wang, Xiu Qiao, Weina Shi, Jing He, Jun Chen, Wanqing Zhang. S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2210003-. |
[11] | Zhongqi Zan, Xibao Li, Xiaoming Gao, Juntong Huang, Yidan Luo, Lu Han. 0D/2D Carbon Nitride Quantum Dots (CNQDs)/BiOBr S-Scheme Heterojunction for Robust Photocatalytic Degradation and H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209016-. |
[12] | Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212009-. |
[13] | Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211010-0. |
[14] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[15] | Yonggang Lei, Tianyu Zhao, Kim Hoong Ng, Yingzhen Zhang, Xuerui Zang, Xiao Li, Weilong Cai, Jianying Huang, Jun Hu, Yuekun Lai. Metallic Tungsten Carbide Coupled with Liquid-Phase Dye Photosensitizer for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2206006-0. |
|